JPH06241906A - Radiation thermometric method and apparatus for matter in furnace - Google Patents

Radiation thermometric method and apparatus for matter in furnace

Info

Publication number
JPH06241906A
JPH06241906A JP5053065A JP5306593A JPH06241906A JP H06241906 A JPH06241906 A JP H06241906A JP 5053065 A JP5053065 A JP 5053065A JP 5306593 A JP5306593 A JP 5306593A JP H06241906 A JPH06241906 A JP H06241906A
Authority
JP
Japan
Prior art keywords
measured
temperature
radiation
furnace
matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5053065A
Other languages
Japanese (ja)
Inventor
Masanao Sasaki
正直 佐々木
Jiro Ono
二郎 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP5053065A priority Critical patent/JPH06241906A/en
Publication of JPH06241906A publication Critical patent/JPH06241906A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the temp. of a matter not affected by stray light noise by detecting the heat radiation from the matter on the basis of two wavelengths and connecting the characteristic function of a detection signal to black-body temp. with a correction factor changing corresponding to temp. and solving the expression equations of them. CONSTITUTION:The radiant light of matter itself to be measured and the reflected light from a furnace wall are incident on a radiation thermometer from the matter to be measured in a heating furnace and, when radiation is detected within respective wavelength regions lambda1, lambda2, respective sensor outputs m1, m2 are represented by formulae I, II [wherein epsilon1 and epsilon2 are emissivities in the wavelength regions lambda1, lambda2, Ts and Tw are the temp. of the matter and that of the furnace wall and f1 (Ts) and f2 (Tw) are sensor outputs within the wavelength regions lambda1, lambda2 where black bodies with temps. Ts, Tw are measured]. When C (T) is set to a correction factor changing corresponding to temp. and represented by C(T)=f1(T)/f2(T) and the formulae I, II are deformed, formulae III, IV, V are formed. Therefore, the temp. of the matter is calculated according to formula Ts=f<(-1)>(m). Herein, C (Ts) and C (Tw) are calculated by calculating approximate values of Ts and Tw at the time of C (T)=1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炉内で加熱処理されて
いる被測定物体の温度を迷光雑音の影響なしに高精度で
測温することができる炉内物体の放射測温法および放射
測温装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation temperature measuring method and radiation for an in-furnace object capable of highly accurately measuring the temperature of an object to be measured which has been heated in a furnace without being affected by stray light noise. Regarding temperature measuring device.

【0002】[0002]

【従来の技術】放射温度計は、被測定物体の表面温度を
非接触状態で測定することができるため各種加熱炉にお
いて処理される加熱物体の温度を炉外から計測する測温
手段として汎用されている。ところが、この放射測温法
においては炉壁等の周囲環境から生じる未知の放射光が
被測定物体の表面で反射し、迷光雑音成分として測温精
度を乱す現象が発生する。
2. Description of the Related Art A radiation thermometer is widely used as a temperature measuring means for measuring the temperature of a heating object processed in various heating furnaces from outside the furnace because it can measure the surface temperature of the object to be measured in a non-contact state. ing. However, in this radiant temperature measuring method, an unknown radiant light generated from the surrounding environment such as a furnace wall is reflected on the surface of the object to be measured, and a phenomenon occurs that disturbs the temperature measuring accuracy as a stray light noise component.

