JP2011053047A - Surface temperature measuring method, surface temperature measuring apparatus, and steel manufacturing method - Google Patents

Surface temperature measuring method, surface temperature measuring apparatus, and steel manufacturing method Download PDF

Info

Publication number
JP2011053047A
JP2011053047A JP2009201445A JP2009201445A JP2011053047A JP 2011053047 A JP2011053047 A JP 2011053047A JP 2009201445 A JP2009201445 A JP 2009201445A JP 2009201445 A JP2009201445 A JP 2009201445A JP 2011053047 A JP2011053047 A JP 2011053047A
Authority
JP
Japan
Prior art keywords
temperature
water
measuring
radiation thermometer
temperature measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009201445A
Other languages
Japanese (ja)
Other versions
JP5333933B2 (en
Inventor
Chihiro Uematsu
千尋 植松
Tatsuro Honda
達朗 本田
Atsushi Ozekawa
淳 小瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2009201445A priority Critical patent/JP5333933B2/en
Publication of JP2011053047A publication Critical patent/JP2011053047A/en
Application granted granted Critical
Publication of JP5333933B2 publication Critical patent/JP5333933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface temperature measuring method which can perform temperature measurement with high precision even in a low-temperature range in which a material for temperature measurement is under water cooling and its surface temperature is about 200°C. <P>SOLUTION: The method for measuring the surface temperature of a material for temperature measurement detects thermal radiation emitted from the surface of the material for temperature measurement M under water cooling by a radiation thermometer 1 arranged facing the surface of the material for temperature measurement. The wavelength of the thermal radiation detected by the radiation thermometer is set to be 1.60 to 1.80 μm. Air is injected from the radiation thermometer toward the surface of the material for temperature measurement, thereby forming an air column in between the surface of the material for temperature measurement and the radiation thermometer. The thermal radiation emitted from the surface of the material for temperature measurement is detected by the radiation thermometer through the air column. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋼材等の被測温材の表面温度を放射測温によって測定する方法及び装置並びにこの方法によって表面温度を測定する工程を有する鋼材の製造方法に関する。特に、本発明は、被測温材が水冷中でその表面温度が200℃程度の低温域であっても、精度良く測温可能な表面温度測定方法及び装置並びにこの方法によって表面温度を測定する工程を有する鋼材の製造方法に関する。   The present invention relates to a method and apparatus for measuring the surface temperature of a temperature-measured material such as a steel material by radiation temperature measurement, and a method for manufacturing a steel material having a step of measuring the surface temperature by this method. In particular, the present invention measures the surface temperature by using this method and a surface temperature measuring method and apparatus capable of measuring the temperature accurately even if the temperature of the material to be measured is water-cooled and the surface temperature is about 200 ° C. The present invention relates to a method for manufacturing a steel material having a process.

鋼材の高品質化や生産性向上を図る点で、冷却工程における鋼材の温度管理が重要になっている。鋼材の熱間圧延ラインや熱処理・冷却ラインなどの冷却工程において、搬送中の鋼材の表面温度を放射温度計を用いて測定する際には、被測温鋼材と放射温度計との間に湯気が存在したり、冷却水が飛散してきたり、或いは、被測温鋼材表面が水膜に覆われたり、水没したりすることが甚だしい。このような環境下では、被測温鋼材から放射された熱放射光が、水蒸気、湯気、冷却水等に吸収され或いは散乱されることにより、測温値に誤差が生じたり、測定できない場合が生じたりすることもある。   In order to improve the quality and productivity of steel, temperature management of the steel in the cooling process is important. When measuring the surface temperature of a steel material being transported using a radiation thermometer in a cooling process such as a hot rolling line or a heat treatment / cooling line for steel, steam between the steel to be measured and the radiation thermometer. The cooling water is scattered, or the surface of the steel material to be measured is covered with a water film or submerged. Under such circumstances, the thermal radiation emitted from the temperature-measured steel material may be absorbed or scattered by water vapor, steam, cooling water, etc., resulting in an error in the temperature measurement value or inability to measure. It may occur.

そこで、上記のような要因によって生じる測温誤差を低減し、精度の良い放射測温を可能とするべく、従来より、鋼材表面に向けてノズルからパージ用の水を噴出することにより放射温度計と鋼材表面との間に水柱を形成し、当該水柱を介して鋼材から放射される放射エネルギーを検出することにより鋼材表面温度を測定する方法が種々提案されている。   Therefore, in order to reduce temperature measurement errors caused by the above factors and enable accurate radiation temperature measurement, a radiation thermometer has been conventionally used by ejecting purge water from a nozzle toward the steel surface. Various methods have been proposed for measuring the surface temperature of a steel material by forming a water column between the surface of the steel material and detecting the radiant energy radiated from the steel material through the water column.

より具体的に説明すれば、例えば、被測定物から放射された放射エネルギーに基づいて該被測定物の表面温度を測定する放射温度計と前記被測定物との間に水柱を形成し、該被測定物から放射された放射エネルギーの内、前記水柱が吸収した放射エネルギーの分を補正しながら、前記放射温度計を用いて前記被測定物の表面温度を測定する温度測定方法において、前記水柱を形成するに当たり、該水柱の温度を60℃以上にすることを特徴とする温度測定方法が提案されている(例えば、特許文献1参照)。   More specifically, for example, a water column is formed between the measurement object and a radiation thermometer that measures the surface temperature of the measurement object based on the radiant energy radiated from the measurement object, In the temperature measurement method of measuring the surface temperature of the object to be measured using the radiation thermometer while correcting the amount of radiant energy absorbed by the water column among the radiant energy radiated from the object to be measured, the water column In forming the temperature, a temperature measuring method is proposed in which the temperature of the water column is set to 60 ° C. or higher (see, for example, Patent Document 1).

特許文献1に記載の方法によれば、放射温度計と被測定物との間に水柱が形成されるため、水柱が形成された部分には水蒸気や飛散水が侵入し難く、これら水蒸気や飛散水による放射エネルギーの吸収や散乱に起因した測温誤差を低減することが可能である。さらに、特許文献1に記載の方法は、水柱の温度を60℃以上にする構成であり、水柱が接触している被測定物表面に沸騰膜が形成され易くなる。このため、被測定物の表面温度低下を抑制し、測温値の代表性を損なうこともなく、被測定物の冷却むらも低減できるという利点を有する。   According to the method described in Patent Document 1, since a water column is formed between the radiation thermometer and the object to be measured, it is difficult for water vapor or scattered water to enter the portion where the water column is formed. It is possible to reduce temperature measurement errors due to absorption and scattering of radiant energy by water. Furthermore, the method described in Patent Document 1 has a configuration in which the temperature of the water column is set to 60 ° C. or higher, and a boiling film is easily formed on the surface of the object to be measured which is in contact with the water column. For this reason, it has the advantage that the surface temperature fall of a to-be-measured object is suppressed, and the cooling nonuniformity of a to-be-measured object can also be reduced, without impairing the representativeness of a measured temperature value.

しかしながら、特許文献1に記載の方法では、水柱の温度を60℃以上に上昇させるための加熱装置が必要であり、水を昇温させるためのエネルギーコストが掛かるという問題がある。また、水柱の厚みを測定するための厚み測定装置(例えば、超音波方式)が必要であるため、装置全体の寸法が大きくなり、鋼材の搬送ロール間等の狭いスペースには設置し難いという問題がある。さらに、厚み測定装置をたとえ設置できたとしても、着脱に手間を要するなど保全性を阻害したり、厚み測定装置の故障による測温値の安定性・信頼性の低下が問題となる。   However, the method described in Patent Document 1 requires a heating device for raising the temperature of the water column to 60 ° C. or higher, and there is a problem that it takes energy cost to raise the temperature of water. In addition, since a thickness measuring device (for example, an ultrasonic method) for measuring the thickness of the water column is required, the overall size of the device becomes large, and it is difficult to install in a narrow space such as between steel conveying rolls. There is. Further, even if the thickness measuring device can be installed, there is a problem in that the maintenance is hindered such as requiring labor for attaching and detaching, and the stability and reliability of the temperature measurement value is lowered due to the failure of the thickness measuring device.

特許文献1に記載の方法における上記の問題点等を解決するため、本発明者らは、特許文献2に記載の方法を提案している。
具体的には、特許文献2には、被測温鋼材下面から放射された熱放射光を、被測温鋼材下面に向けてノズルから噴射したパージ水を介して被測温鋼材の下方に対向配置した放射温度計で検出することにより、被測温鋼材の表面温度を測定する方法であって、被測温鋼材のパスラインを位置基準とした前記パージ水の全ヘッドを所定の範囲に設定することを特徴とする鋼材の表面温度測定方法が提案されている(特許文献2の請求項2)。そして、前記放射温度計で検出する熱放射光の波長を0.9μm以下とすることが提案されている(特許文献2の請求項3)。
In order to solve the above-described problems in the method described in Patent Document 1, the present inventors have proposed the method described in Patent Document 2.
Specifically, in Patent Document 2, the heat radiation light radiated from the lower surface of the measured temperature steel material is opposed to the lower side of the measured temperature steel material through purge water jetted from the nozzle toward the lower surface of the measured temperature steel material. A method for measuring the surface temperature of a steel material to be measured by detecting with a radiation thermometer arranged, and setting all the heads of the purge water within a predetermined range with the pass line of the steel material to be measured as a position reference A method for measuring the surface temperature of a steel material characterized in that it has been proposed (Claim 2 of Patent Document 2). And it has been proposed that the wavelength of the thermal radiation detected by the radiation thermometer be 0.9 μm or less (claim 3 of Patent Document 2).

特許文献2に記載の上記方法によれば、パージ水の全ヘッドを所定の範囲に設定することにより、被測温鋼材下面に対するパージ水の衝突圧が抑制され、パージ水がたとえ常温であっても冷却を抑制することができる。このため、特許文献1のように水を昇温させるためのエネルギーコストが掛からないという利点が得られる。また、放射温度計で検出する熱放射光の波長を0.9μm以下とすることにより、水柱の厚みを測定するための厚み測定装置が不要になるという利点が得られる。   According to the method described in Patent Document 2, by setting all the purge water heads within a predetermined range, the collision pressure of the purge water against the lower surface of the steel material to be measured is suppressed, and the purge water is at room temperature. Can also suppress cooling. For this reason, the advantage that the energy cost for heating up water like patent document 1 does not start is acquired. Moreover, the advantage that the thickness measuring apparatus for measuring the thickness of a water column becomes unnecessary is acquired by making the wavelength of the thermal radiation light detected with a radiation thermometer into 0.9 micrometer or less.

しかしながら、特許文献2に記載の上記方法では、放射温度計で検出する熱放射光の波長を0.9μm以下としているため、放射測温可能な鋼材の表面温度の下限値は、500℃程度である。近年における鋼材の高品質化に対する要求レベルに鑑みれば、200℃程度の低温域の表面温度を管理することが重要となってきており、500℃程度以上の表面温度しか測定できない方法では、適切な温度管理ができないという問題がある。   However, in the above method described in Patent Document 2, the wavelength of the thermal radiation detected by the radiation thermometer is 0.9 μm or less, so the lower limit of the surface temperature of the steel material that can be measured by radiation is about 500 ° C. is there. In recent years, it has become important to manage the surface temperature in a low temperature range of about 200 ° C. in view of the required level for quality improvement of steel materials. There is a problem that the temperature cannot be controlled.

特開平8−295950号公報JP-A-8-295950 特開2006−17589号公報JP 2006-17589 A

本発明は、斯かる従来技術の問題点を解決するためになされたものであり、鋼材等の被測温材が水冷中でその表面温度が200℃程度の低温域(例えば、180〜350℃)であっても、精度良く測温可能な表面温度測定方法及び装置並びにこの方法によって表面温度を測定する工程を有する鋼材の製造方法を提供することを課題とする。   The present invention has been made to solve such problems of the prior art, and a temperature-measured material such as a steel material is water-cooled and its surface temperature is about 200 ° C. (for example, 180 to 350 ° C.). However, it is an object of the present invention to provide a surface temperature measuring method and apparatus capable of measuring temperature accurately and a method of manufacturing a steel material having a step of measuring the surface temperature by this method.

前記課題を解決するため、本発明者らは鋭意検討した結果、後述するように、放射温度計で検出する熱放射光の波長を1.60〜1.80μmとすれば、200℃程度の低温域でも測温値の変動が少ないことを見出した。また、本発明者らは、後述するように、1.60〜1.80μmの波長帯域において水の透過率が比較的高くなることを見出し、この結果、放射温度計と被測温材との間に侵入した水による熱放射光の吸収に起因する測温誤差を低減可能であることを見出した。本発明は、斯かる本発明者らの知見に基づき完成されたものである。   In order to solve the above-mentioned problems, the present inventors have intensively studied. As will be described later, if the wavelength of the thermal radiation detected by the radiation thermometer is 1.60 to 1.80 μm, the temperature is as low as about 200 ° C. We found that there was little variation in temperature measurement values even in the area. In addition, as described later, the present inventors have found that the water transmittance is relatively high in the wavelength band of 1.60 to 1.80 μm, and as a result, the radiation thermometer and the temperature-measured material It was found that the temperature measurement error due to the absorption of thermal radiation by the water that entered between them can be reduced. The present invention has been completed based on the knowledge of the present inventors.

すなわち、前記課題を解決するため、本発明は、水冷中の被測温材の表面から放射された熱放射光を該被測温材の表面に対向配置した放射温度計で検出することにより、該被測温材の表面温度を測定する方法であって、前記放射温度計で検出する熱放射光の波長を1.60〜1.80μmとすることを特徴とする表面温度測定方法を提供する。   That is, in order to solve the above-mentioned problem, the present invention detects the thermal radiation emitted from the surface of the temperature-measuring material during water cooling with a radiation thermometer disposed opposite to the surface of the temperature-measuring material, A method for measuring the surface temperature of the temperature-measuring material, wherein the wavelength of thermal radiation detected by the radiation thermometer is 1.60 to 1.80 μm. .

斯かる発明によれば、被測温材が水冷中でその表面温度が200℃程度の低温域であっても、被測温材の表面温度を精度良く測定可能である。   According to such an invention, the surface temperature of the material to be measured can be accurately measured even when the material to be measured is water-cooled and its surface temperature is in a low temperature range of about 200 ° C.

前記放射温度計から前記被測温材の表面に向けてエアーを噴射することにより、前記被測温材の表面と前記放射温度計との間にエアー柱を形成し、前記エアー柱を介して前記被測温材の表面から放射された熱放射光を前記放射温度計で検出することが好ましい。   By injecting air from the radiation thermometer toward the surface of the material to be measured, an air column is formed between the surface of the material to be measured and the radiation thermometer, and through the air column It is preferable to detect the thermal radiation emitted from the surface of the temperature-measuring material with the radiation thermometer.

斯かる好ましい構成によれば、エアー柱によって、放射温度計と被測温材との間への水の侵入が抑制され、より一層精度良く測温可能である。   According to such a preferable configuration, the intrusion of water between the radiation thermometer and the temperature-measured material is suppressed by the air column, and the temperature can be measured with higher accuracy.

放射温度計と被測温材との間に侵入する水の量は、常に一定ではなく、通常は時間的に変動する。そして、侵入する水の量が多ければ多いほど、水による熱放射光の吸収や散乱に起因する測温誤差が大きくなる。具体的には、侵入する水の量が多ければ多いほど、測温値が低下する。このため、所定時間内に得られた複数の測温値のうち、最大の測温値を測定結果として用いれば、この測定結果は、所定時間内において侵入する水の量が最も少ないタイミングで得られた測温値であると考えられるため、より一層測温精度が高まることが期待できる。   The amount of water that enters between the radiation thermometer and the temperature-measuring material is not always constant, and usually varies with time. And the more the amount of water that enters, the greater the temperature measurement error due to the absorption and scattering of thermal radiation by the water. Specifically, the greater the amount of water that enters, the lower the temperature measurement value. For this reason, if the maximum temperature measurement value is used as the measurement result among the plurality of temperature measurement values obtained within the predetermined time, the measurement result is obtained at the timing when the amount of water entering the predetermined time is the smallest. Therefore, it can be expected that the temperature measurement accuracy is further improved.