【0003】このような測定誤差要因となる迷光雑音の
影響を除去する手段としては、遮蔽板を用いて未知の迷
光雑音成分を除去すると共に遮蔽板から生じる既知の迷
光雑音成分を補正することを主要構成とする放射測温法
や装置が提案されている(例えば特開昭56−163428号公
報、特開昭62−282231号公報、特開平2−138836号公
報、特開平2−296121号公報等)。しかしながら、この
方法や装置による場合には遮蔽板という異物を設置する
ために炉内の状況が乱れ、特に熱風炉のような方式の炉
に適用することはできなくなる。そのうえ、遮蔽板から
発生する迷光雑音の寄与率が変動した際には新たな測定
誤差を与える難点もあった。
As a means for removing the effect of stray light noise which causes such a measurement error, a shield plate is used to remove an unknown stray light noise component and to correct a known stray light noise component generated from the shield plate. Radiation temperature measuring methods and devices as main components have been proposed (for example, JP-A-56-163428, JP-A-62-282231, JP-A2-138836, and JP-A-2-296121). etc). However, in the case of this method or apparatus, the condition inside the furnace is disturbed due to the installation of a foreign material such as a shielding plate, and it cannot be applied to a furnace such as a hot stove. In addition, when the contribution rate of stray light noise generated from the shield plate fluctuates, a new measurement error occurs.

【0004】特開平3−287025号公報には、この
ような問題の解消を図るために、被測定物体からの熱放
射のうち波長、偏光、測定角度のいずれかが互いに異な
る3種類の分光放射輝度信号を検出し、これら信号を被
測定物体が発した放射輝度信号成分と迷光雑音成分との
和で表した3つの式と該放射輝度信号に対応する3つの
放射率間の関係を表す独立な2つの式を解くことにより
被測定物体温度、3つの分光放射率、および周囲代表温
度を求める測温方法とその装置が提案されている。この
補正演算方式によれば遮蔽板を用いることなしに迷光雑
音の影響を除去することが可能となるが、装置構成、演
算手段等が複雑化するという問題点があった。
In order to solve such a problem, JP-A-3-287025 discloses three types of spectral radiation of thermal radiation from an object to be measured, which have different wavelengths, polarizations, or measurement angles. Independently representing the relationship between the three equations that detect the luminance signal and represent these signals by the sum of the radiance signal component and the stray light noise component emitted by the measured object and the three emissivities corresponding to the radiance signal There is proposed a temperature measuring method and apparatus for obtaining the measured object temperature, the three spectral emissivities, and the ambient representative temperature by solving these two equations. According to this correction calculation method, it is possible to eliminate the influence of stray light noise without using a shield plate, but there is a problem that the device configuration, calculation means, etc. become complicated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、被測定物体
からの熱放射を異なる2つの波長として分割検知する検
出手段と各検出信号に対応する演算手段を組み合わせる
ことにより従来技術の問題点を解消したもので、その目
的は、遮蔽板等の補助手段を用いずに迷光雑音成分の影
響を除去した高精度の測温操作をおこなうことができる
炉内物体の放射測温法および放射測温装置を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention solves the problems of the prior art by combining detection means for detecting the radiation of heat from an object to be measured as two different wavelengths and computing means corresponding to each detection signal. The purpose is to eliminate the influence of stray light noise components without using auxiliary means such as a shielding plate. To provide a device.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による炉内物体の放射測温法は、被測定物体
からの熱放射を2つの異なる波長で検出し、黒体温度に
対する各検出信号の特性関数f1(T) 、f2(T) を温度
によって変化する補正係数C(T)を用いてC(T)・
1(T) =f2(T) とおき、この関係を用いて各検出信
号を被測定物体が発した信号成分と炉内周辺からの迷光
雑音成分との和で表した2つの式をC(T)=1と置い
て解き、被測定物体と迷光雑音成分の仮定の温度Ts 、
Tw を求めてそれら各温度に対応した補正係数C (T
s)、C (Tw)を計算し、得られた計算値を用いて前記検
出信号の表現式を解くことにより迷光雑音の影響を除去
した被測定物体の温度を求めることを構成上の特徴とす
る。
In order to achieve the above-mentioned object, a radiation temperature measuring method for an in-furnace object according to the present invention detects thermal radiation from an object to be measured at two different wavelengths, and measures it against a black body temperature. The characteristic functions f 1 (T) and f 2 (T) of each detection signal are calculated by using a correction coefficient C (T) that changes with temperature, C (T).
We set f 1 (T) = f 2 (T), and using this relationship, we can express two detection signals by summing the signal component emitted by the measured object and the stray light noise component from the inside of the furnace. Solving with C (T) = 1, the assumed temperature Ts of the measured object and stray light noise component,
The correction coefficient C (T
s), C (Tw) are calculated, and the obtained calculated value is used to solve the expression of the detection signal to obtain the temperature of the measured object from which the influence of stray light noise is removed. To do.