従って、前記放射温度計によって所定時間内に得られた複数の測温値のうち、最大の測温値を前記被測温材の表面温度として出力することが好ましい。   Therefore, it is preferable to output the maximum measured value among the plurality of measured values obtained within a predetermined time by the radiation thermometer as the surface temperature of the material to be measured.

また、前記被測温材の表面と前記放射温度計との間に存在し得る水の厚みをhとした場合、以下の式を満足する流速Vで、前記放射温度計から前記被測温材の表面に向けてエアーを噴射することが好ましい。
>2・ρ・g・h/ρ
ただし、上記の式において、ρは水の密度を、ρはエアーの密度を、gは重力加速度を意味する。
Further, when the thickness of water that can exist between the surface of the temperature-measuring material and the radiation thermometer is h, the temperature-measuring material is measured from the radiation thermometer at a flow velocity V that satisfies the following formula. It is preferable to inject air toward the surface.
V 2 > 2 · ρ L · g · h / ρ g
However, in said formula, (rho) L means the density of water, (rho) g means the density of air, and g means a gravitational acceleration.

斯かる好ましい構成によれば、例えば、被測温材下面から放射された熱放射光を被測温材下面に対向配置した放射温度計で検出し、被測温材下面に向けてエアーを噴射する場合に、後述するように、水の最下面の静圧よりも噴射するエアーの動圧の方が大きくなる。このため、放射温度計と被測温材との間に存在する水がエアーによって排除され易くなり、被測温材の表面温度をより一層精度良く測定可能である。   According to such a preferable configuration, for example, the thermal radiation light radiated from the lower surface of the material to be measured is detected by the radiation thermometer disposed opposite to the lower surface of the material to be measured, and air is injected toward the lower surface of the material to be measured. In this case, as will be described later, the dynamic pressure of the sprayed air becomes larger than the static pressure of the lowermost surface of water. For this reason, the water which exists between a radiation thermometer and a temperature measuring material becomes easy to be excluded by air, and the surface temperature of the temperature measuring material can be measured with higher accuracy.

ここで、測温精度をより一層高めるには、測温誤差の要因となる被測温材の表面と放射温度計との間に存在する水の厚みが小さい場合(例えば、0.1mm以下の場合)にのみ、測温値を被測温材の表面温度として出力することが好ましい。そこで、本発明者らが、この水の厚みを評価する方法について鋭意検討した結果、被測温材の表面から放射された熱放射光を複数の波長帯域に分光したとき、各波長帯域の熱放射光のエネルギーの比が水の厚みによって変化することを見出した。   Here, in order to further improve the temperature measurement accuracy, when the thickness of water existing between the surface of the temperature measurement material that causes a temperature measurement error and the radiation thermometer is small (for example, 0.1 mm or less) Only in the case), it is preferable to output the temperature measurement value as the surface temperature of the material to be measured. Therefore, as a result of intensive studies on the method for evaluating the thickness of the water, the present inventors have analyzed the heat radiation emitted from the surface of the temperature-measuring material into a plurality of wavelength bands and obtained heat in each wavelength band. It has been found that the ratio of the energy of synchrotron radiation varies with the thickness of water.

すなわち、測温精度をより一層高めるには、前記被測温材の表面から放射された熱放射光を複数の波長帯域に分光し、各波長帯域の熱放射光のエネルギーの比に基づいて、前記被測温材の表面と前記放射温度計との間に存在する水の厚みが0.1mm以下であるか否かを判断し、前記水の厚みが0.1mm以下であると判断した場合にのみ、前記被測温材の表面温度を出力することが好ましい。   That is, in order to further improve the temperature measurement accuracy, the thermal radiation emitted from the surface of the temperature-measured material is divided into a plurality of wavelength bands, and based on the ratio of the energy of the thermal radiation light in each wavelength band, When it is determined whether or not the thickness of water existing between the surface of the temperature-measured material and the radiation thermometer is 0.1 mm or less, and the thickness of the water is determined to be 0.1 mm or less It is preferable to output only the surface temperature of the temperature-measuring material.

具体的には、前記被測温材の表面から放射された熱放射光を、1.60〜1.80μm、1.65〜1.75μm及び1.88〜1.94μmの各波長帯域に分光することが好ましい。   Specifically, the heat radiation emitted from the surface of the temperature-measuring material is spectrally divided into wavelength bands of 1.60 to 1.80 μm, 1.65 to 1.75 μm, and 1.88 to 1.94 μm. It is preferable to do.

また、前記課題を解決するため、本発明は、水冷中の被測温材の表面に対向配置された放射温度計を備え、該被測温材の表面から放射された熱放射光を該放射温度計で検出することにより、該被測温材の表面温度を測定する装置であって、前記被測温材の表面と前記放射温度計の検出素子との間に、1.60〜1.80μmの波長帯域の光のみを透過する光学フィルタを備えることを特徴とする表面温度測定装置としても提供される。   In order to solve the above-mentioned problem, the present invention includes a radiation thermometer disposed opposite to the surface of the temperature-measuring material that is being water-cooled, and radiates the heat radiation emitted from the surface of the temperature-measuring material. A device for measuring the surface temperature of the temperature-measuring material by detecting with a thermometer, between the surface of the temperature-measuring material and the detection element of the radiation thermometer. It is also provided as a surface temperature measuring device comprising an optical filter that transmits only light in the wavelength band of 80 μm.

さらに、前記課題を解決するため、本発明は、前記被測温材が鋼材であり、前記いずれかに記載の方法によって表面温度を測定する工程を有することを特徴とする鋼材の製造方法としても提供される。   Furthermore, in order to solve the above-mentioned problem, the present invention provides a method for producing a steel material, wherein the temperature-measured material is a steel material, and includes a step of measuring a surface temperature by any one of the methods described above. Provided.

本発明によれば、放射温度計で検出する熱放射光の波長を1.60〜1.80μmとすることにより、200℃程度の低温域でも測温値の変動が少なくなる。また、1.60〜1.80μmの波長帯域において水の透過率が比較的高いため、放射温度計と被測温材との間に侵入した水による熱放射光の吸収に起因する測温誤差を低減可能である。この結果、本発明によれば、被測温材が水冷中でその表面温度が200℃程度の低温域であっても、被測温材の表面温度を精度良く測定可能である。   According to the present invention, by setting the wavelength of the heat radiation light detected by the radiation thermometer to 1.60 to 1.80 μm, fluctuations in the temperature measurement value are reduced even in a low temperature range of about 200 ° C. In addition, since the transmittance of water is relatively high in the wavelength band of 1.60 to 1.80 μm, a temperature measurement error caused by absorption of heat radiation light by water that has entered between the radiation thermometer and the temperature measurement material. Can be reduced. As a result, according to the present invention, the surface temperature of the material to be measured can be accurately measured even when the material to be measured is water-cooled and the surface temperature is in a low temperature range of about 200 ° C.

図1は、本発明の第1の実施形態に係る表面温度測定装置の概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a surface temperature measuring apparatus according to the first embodiment of the present invention. 図2は、検出する熱放射光の波長を0.65〜0.83μmとした放射温度計の測温値バラツキを評価した結果の一例を示すグラフである。FIG. 2 is a graph showing an example of a result of evaluating a temperature measurement variation of a radiation thermometer in which the wavelength of thermal radiation to be detected is 0.65 to 0.83 μm. 図3は、1.0〜2.5μmの波長帯域における水の分光透過率を調査した結果を示すグラフである。FIG. 3 is a graph showing the results of examining the spectral transmittance of water in the wavelength band of 1.0 to 2.5 μm. 図4は、200℃における黒体の分光放射輝度を示す。FIG. 4 shows the spectral radiance of a black body at 200 ° C. 図5は、検出する熱放射光の波長を1.60〜1.80μmとした放射温度計の測温値バラツキを評価した結果の一例を示すグラフである。FIG. 5 is a graph showing an example of a result of evaluating a temperature measurement value variation of a radiation thermometer in which the wavelength of detected thermal radiation light is 1.60 to 1.80 μm. 図6は、1.60〜1.80μmの波長帯域における水の透過率を調査した結果を示すグラフである。FIG. 6 is a graph showing the results of examining the water transmittance in the wavelength band of 1.60 to 1.80 μm. 図7は、厚み1mm、2mm、4mmの水を介して検出する熱放射光の波長を1.60〜1.80μmとした放射温度計の測温値バラツキを評価した結果の一例を示すグラフである。FIG. 7 is a graph showing an example of a result of evaluating a temperature measurement value variation of a radiation thermometer in which the wavelength of heat radiation light detected through water having a thickness of 1 mm, 2 mm, and 4 mm is 1.60 to 1.80 μm. is there. 図8は、エアーパージ検討用の試験装置の概略構成を示す模式図である。FIG. 8 is a schematic diagram showing a schematic configuration of a test apparatus for examining air purge. 図9は、エアー流速に応じて排除可能な水の厚みの実測値及び計算値を示す。FIG. 9 shows measured values and calculated values of the thickness of water that can be removed according to the air flow rate. 図10は、図8に示す試験装置において、エアー流速を変更した場合に生じる測温誤差を評価した結果の一例を示すグラフである。FIG. 10 is a graph showing an example of a result of evaluating a temperature measurement error that occurs when the air flow rate is changed in the test apparatus shown in FIG. 図11は、図8に示す試験装置を用いた測温結果の一例を示すグラフである。FIG. 11 is a graph showing an example of a temperature measurement result using the test apparatus shown in FIG. 図12は、図11に示す複数の測温値に対して、最大の測温値を抽出する時間単位を変更した場合における、測定結果(抽出した最大測温値)のバラツキを示すグラフである。FIG. 12 is a graph showing variations in measurement results (extracted maximum temperature measurement values) when the time unit for extracting the maximum temperature measurement value is changed with respect to the plurality of temperature measurement values shown in FIG. . 図13は、図11に示す複数の測温値に対して、0.2sec毎に最大測温値を抽出した結果を示すグラフである。FIG. 13 is a graph showing the result of extracting the maximum temperature measurement value every 0.2 sec for the plurality of temperature measurement values shown in FIG. 図14は、図8に示す試験装置を用いた測温結果の他の例を示すグラフである。FIG. 14 is a graph showing another example of a temperature measurement result using the test apparatus shown in FIG. 図15は、本発明の第2の実施形態に係る表面温度測定装置の概略構成を示す模式図である。FIG. 15 is a schematic diagram showing a schematic configuration of a surface temperature measuring apparatus according to the second embodiment of the present invention. 図16は、E(1.65〜1.75μm)/E(1.60〜1.80μm)の変化の一例を示すグラフである。FIG. 16 is a graph showing an example of a change of E (1.65 to 1.75 μm) / E (1.60 to 1.80 μm). 図17は、E(1.88〜1.94μm)/E(1.60〜1.80μm)の変化の一例を示すグラフである。FIG. 17 is a graph showing an example of a change of E (1.88 to 1.94 μm) / E (1.60 to 1.80 μm). 図18は、図17に示すグラフの内、水の厚みが小さい部分を拡大して示すグラフである。18 is an enlarged graph showing a portion where the thickness of water is small in the graph shown in FIG. 図19は、厚鋼板の製造ラインの概略構成例を示す模式図である。FIG. 19 is a schematic diagram illustrating a schematic configuration example of a production line for thick steel plates.

以下、添付図面を適宜参照しつつ、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings as appropriate.

<第1の実施形態>
図1は、本発明の第1の実施形態に係る表面温度測定装置の概略構成を示す模式図である。図1に示すように、本実施形態に係る表面温度測定装置100は、水冷中の被測温材(本実施形態では鋼板M)に対向配置された放射温度計1を備え、鋼板Mの表面(本実施形態では下面)から放射された熱放射光を放射温度計1で検出することにより、鋼板Mの表面温度を測定する装置である。また、本実施形態に係る表面温度測定装置100は、鋼板M表面(本実施形態では下面)に向けてエアーパージする(エアーを噴射する)ためのノズル2を備えている。さらに、本実施形態に係る表面温度測定装置100は、エアー供給源(図示せず)からノズル2に供給するエアーの流量を調整するための流量調整バルブ3と、ノズル2に供給するエアー中の水分や油などを除去するためのフィルタ4とを備える。
<First Embodiment>
FIG. 1 is a schematic diagram showing a schematic configuration of a surface temperature measuring apparatus according to the first embodiment of the present invention. As shown in FIG. 1, the surface temperature measuring apparatus 100 according to the present embodiment includes a radiation thermometer 1 disposed opposite to a temperature-measured material (steel plate M in the present embodiment) during water cooling, and the surface of the steel plate M This is a device for measuring the surface temperature of the steel sheet M by detecting the thermal radiation emitted from the lower surface (in this embodiment) with the radiation thermometer 1. Further, the surface temperature measuring apparatus 100 according to the present embodiment includes a nozzle 2 for air purging (injecting air) toward the surface of the steel sheet M (lower surface in the present embodiment). Furthermore, the surface temperature measuring apparatus 100 according to the present embodiment includes a flow rate adjusting valve 3 for adjusting the flow rate of air supplied from the air supply source (not shown) to the nozzle 2, and the air in the air supplied to the nozzle 2. And a filter 4 for removing moisture and oil.

放射温度計1は、鋼板M表面からの熱放射光を受光する受光光学系11と、受光光学系11によって受光された熱放射光を伝送するための光ファイバ12と、光ファイバ12で伝送された熱放射光を検出し、温度に換算する温度演算部13と、温度演算部13で所定時間内に得られた複数の測温値のうち、最大の測温値を鋼板Mの表面温度として出力する最大測温値抽出部14とを備えている。   The radiation thermometer 1 is transmitted by a light receiving optical system 11 that receives thermal radiation from the surface of the steel plate M, an optical fiber 12 that transmits thermal radiation received by the light receiving optical system 11, and the optical fiber 12. The temperature calculation unit 13 that detects the thermal radiation and converts it into a temperature, and among the plurality of temperature measurement values obtained within a predetermined time by the temperature calculation unit 13, the maximum temperature measurement value is used as the surface temperature of the steel sheet M. And a maximum temperature measurement value extraction unit 14 for output.

受光光学系11は、熱放射光の検出視野を調整するための光学系であり、集光レンズや視野絞り等によって構成される。
光ファイバ12としては、例えば石英系の材質からなるものを用いることができる。光ファイバ12単体では破損の虞があるため、光ファイバ12は、ステンレス製のフレキシブルホースで被覆されている。
以上に述べた受光光学系11及び光ファイバ12の一部はノズル2に内蔵され、ノズル2の中心軸に沿うように、適宜のガイド部材(図示せず)によって位置決めされている。
The light receiving optical system 11 is an optical system for adjusting the detection field of the thermal radiation light, and includes a condenser lens, a field stop, and the like.
As the optical fiber 12, for example, an optical fiber made of a quartz material can be used. Since the optical fiber 12 alone may be damaged, the optical fiber 12 is covered with a stainless steel flexible hose.
A part of the light receiving optical system 11 and the optical fiber 12 described above is built in the nozzle 2 and is positioned by an appropriate guide member (not shown) along the central axis of the nozzle 2.