【0007】また、本発明に係る炉内物体の放射測温装
置は、被測定物体からの熱放射を2つの異なる波長で分
離検知する検出機構の放射温度計と、前記放射温度計の
各検出信号から上記の放射測温法により被測定物体の温
度を求めるための演算装置とからなることを特徴とする
ものである。
Further, the radiation temperature measuring apparatus for in-furnace objects according to the present invention includes a radiation thermometer having a detection mechanism for separately detecting thermal radiation from an object to be measured at two different wavelengths, and each of the radiation thermometers. An arithmetic unit for obtaining the temperature of the object to be measured from the signal by the radiation thermometry method.

【0008】[0008]

【作用】本発明による演算機構は、次のように説明する
ことができる。図2に示すように、加熱炉1の内部にあ
る被測定物体2の表面温度を炉外に設置した放射温度計
3により測定しようとすると、被測定物体の表面からは
2種類の矢印で示す被測定物体自身の放射光と炉壁の反
射光とが共に放射温度計3に入射する。この2つの波長
域λ1 、λ2 でエネルギーを検出すると、各波長域での
センサー出力m1 、m2 は近似的に次式(1) および(2)
で表わされる。
The operation mechanism according to the present invention can be described as follows. As shown in FIG. 2, when the surface temperature of the measured object 2 inside the heating furnace 1 is to be measured by the radiation thermometer 3 installed outside the furnace, the surface of the measured object is indicated by two types of arrows. The radiant light of the measured object itself and the reflected light of the furnace wall both enter the radiation thermometer 3. When energy is detected in these two wavelength ranges λ 1 and λ 2 , the sensor outputs m 1 and m 2 in each wavelength range are approximately expressed by the following equations (1) and (2).
It is represented by.

【0009】 m1 =ε1 ・f1(Ts)+(1−ε1)f1(Tw) …(1) m2 =ε2 ・f2(Ts)+(1−ε2)f2(Tw) …(2) 但し、 (1)および(2) 式において、ε1 は波長域λ1
おける放射率、ε2 は波長域λ2 における放射率、Ts
はひ測定物体の温度、Tw は炉壁温度、f1(Ts)は温度
Ts の黒体を測定したときの波長域λ1 におけるセンサ
ー出力、f1(Tw)は温度Tw の黒体を測定したときの波
長域λ1 におけるセンサー出力、f2(Ts)は温度Ts の
黒体を測定したときの波長域λ2 におけるセンサー出
力、f2(Tw)は温度Tw の黒体を測定したときの波長域
λ2 におけるセンサー出力である。
M 1 = ε 1 · f 1 (Ts) + (1−ε 1 ) f 1 (Tw) (1) m 2 = ε 2 · f 2 (Ts) + (1−ε 2 ) f 2 (Tw) (2) In the equations (1) and (2), ε 1 is the emissivity in the wavelength range λ 1 , ε 2 is the emissivity in the wavelength range λ 2 , and Ts
Is the temperature of the object to be measured, Tw is the furnace wall temperature, f 1 (Ts) is the sensor output in the wavelength range λ 1 when measuring a black body at temperature Ts, and f 1 (Tw) is a black body at temperature Tw Sensor output in the wavelength range λ 1 at the time, f 2 (Ts) is the sensor output in the wavelength range λ 2 when measuring a black body at the temperature Ts, and f 2 (Tw) is when the black body at the temperature Tw is measured Is the sensor output in the wavelength range λ 2 .