温度演算部13は、光ファイバ12で伝送された熱放射光を光電変換して、光量に応じた電流を出力する検出素子としてのInGaAsフォトダイオードを具備し、このInGaAsフォトダイオードからの出力電流を増幅した後に電流電圧変換及びAD変換を施し、鋼板Mの放射率の補正を行って温度に換算する。また、温度演算部13は、鋼板Mの表面(下面)と放射温度計1の検出素子との間に、より具体的には、光ファイバ12の温度演算部13側の端部とInGaAsフォトダイオードとの間に、1.60〜1.80μmの波長帯域の光のみを透過する光学フィルタを具備する。これにより、放射温度計1で検出する熱放射光の波長は、1.60〜1.80μmとなる。   The temperature calculation unit 13 includes an InGaAs photodiode as a detection element that photoelectrically converts thermal radiation light transmitted through the optical fiber 12 and outputs a current corresponding to the amount of light, and outputs an output current from the InGaAs photodiode. After amplification, current-voltage conversion and AD conversion are performed, and the emissivity of the steel sheet M is corrected and converted into temperature. Further, the temperature calculation unit 13 is more specifically arranged between the surface (lower surface) of the steel plate M and the detection element of the radiation thermometer 1, more specifically, the end of the optical fiber 12 on the temperature calculation unit 13 side and the InGaAs photodiode. And an optical filter that transmits only light in the wavelength band of 1.60 to 1.80 μm. Thereby, the wavelength of the thermal radiation light detected by the radiation thermometer 1 becomes 1.60 to 1.80 μm.

最大測温値抽出部14では、温度演算部13で得られた複数の測温値から、所定の時間単位で最大の測温値を抽出する。この最大の測温値を抽出する時間単位は、測定結果(抽出した最大測温値)のバラツキや、要求される応答時間を考慮して決定される。本実施形態の最大測温値抽出部14は、温度演算部13で得られた測温値を10msec毎にサンプリングして、0.2sec毎に最大の測温値を抽出し、抽出した最大測温値を鋼板Mの表面温度として出力する。   The maximum temperature measurement value extraction unit 14 extracts the maximum temperature measurement value in a predetermined time unit from the plurality of temperature measurement values obtained by the temperature calculation unit 13. The time unit for extracting the maximum temperature measurement value is determined in consideration of variations in measurement results (extracted maximum temperature measurement value) and required response time. The maximum temperature measurement value extraction unit 14 of the present embodiment samples the temperature measurement value obtained by the temperature calculation unit 13 every 10 msec, extracts the maximum temperature measurement value every 0.2 sec, and extracts the extracted maximum measurement value. The temperature value is output as the surface temperature of the steel plate M.

ノズル2は、その先端と鋼板Mの下面との距離が例えば40mm程度となる位置に配置される。ノズル2には、エアー供給源から、流量調整バルブ3及びフィルタ4を介して、エアーが供給される。ノズル2には、ステンレス製のメッシュ21が内蔵されており、供給されたエアーは、メッシュ21を通過することによって整流される。そして、メッシュ21を通過した整流後のエアーはノズル2の先端から鋼板Mの下面に向けて噴射される。これにより、鋼板Mの下面と放射温度計1との間にエアー柱Aが形成される。鋼板Mの下面から放射された熱放射光は、このエアー柱Aを介して放射温度計1で検出される。なお、ノズル2の底面には、エアーの漏洩を防止するためにOリングを具備するシール部22が設けられており、該シール部22を介してノズル2の外部に光ファイバ12が延びている。   The nozzle 2 is disposed at a position where the distance between its tip and the lower surface of the steel plate M is, for example, about 40 mm. Air is supplied to the nozzle 2 from an air supply source via a flow rate adjusting valve 3 and a filter 4. The nozzle 2 includes a stainless steel mesh 21, and the supplied air is rectified by passing through the mesh 21. The rectified air that has passed through the mesh 21 is jetted from the tip of the nozzle 2 toward the lower surface of the steel plate M. Thereby, an air column A is formed between the lower surface of the steel plate M and the radiation thermometer 1. Thermal radiation light radiated from the lower surface of the steel plate M is detected by the radiation thermometer 1 through the air column A. The bottom surface of the nozzle 2 is provided with a seal portion 22 having an O-ring to prevent air leakage, and the optical fiber 12 extends outside the nozzle 2 via the seal portion 22. .

流量調整バルブ3は、ノズル2の周辺の水冷が停止している場合や、冷却水の水量が少ない場合に、ノズル2に供給するエアー流量を絞り、エアー消費量を低減させる機能を奏する。また、フィルタ4は、ノズル2に供給するエアー中の水分や油などを除去して、受光光学系11や光ファイバ12の汚れを低減する機能を奏する。   The flow rate adjusting valve 3 functions to reduce the air consumption by reducing the air flow rate supplied to the nozzle 2 when water cooling around the nozzle 2 is stopped or when the amount of cooling water is small. Further, the filter 4 has a function of removing dirt and oil in the air supplied to the nozzle 2 and reducing contamination of the light receiving optical system 11 and the optical fiber 12.

なお、本実施形態では、好ましい構成として、鋼板Mの下面と放射温度計1との間(具体的には、鋼板Mの下面とノズル2の先端との間)に存在し得る水Wの厚みをhとした場合、以下の式を満足する流速Vでエアーを噴射している。
>2・ρ・g・h/ρ
ただし、上記の式において、ρは水の密度を、ρはエアーの密度を、gは重力加速度を意味する。
なお、上記の式における水の厚みhの値を、鋼板Mの下面とノズル2の先端との離間距離に等しい値(本実施形態では40mm程度)に設定すれば、エアーを噴射しなければ鋼板Mの下面とノズル2の先端との間が全て水Wで満たされるような場合(図1に示すような場合)であっても、その水Wを排除し得るという点で好ましい。
In the present embodiment, as a preferable configuration, the thickness of the water W that can exist between the lower surface of the steel plate M and the radiation thermometer 1 (specifically, between the lower surface of the steel plate M and the tip of the nozzle 2). If h is h, air is injected at a flow velocity V that satisfies the following equation.
V 2 > 2 · ρ L · g · h / ρ g
However, in said formula, (rho) L means the density of water, (rho) g means the density of air, and g means a gravitational acceleration.
If the value of the water thickness h in the above formula is set to a value equal to the distance between the lower surface of the steel plate M and the tip of the nozzle 2 (in this embodiment, about 40 mm), the steel plate is not sprayed with air. Even when the space between the lower surface of M and the tip of the nozzle 2 is completely filled with water W (as shown in FIG. 1), it is preferable in that the water W can be eliminated.

以下、本実施形態に係る表面温度測定装置100における各種パラメータの設定理由について説明する。   Hereinafter, the reason for setting various parameters in the surface temperature measuring apparatus 100 according to the present embodiment will be described.

(1)放射温度計1で検出する熱放射光の波長について
前述のように、放射温度計1で検出する熱放射光の波長は、1.60〜1.80μmとされている。
上記の波長帯域に設定するに際し、本発明者らは、先ず最初に、検出する熱放射光の波長を0.65〜0.83μmとした放射温度計を試作し、その温度特性を評価した。具体的には、放射温度計の温度特性を評価するために一般的に使用される放射熱源(黒体炉、温度バラツキ1℃以下)の温度を水を介して前記試作した放射温度計で測定し、その測温値のバラツキ(3σ)を評価した。なお、放射熱源である黒体炉の放射率は1.0とした。図2は、種々の水の厚みに対する測温値バラツキの評価結果の一例を示すグラフである。図2に示すように、検出する熱放射光の波長が0.65〜0.83μmである放射温度計の場合、600℃以下では測温値の変動が大きくなり、精度良く温度を測定することができないことが分かった。これは、被測温材が低温になると、放射される熱放射光の長波長成分が増大することが原因であると考えられる。従って、600℃以下の低温域の温度を放射測温するには、検出する熱放射光の波長を0.65〜0.83μmよりも長波長側にシフトする必要のあることが分かった。
(1) About the wavelength of the thermal radiation light detected with the radiation thermometer 1 As mentioned above, the wavelength of the thermal radiation light detected with the radiation thermometer 1 shall be 1.60-1.80 micrometers.
In setting the above wavelength band, the inventors first made a prototype of a radiation thermometer in which the wavelength of thermal radiation to be detected was 0.65 to 0.83 μm, and evaluated its temperature characteristics. Specifically, the temperature of a radiant heat source (black body furnace, temperature variation of 1 ° C. or less) that is generally used to evaluate the temperature characteristics of a radiant thermometer is measured with the prototype radiation thermometer via water. Then, the variation (3σ) in the temperature measurement value was evaluated. The emissivity of the black body furnace, which is a radiant heat source, was 1.0. FIG. 2 is a graph illustrating an example of evaluation results of temperature measurement variation with respect to various water thicknesses. As shown in FIG. 2, in the case of a radiation thermometer having a wavelength of 0.65 to 0.83 μm to detect the thermal radiation light, the temperature measurement value fluctuates greatly at 600 ° C. or less, and the temperature is measured accurately. I found out I couldn't. This is considered to be caused by the fact that the long wavelength component of the emitted thermal radiation increases when the temperature-measuring material becomes low temperature. Therefore, it has been found that in order to perform radiation measurement at a temperature in a low temperature region of 600 ° C. or lower, it is necessary to shift the wavelength of the thermal radiation light to be detected to a longer wavelength side than 0.65 to 0.83 μm.