【0010】上記 (1)および (2)式において、右辺第1
項は被測定物体自身からの放射光、第2項は炉壁からの
反射光を示すが、ここで各波長での出力特性関数f
1(T) とf2(T) の間には次式(3) の関係が得られる。 f1(T) =1/C(T)・f2(T) =f(T) …(3)
In the above equations (1) and (2),
The term represents the emitted light from the measured object itself, and the second term represents the reflected light from the furnace wall. Here, the output characteristic function f at each wavelength is
The relationship of the following equation (3) is obtained between 1 (T) and f 2 (T). f 1 (T) = 1 / C (T) · f 2 (T) = f (T) ... (3)

【0011】但し、C(T)は温度によって変化する補
正係数で、次式(4) の関係を示す値である。 C(T)=f1(T) /f2(T) …(4)
However, C (T) is a correction coefficient which changes with temperature and is a value showing the relationship of the following equation (4). C (T) = f 1 (T) / f 2 (T) (4)

【0012】したがって、 (1)および(2) 式は (4)式の
関係を用いて次式(5) および(6) に書き直すことができ
る。 m1 =ε1 ・f (Ts)+(1−ε1)f (Tw) …(5) m2 =ε2 ・C (Ts)f(Ts)+(1−ε2)C (Tw)f (Tw) …(6)
Therefore, the equations (1) and (2) can be rewritten into the following equations (5) and (6) using the relation of the equation (4). m 1 = ε 1 · f (Ts) + (1−ε 1 ) f (Tw) (5) m 2 = ε 2 · C (Ts) f (Ts) + (1−ε 2 ) C (Tw) f (Tw)… (6)

【0013】(5)式を(1−ε1)で、また (6)式を(1−
ε2)C (Tw)で除すと、それぞれ次式(7) および(8) の
ようになる。
Equation (5) is represented by (1-ε 1 ) and equation (6) is represented by (1-
When divided by ε 2 ) C (Tw), the following equations (7) and (8) are obtained.

【0014】(7)式から (8)式を引いてまとめると、次
式(9) の関係が得られる。
When the equation (8) is subtracted from the equation (7) and summarized, the following equation (9) is obtained.

【0015】したがって、ε1 、ε2 、C (Ts)、C
(Tw)が既知であれば、測定値m1 とm2 から上記 (9)
式の右辺を計算値mとして求めることができる。この場
合、f(T)は黒体炉検定から求めた校正曲線となるの
で、次式(10)により被測定物体の真温度が求められるこ
とになる。 Ts =f(-f)(m) …(10)
Therefore, ε 1 , ε 2 , C (Ts), C
If (Tw) is known, then from the measured values m 1 and m 2 , the above (9)
The right side of the equation can be obtained as the calculated value m. In this case, f (T) is a calibration curve obtained from the black body furnace test, and therefore the true temperature of the object to be measured is obtained by the following equation (10). Ts = f (-f) (m) (10)

【0016】しかし、実際にはC (Ts)とC (Tw)は未
知であるため被測定物体の温度算出はできない。本発明
では、以下の手順により近似的なC (Ts)およびC (T
w)を求め、被測定物体の温度を演算によって求めるもの
である。 (9)式の関係において、C(T)=1とおいてm=m
* を計算し、(10)式からTs * を求める。 Ts =Ts * として (5)式の関係からf(Tw * ) =
**を計算し、(10)式と同様にしてTw * を求める。 Ts =Ts * 、Tw =Tw * としてC (Ts)とC (T
w)を求め、 (9)および(10)式の関係からTs 算出する。
However, since C (Ts) and C (Tw) are actually unknown, the temperature of the object to be measured cannot be calculated. In the present invention, the approximate C (Ts) and C (T
w) is calculated and the temperature of the object to be measured is calculated. In the relationship of the equation (9), assuming that C (T) = 1, m = m
* A is calculated to determine the Ts * from equation (10). As Ts = Ts * , f (Tw * ) =
Calculate m ** and obtain Tw * in the same manner as in equation (10). Cs (Ts) and C (T) where Ts = Ts * and Tw = Tw *
w) is calculated, and Ts is calculated from the relationship of equations (9) and (10).