次に、本発明者らは、低温域の被測温材から放射された熱放射光を、被測温材と放射温度計との間に位置する水を介して検出する場合を想定し、水の分光透過率を調査した。図3は、黒体炉と放射温度計との間に介在させた水の厚みを0.1mm、0.2mm、0.5mm、1.0mm、2.0mm、4.0mmとした場合における、1.0〜2.5μmの波長帯域における水の分光透過率を示すグラフである。図3に示すように、前述した0.65〜0.83μmよりも長波長側の波長帯域においては、1.2μm近傍の波長帯域、1.7μm近傍の波長帯域、2.2μm近傍の波長帯域において水の透過率が高くなることが分かった。   Next, the present inventors assume the case where the thermal radiation light emitted from the temperature-measured material in the low temperature range is detected through water positioned between the temperature-measured material and the radiation thermometer, The spectral transmittance of water was investigated. FIG. 3 shows a case where the thickness of water interposed between the black body furnace and the radiation thermometer is 0.1 mm, 0.2 mm, 0.5 mm, 1.0 mm, 2.0 mm, and 4.0 mm. It is a graph which shows the spectral transmittance of water in a wavelength band of 1.0-2.5 micrometers. As shown in FIG. 3, in the wavelength band longer than 0.65 to 0.83 μm, the wavelength band near 1.2 μm, the wavelength band near 1.7 μm, and the wavelength band near 2.2 μm. It was found that the water permeability was high.

図4は、200℃における黒体の分光放射輝度を示す。放射温度計の検出素子としてInGaAsフォトダイオードを用いる場合、1.2μm近傍の波長帯域では、分光放射輝度も低く、InGaAsフォトダイオードの感度も低いため、200℃程度の低温域での測定には適切でない。
また、2.2μm近傍の波長帯域では、分光放射輝度が高いという点では有利であるものの、放射温度計を構成する受光光学系の集光レンズや光ファイバとして、安価な石英ガラスを用いると、光透過率が低下する問題がある。
一方、1.7μm近傍の波長帯域では、分光放射輝度もInGaAsフォトダイオードの感度も高い上、放射温度計を構成する受光光学系の集光レンズや光ファイバとして、安価な石英ガラスを用いることができる。
FIG. 4 shows the spectral radiance of a black body at 200 ° C. When an InGaAs photodiode is used as the detection element of a radiation thermometer, the spectral radiance is low and the sensitivity of the InGaAs photodiode is low in the wavelength band near 1.2 μm, so it is suitable for measurement in a low temperature range of about 200 ° C. Not.
In addition, in the wavelength band near 2.2 μm, although it is advantageous in that the spectral radiance is high, when an inexpensive quartz glass is used as a condenser lens or an optical fiber of a light receiving optical system constituting the radiation thermometer, There is a problem that the light transmittance is lowered.
On the other hand, in the wavelength band near 1.7 μm, the spectral radiance and the sensitivity of the InGaAs photodiode are high, and inexpensive quartz glass is used as the condenser lens and optical fiber of the light receiving optical system constituting the radiation thermometer. it can.

そこで、本発明者らは、検出する熱放射光の波長を1.7μm近傍の波長を含む1.60〜1.80μmとした放射温度計を試作し、その温度特性を黒体炉を用いて評価した。図5は、評価結果の一例を示すグラフである。図5に示すように、検出する熱放射光の波長が1.60〜1.80μmである放射温度計の場合、測温値のバラツキ(3σ)が2℃になるまでを許容範囲とすると、160℃まで測定可能であることが分かった。   Therefore, the inventors made a prototype of a radiation thermometer in which the wavelength of the thermal radiation light to be detected is 1.60 to 1.80 μm including a wavelength in the vicinity of 1.7 μm, and its temperature characteristics are measured using a black body furnace. evaluated. FIG. 5 is a graph showing an example of the evaluation result. As shown in FIG. 5, in the case of a radiation thermometer having a wavelength of heat radiation light to be detected of 1.60 to 1.80 μm, if the variation in temperature measurement value (3σ) is 2 ° C., the allowable range is It was found that measurement was possible up to 160 ° C.

また、本発明者らは、検出する熱放射光の波長を1.60〜1.80μmとした放射温度計と黒体炉との間に介在させる水の厚みを適宜変更すると共に、黒体炉の温度を適宜変更し、水の透過率を調査した。図6は、水の透過率を調査した結果を示すグラフである。図6に示すように、水の厚みが厚くなると透過率は低下するものの、水膜の厚みを2mm程度に小さくできれば、20%程度の透過率が得られることが分かった。   In addition, the inventors appropriately changed the thickness of water interposed between the radiation thermometer and the black body furnace in which the wavelength of the thermal radiation light to be detected was 1.60 to 1.80 μm, and the black body furnace The water permeability was investigated by appropriately changing the temperature. FIG. 6 is a graph showing the results of examining the water permeability. As shown in FIG. 6, it was found that although the transmittance decreases as the water thickness increases, a transmittance of about 20% can be obtained if the thickness of the water film can be reduced to about 2 mm.

さらに、本発明者らは、検出する熱放射光の波長を1.60〜1.80μmとした放射温度計と黒体炉との間に介在させる水の厚みを1mm、2mm、4mmとし、その温度特性を評価した。図7は、評価結果の一例を示すグラフである。図7に示すように、検出する熱放射光の波長が1.60〜1.80μmである放射温度計の場合、厚み2mmの水を介する場合であっても、測温値のバラツキ(3σ)が3℃になるまでを許容範囲とすると、200℃程度までの低温域の被測温材を測温可能であることが分かった。   Furthermore, the present inventors set the thickness of the water interposed between the radiation thermometer with the wavelength of the thermal radiation light to be detected being 1.60 to 1.80 μm and the black body furnace to 1 mm, 2 mm, and 4 mm, Temperature characteristics were evaluated. FIG. 7 is a graph showing an example of the evaluation result. As shown in FIG. 7, in the case of a radiation thermometer having a wavelength of 1.60 to 1.80 μm for detecting the thermal radiation light, even when 2 mm thick water is used, variation in temperature measurement value (3σ) Assuming that the allowable range is up to 3 ° C., it was found that the temperature-measured material in the low temperature range up to about 200 ° C. can be measured.

以上に説明したように、放射温度計で検出する熱放射光の波長を1.60〜1.80μmとすれば、200℃程度の低温域でも測温値の変動が少なく、放射温度計と被測温材との間に侵入した水による熱放射光の吸収に起因する測温誤差も低減可能である。このため、本実施形態の放射温度計1で検出する熱放射光の波長は、1.60〜1.80μmとされている。   As described above, if the wavelength of the thermal radiation light detected by the radiation thermometer is 1.60 to 1.80 μm, the temperature measurement value hardly fluctuates even in a low temperature range of about 200 ° C. Temperature measurement errors due to absorption of thermal radiation by water that has entered between the temperature measuring materials can also be reduced. For this reason, the wavelength of the thermal radiation light detected by the radiation thermometer 1 of the present embodiment is 1.60 to 1.80 μm.

(2)ノズル2から噴射するエアーの流速について
前述のように、被測温材と放射温度計との間に介在する水の厚みを2mm程度に小さくできれば、200℃程度までの低温域の被測温材を測温可能であるものの、測温精度を高めるには、介在する水の厚みはできるだけ小さい方が好ましい。このため、本発明者らは、放射温度計から被測温材に向けてエアーパージし、水を排除することを検討した。
(2) Flow rate of air sprayed from the nozzle 2 As described above, if the thickness of the water interposed between the temperature-measured material and the radiation thermometer can be reduced to about 2 mm, the temperature of the low-temperature range up to about 200 ° C. Although it is possible to measure the temperature of the temperature measuring material, the thickness of the intervening water is preferably as small as possible in order to increase the temperature measurement accuracy. For this reason, the present inventors examined air purging from the radiation thermometer toward the temperature-measured material to eliminate water.

図8は、エアーパージ検討用の試験装置の概略構成を示す模式図である。図8に示すように、放射温度計1’(前述したように、検出する熱放射光の波長を1.60〜1.80μmとした試作の放射温度計)を内蔵したエアーパージ用のノズル2’を水槽5の底面に設置した。ノズル2’の上方には、被測温材から放射される熱放射光を模擬するために、石英ガラス6上にラバーヒータ7を設置した。石英ガラス6の下面とノズル2’の先端との距離は60mmに設定した。また、放射温度計1’の測定視野径(ノズル2’先端での視野径)は6mmとし、ノズル2’の先端の口径は22mmとした。   FIG. 8 is a schematic diagram showing a schematic configuration of a test apparatus for examining air purge. As shown in FIG. 8, an air purge nozzle 2 having a built-in radiation thermometer 1 '(as described above, a prototype radiation thermometer in which the wavelength of the detected thermal radiation light is 1.60 to 1.80 μm). 'Was installed on the bottom of the aquarium 5. Above the nozzle 2 ′, a rubber heater 7 is installed on the quartz glass 6 in order to simulate the heat radiation emitted from the temperature measuring material. The distance between the lower surface of the quartz glass 6 and the tip of the nozzle 2 'was set to 60 mm. The measurement field diameter of the radiation thermometer 1 '(field diameter at the tip of the nozzle 2') was 6 mm, and the diameter of the tip of the nozzle 2 'was 22 mm.

上記構成の試験装置において、ノズル2’から石英ガラス6の下面に向けてエアーを噴射している状態で、水槽5内に水Wを注入した。この際、ノズル2’に供給するエアーの流量を調整することによって、ノズル2’から噴射するエアーの流速を変更し、各エアー流速で排除できる水Wの厚み(ノズル2’の先端と水Wの上面との距離)の最大値を測定した。なお、水Wが排除されたか否かは、水Wの上面にまで達するエアー柱が形成されたか否かを目視で確認することで判断した。また、エアーの流速は、流量計9で測定したノズル2’に供給するエアーの流量をノズル2’先端の口径で除することによって算出した。   In the test apparatus having the above-described configuration, water W was injected into the water tank 5 while air was being sprayed from the nozzle 2 ′ toward the lower surface of the quartz glass 6. At this time, by adjusting the flow rate of the air supplied to the nozzle 2 ′, the flow rate of the air injected from the nozzle 2 ′ is changed, and the thickness of the water W that can be eliminated at each air flow rate (the tip of the nozzle 2 ′ and the water W The maximum value of the distance to the upper surface of the film was measured. Note that whether or not the water W was removed was determined by visually confirming whether or not an air column reaching the upper surface of the water W was formed. The flow rate of air was calculated by dividing the flow rate of air supplied to the nozzle 2 ′ measured by the flow meter 9 by the diameter of the tip of the nozzle 2 ′.

一方、ノズル2’から噴射するエアーで水Wを排除するためには、理論上、水Wの最下面の静圧(ノズル2’先端での静圧)Psよりも、噴射するエアーの動圧(ノズル2’先端での動圧)Pdの方が大きくなるように、すなわち、下記の式(1)を満足するように、エアーの流速を決定する必要がある。
Pd>Ps ・・・(1)
On the other hand, in order to eliminate the water W with the air jetted from the nozzle 2 ′, theoretically, the dynamic pressure of the jetted air is higher than the static pressure Ps at the lowermost surface of the water W (static pressure at the tip of the nozzle 2 ′). (Dynamic pressure at the tip of the nozzle 2 ') It is necessary to determine the air flow rate so that Pd becomes larger, that is, the following equation (1) is satisfied.
Pd> Ps (1)

ここで、水Wの最下面の静圧Psは下記の式(2)で表され、噴射するエアーの動圧Pdは下記の式(3)で表される。
Ps=ρ・g・h ・・・(2)
Pd=1/2・ρ・V ・・・(3)
ただし、上記の式(2)、(3)において、ρは水Wの密度を、ρはエアーの密度を、gは重力加速度を、hは水Wの厚みを、Vはエアーの流速を意味する。
Here, the static pressure Ps on the lowermost surface of the water W is expressed by the following equation (2), and the dynamic pressure Pd of the air to be injected is expressed by the following equation (3).
Ps = ρ L · g · h (2)
Pd = 1/2 · ρ g · V 2 (3)
In the above equations (2) and (3), ρ L is the density of water W, ρ g is the density of air, g is the acceleration of gravity, h is the thickness of water W, and V is the flow velocity of air. Means.

上記の式(1)の両辺に、上記の式(2)、(3)を代入して整理すると、下記の式(4)が成立する。
>2・ρ・g・h/ρ・・・(4)
つまり、厚みhの水Wを排除するには、理論上、上記の式(4)を満足する流速Vでエアーを噴射する必要があることになる。
Substituting the above formulas (2) and (3) into both sides of the above formula (1) and rearranging, the following formula (4) is established.
V 2 > 2 · ρ L · g · h / ρ g (4)
In other words, in order to eliminate the water W having a thickness h, it is theoretically necessary to inject air at a flow velocity V that satisfies the above equation (4).

図9は、以上に説明した、エアー流速に応じて排除可能であった水の厚み(最大値)の実測値、及び、式(4)から導出されるエアー流速に応じて排除可能な水の厚み(最大値)の計算値を示す。図9に示すように、式(4)から導出される計算値は、実測値と比較的よく一致している。従って、式(4)を満足するように、ノズル2から噴射するエアーの流速を決定すれば、放射温度計1’とラバーヒータ7との間に存在する水Wがエアーによって実際に排除され易くなることが分かった。   FIG. 9 shows the measured value of the thickness (maximum value) of water that can be removed according to the air flow rate described above, and the water that can be removed according to the air flow rate derived from the equation (4). The calculated thickness (maximum value) is shown. As shown in FIG. 9, the calculated value derived from the equation (4) matches the measured value relatively well. Therefore, if the flow velocity of the air injected from the nozzle 2 is determined so as to satisfy the equation (4), the water W existing between the radiation thermometer 1 ′ and the rubber heater 7 is actually easily removed by the air. I found out that

次に、図8に示す試験装置において、ラバーヒータ7の温度を放射温度計1’で測定すると同時に、ラバーヒータ7の温度を熱電対8を貼り付けて測定した(以下、この熱電対8による測温値を実温度という)。この際、水槽5内に注入する水Wの厚みは、20mm、40mm、60mmとした。また、ノズル2’から噴射するエアーの流速を変更し、各エアー流速での測温誤差(放射温度計1’での測温値と実温度との差)を評価した。なお、放射温度計1’での測温値としては、0.2sec毎に抽出した最大の測温値を用いた。   Next, in the test apparatus shown in FIG. 8, the temperature of the rubber heater 7 was measured with the radiation thermometer 1 ′, and at the same time, the temperature of the rubber heater 7 was measured by attaching a thermocouple 8 (hereinafter referred to as the thermocouple 8). The measured temperature is called actual temperature). At this time, the thickness of the water W injected into the water tank 5 was 20 mm, 40 mm, and 60 mm. Further, the flow rate of the air injected from the nozzle 2 'was changed, and the temperature measurement error at each air flow rate (difference between the temperature measured by the radiation thermometer 1' and the actual temperature) was evaluated. In addition, the maximum temperature measurement value extracted every 0.2 sec was used as the temperature measurement value by the radiation thermometer 1 '.