【0017】上記の演算機構は、各波長における出力特
性関数の関係をそれぞれの関数によって決まる補正係数
C(T)を用いて関係付けているため、検出波長の選択
が自由となり、また迷光雑音寄与率が変動しても各波長
における変化の差によってのみ影響を受けることになる
から、寄与率変動による測定誤差を受け難くなる。した
がって、炉内で加熱されている被測定物体の温度を迷光
雑音の影響を除去した正確な温度として円滑に放射測温
することが可能となる。
In the above-mentioned arithmetic mechanism, the relation of the output characteristic function at each wavelength is related by using the correction coefficient C (T) determined by each function, so that the detection wavelength can be freely selected and the stray light noise contribution can be made. Even if the rate fluctuates, it will be affected only by the difference in change in each wavelength, and thus it will be less susceptible to measurement errors due to the contribution rate fluctuation. Therefore, the temperature of the object to be measured heated in the furnace can be smoothly radiatively measured as an accurate temperature without the influence of stray light noise.

【0018】また、本発明に係る放射測温装置によれ
ば、遮蔽板や迷光雑音源温度の測定器などの補助手段が
不要であり、1台の放射温度計を用いて測定操作をおこ
なうことができる。したがって、装置構造が簡単となる
うえ、炉の型式、方式等による適用範囲の制約を受ける
こともなくなる。
Further, according to the radiation thermometer according to the present invention, auxiliary means such as a shielding plate and a stray light noise source temperature measuring device are not required, and the measurement operation can be performed using one radiation thermometer. You can Therefore, the structure of the apparatus is simplified, and the scope of application is not restricted by the type and method of the furnace.

【0019】[0019]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on examples.

【0020】図1は本発明による放射測温装置の測定系
を示した説明図である。放射温度計3の内部には集光レ
ンズ4、5の間にチョッパー6が設置されており、被測
定物体から入射した放射光は半透鏡7により2光束に分
割されたのち、各前面に置かれた干渉フィルター8、9
により異なる波長光として検出素子10、11に入射さ
れる。12は接眼レンズである。各検出素子10、11
により検知された異なる波長の放射光はプリアンプ13
で検出信号に変換され、演算装置14に送られて上述し
た演算機構によっ迷光雑音の影響が除去された被測定物
体の温度に補正され、最終的に出力装置15に表示記録
される。
FIG. 1 is an explanatory view showing a measuring system of a radiation thermometer according to the present invention. A chopper 6 is installed between the condenser lenses 4 and 5 inside the radiation thermometer 3, and the radiant light incident from the object to be measured is split into two light beams by the semi-transparent mirror 7 and then placed on each front surface. Interference filter 8, 9
Are incident on the detection elements 10 and 11 as light having different wavelengths. Reference numeral 12 is an eyepiece lens. Each detection element 10, 11
The radiation of different wavelengths detected by the
Is converted into a detection signal and is sent to the arithmetic unit 14 to be corrected by the arithmetic mechanism described above to the temperature of the measured object from which the influence of stray light noise has been removed, and finally displayed and recorded on the output unit 15.

【0021】上記の放射測温装置を用い、検出波長域と
してλ1:3.38〜3.52μm 、λ2:3.25〜3.
85μm の2つの領域を選択して加熱炉内で加熱処理さ
れている4種類の樹脂被覆金属材の温度測定をおこなっ
た。加熱条件は、被測定物体の温度を200〜300
℃、炉壁温度が300〜400℃の範囲に設定した。得
られた各温度における放射率(ε12)および測温誤差
を表1および表2に示した。なお、測温誤差は放射率ε
1 =0.59、ε2 =0.44の一定条件における温度
差として示した。
Using the above-mentioned radiation thermometer, as detection wavelength regions, λ 1 : 3.38 to 3.52 μm, λ 2 : 3.25 to 3.
Two regions of 85 μm were selected to measure the temperature of four kinds of resin-coated metal materials which were heat-treated in the heating furnace. The heating condition is that the temperature of the measured object is 200 to 300.
C. and the furnace wall temperature were set in the range of 300 to 400.degree. The emissivity (ε 1 , ε 2 ) and temperature measurement error at each temperature obtained are shown in Tables 1 and 2. The temperature measurement error is the emissivity ε
1 = 0.59, shown as a temperature difference at constant conditions of epsilon 2 = 0.44.

【0022】表1および表2の結果から、炉壁温度の影
響による測温誤差は2℃以内であり、迷光雑音に伴う誤
差要因は効果的に除去されていることが確認された。な
お、絶対値として生じている誤差は放射率の影響による
ものであって、炉壁温度とは無関係である。
From the results of Tables 1 and 2, it was confirmed that the temperature measurement error due to the influence of the furnace wall temperature was within 2 ° C., and the error factor associated with stray light noise was effectively removed. The error that occurs as an absolute value is due to the effect of emissivity and is independent of the furnace wall temperature.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】以上のとおり、本発明によれば補助手段
を用いずに迷光雑音成分の影響を除去して常に正確な温
度計測が可能な炉内物体の放射測温法と、この放射測温
法に有効な簡易構造の放射測温装置を提供することがで
きる。したがって、各種炉操業の温度管理に適用して極
めて有用である。
As described above, according to the present invention, the radiation temperature measuring method for an in-reactor object capable of removing the influence of the stray light noise component without using auxiliary means and always performing accurate temperature measurement, and this radiation measuring method. It is possible to provide a radiation thermometer having a simple structure that is effective for the temperature method. Therefore, it is extremely useful when applied to temperature control of various furnace operations.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による放射測温装置の測定系を示した説
明図である。
FIG. 1 is an explanatory view showing a measuring system of a radiation thermometer according to the present invention.

【図2】炉内物体を放射測温する際の入射状況を示した
説明図である。
FIG. 2 is an explanatory diagram showing an incident state at the time of performing radiation temperature measurement of an in-furnace object.

【符号の説明】[Explanation of symbols]

1 加熱炉 2 被測定物体 3 放射温度計 4 集光レンズ 5 集光レンズ 6 チョッパー 7 半透鏡 8 干渉フィルター 9 干渉フィルター 10 検出素子 11 検出素子 12 接眼レンズ 13 プリアンプ 14 演算装置 15 出力装置 1 heating furnace 2 object to be measured 3 radiation thermometer 4 condenser lens 5 condenser lens 6 chopper 7 semi-transparent mirror 8 interference filter 9 interference filter 10 detector element 11 detector element 12 eyepiece lens 13 preamplifier 14 arithmetic unit 15 output device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定物体からの熱放射を2つの異なる
波長で検出し、黒体温度に対する各検出信号の特性関数
1(T)、f2(T)を温度によって変化する補正係数C
(T)を用いてC(T)・f1(T)=f2(T)とおき、
この関係を用いて各検出信号を被測定物体が発した信号
成分と炉内周辺からの迷光雑音成分との和で表した2つ
の式をC(T)=1と置いて解き、被測定物体と迷光雑
音成分の仮定の温度Ts 、Tw を求めてそれら各温度に
対応した補正係数C (Ts) 、C (Tw)を計算し、得ら
れた計算値を用いて前記検出信号の表現式を解くことに
より迷光雑音の影響を除去した被測定物体の温度を求め
ることを特徴とする炉内温度の放射測温法。
1. A correction coefficient C that detects thermal radiation from an object to be measured at two different wavelengths and changes the characteristic functions f 1 (T) and f 2 (T) of each detection signal with respect to the black body temperature depending on the temperature.
Using (T), C (T) · f 1 (T) = f 2 (T),
By using this relationship, each detected signal is solved by setting two equations expressed as the sum of the signal component emitted by the measured object and the stray light noise component from the inside of the furnace as C (T) = 1, and the measured object And the assumed temperatures Ts and Tw of the stray light noise component are calculated, the correction coefficients C (Ts) and C (Tw) corresponding to the respective temperatures are calculated, and the expression of the detection signal is calculated using the obtained calculated values. A radiation temperature measuring method of the temperature in a furnace, which is characterized by obtaining the temperature of an object to be measured by removing the influence of stray light noise by solving.
【請求項2】 被測定物体からの熱放射を2つの異なる
波長で分離検知する検出機構の放射温度計と、前記放射
温度計の各検出信号から請求項1記載の方法により被測
定物体の温度を求めるための演算装置とからなる炉内物
体の放射測温装置。
2. The temperature of the object to be measured by the method according to claim 1, from a radiation thermometer of a detection mechanism for separately detecting thermal radiation from the object to be measured at two different wavelengths, and detection signals of the radiation thermometer. Radiation temperature measuring device for in-furnace objects consisting of a computing device for determining
JP5053065A 1993-02-18 1993-02-18 Radiation thermometric method and apparatus for matter in furnace Pending JPH06241906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5053065A JPH06241906A (en) 1993-02-18 1993-02-18 Radiation thermometric method and apparatus for matter in furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5053065A JPH06241906A (en) 1993-02-18 1993-02-18 Radiation thermometric method and apparatus for matter in furnace

Publications (1)

Publication Number Publication Date
JPH06241906A true JPH06241906A (en) 1994-09-02

Family

ID=12932436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5053065A Pending JPH06241906A (en) 1993-02-18 1993-02-18 Radiation thermometric method and apparatus for matter in furnace

Country Status (1)

Country Link
JP (1) JPH06241906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303513A (en) * 2001-01-30 2002-10-18 Fujitsu Ltd Observation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303513A (en) * 2001-01-30 2002-10-18 Fujitsu Ltd Observation device

Similar Documents

Publication Publication Date Title
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
US4881823A (en) Radiation thermometry
RU2523775C2 (en) Method and system for correction on basis of quantum theory to increase accuracy of radiation thermometer
JP3393648B2 (en) Temperature compensation sensor module
JPS59206726A (en) Duplex type sensor radiation pyrometer
US9255846B1 (en) Digital temperature determination using a radiometrically calibrated and a non-calibrated digital thermal imager
US20090212220A1 (en) Method and System for Measuring and Compensating for the Case Temperature Variations in a Bolometer Based System
Tank et al. Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity
US20030067956A1 (en) Temperature measuring method and apparatus
Lowe et al. Correction of temperature errors due to the unknown effect of window transmission on ratio pyrometers using an in situ calibration standard
US3610592A (en) Method and apparatus for estimating errors in pyrometer readings
JPH06241906A (en) Radiation thermometric method and apparatus for matter in furnace
JPH06241907A (en) Radiation thermometric method and apparatus for matter in furnace
JPH07174634A (en) Method for measuring temperature of object in furnace
JPS6041293B2 (en) radiation thermometer
US3483378A (en) Apparatus for determining the emittance of a body
US3376748A (en) Method and apparatus for radiation pyrometry
Frunze Metrological problems of modern energy-controlled pyrometry
JP2632086B2 (en) Radiation thermometry and radiation thermometer used for the temperature measurement
Hao et al. Study on the infrared lens-free irradiation thermometer based on InGaAs detector at NIM
JPH04276527A (en) Thermometer in furnace
JP2007107939A (en) Method and device of measuring temperature of steel plate
KR20180101748A (en) Method for calculating calibration curve for measuring high temperature
JPH03287025A (en) Method and device for measurement of temperature and emissivity of body and circumferential temperature
Chernysheva et al. Efficiency Analysis of the Usage Of Single-Channel Radiation Thermometers with Different Spectral Characteristics in Dusty Environment