図10は、上記の試験における評価結果の一例を示すグラフである。図10に示す結果から明らかなように、前述した式(4)を満足するようにノズル2’から噴射するエアーの流速を決定すれば、放射温度計1’によってラバーヒータ7の温度を精度良く測定可能であった。   FIG. 10 is a graph showing an example of an evaluation result in the above test. As is clear from the results shown in FIG. 10, the temperature of the rubber heater 7 can be accurately adjusted by the radiation thermometer 1 ′ if the flow velocity of the air injected from the nozzle 2 ′ is determined so as to satisfy the above-described formula (4). It was measurable.

以上に説明した結果に基づき、本実施形態では、鋼板Mの下面と放射温度計1との間(具体的には、鋼板Mの下面とノズル2の先端との間)に存在し得る水Wの厚みをhとした場合、以下の式を満足する流速Vでエアーを噴射している。
>2・ρ・g・h/ρ
ただし、上記の式において、ρは水の密度を、ρはエアーの密度を、gは重力加速度を意味する。
Based on the results described above, in this embodiment, the water W that can exist between the lower surface of the steel plate M and the radiation thermometer 1 (specifically, between the lower surface of the steel plate M and the tip of the nozzle 2). In this case, air is jetted at a flow velocity V that satisfies the following formula.
V 2 > 2 · ρ L · g · h / ρ g
However, in said formula, (rho) L means the density of water, (rho) g means the density of air, and g means a gravitational acceleration.

(3)最大測温値抽出部14の処理内容について
図8に示す試験装置において、石英ガラス6の下面とノズル2’の先端との距離を60mmに設定した。そして、この試験装置において、ノズル2’の先端から石英ガラス6の下面に向けてエアーを噴射している状態で、水槽5内に水Wを注入し、ラバーヒータ7の温度を放射温度計1’で測定した。この際、水槽5内に注入する水Wの厚みは0〜60mmまで変更した。なお、ラバーヒータ7の実温度は、175℃で安定していた。
(3) Processing contents of the maximum temperature measurement value extraction unit 14
In the test apparatus shown in FIG. 8, the distance between the lower surface of the quartz glass 6 and the tip of the nozzle 2 ′ was set to 60 mm. In this test apparatus, water W is injected into the water tank 5 while air is being injected from the tip of the nozzle 2 ′ toward the lower surface of the quartz glass 6, and the temperature of the rubber heater 7 is adjusted to the radiation thermometer 1. Measured with '. At this time, the thickness of the water W injected into the water tank 5 was changed from 0 to 60 mm. The actual temperature of the rubber heater 7 was stable at 175 ° C.

図11は、水Wの厚みが40mmのときに、放射温度計1’でラバーヒータ7の温度を測定した結果の一例を示すグラフである。図11に示す例では、エアーの流速(ノズル2’先端での流速)は、前述した式(4)を満足する35m/secとした。   FIG. 11 is a graph showing an example of the result of measuring the temperature of the rubber heater 7 with the radiation thermometer 1 ′ when the thickness of the water W is 40 mm. In the example shown in FIG. 11, the air flow rate (flow rate at the tip of the nozzle 2 ′) is set to 35 m / sec that satisfies the above-described formula (4).

図11に示すように、放射温度計1’の測温値は時間的に大きく変動したものの、一部では実温度(175℃)と等しい温度を示すことが分かった。他の水Wの厚みの場合(ただし、0mmの場合を除く)も、図11に示す結果と同様の傾向を示すことが分かった。   As shown in FIG. 11, it was found that although the temperature measurement value of the radiation thermometer 1 ′ fluctuated greatly with time, a part of the temperature measurement value was equal to the actual temperature (175 ° C.). In the case of other water W thicknesses (except for the case of 0 mm), it was found that the same tendency as the result shown in FIG. 11 was exhibited.

上記のように、放射温度計1’の測温値が部分的に実温度に等しくなるのは、ノズル2’からのエアーパージによって、測温値と実温度とが等しくなるタイミングでは、放射温度計1’とラバーヒータ7との間に水Wが存在しなくなるからだと考えられる。従って、本発明者らは、所定時間内に得られた複数の測温値のうち、最大の測温値を測定結果として用いれば、この測定結果は、所定時間内において水Wが存在しないタイミングか、又は、存在する水Wの厚みが最も少ないタイミングで得られた測温値であり、測温精度が高まることが期待できると考えた。   As described above, the measured temperature value of the radiation thermometer 1 'is partially equal to the actual temperature because the measured temperature value and the actual temperature are equalized by the air purge from the nozzle 2'. It is considered that water W no longer exists between the total 1 ′ and the rubber heater 7. Therefore, the present inventors use a maximum temperature measurement value among a plurality of temperature measurement values obtained within a predetermined time as a measurement result, and this measurement result is a timing at which water W does not exist within the predetermined time. Or it is a temperature measurement value obtained at the timing when the thickness of the water W present is the smallest, and it was considered that the temperature measurement accuracy can be expected to increase.

図12は、図11に示す複数の測温値に対して、最大の測温値を抽出する時間単位を変更した場合における、測定結果(抽出した最大測温値)のバラツキ(3σ)を示すグラフである。また、図13は、図11に示す複数の測温値に対して、0.2sec毎に最大測温値を抽出した結果を示すグラフである。図12、図13に示すように、0.2sec以上の時間単位で最大測温値を抽出すれば、測定結果のバラツキが小さくなり、安定した測温が可能であることが分かった。   FIG. 12 shows the variation (3σ) in the measurement result (extracted maximum temperature measurement value) when the time unit for extracting the maximum temperature measurement value is changed with respect to the plurality of temperature measurement values shown in FIG. It is a graph. FIG. 13 is a graph showing the result of extracting the maximum temperature measurement value every 0.2 sec for the plurality of temperature measurement values shown in FIG. As shown in FIGS. 12 and 13, it was found that if the maximum temperature measurement value is extracted in units of time of 0.2 sec or more, the variation in the measurement result is reduced and stable temperature measurement is possible.

図14は、図8に示す試験装置において、水Wの厚みを60mm(石英ガラス6の下面とノズル2’の先端との距離に相当)とし、ノズル2’から噴射するエアーの流速(ノズル2’先端での流速)は、前述した式(4)を満足する35m/secとして、放射温度計1’でラバーヒータ7の温度を測定した結果の一例を示すグラフである。ラバーヒータの実温度は、測定途中に、175℃から195℃に変更した。   FIG. 14 shows a test apparatus shown in FIG. 8, in which the water W has a thickness of 60 mm (corresponding to the distance between the lower surface of the quartz glass 6 and the tip of the nozzle 2 ′), and the flow rate of air injected from the nozzle 2 ′ (nozzle 2). The “flow velocity at the tip” is a graph showing an example of the result of measuring the temperature of the rubber heater 7 with the radiation thermometer 1 ′ at 35 m / sec that satisfies the above-described formula (4). The actual temperature of the rubber heater was changed from 175 ° C. to 195 ° C. during the measurement.

図14に示すように、放射温度計1’の測温値は時間的に大きく変動したものの、0.2sec毎に最大測温値を抽出すれば、測定結果のバラツキが小さくなり、安定した測温が可能であることが分かった。   As shown in FIG. 14, although the temperature measurement value of the radiation thermometer 1 ′ fluctuates greatly with time, if the maximum temperature measurement value is extracted every 0.2 sec, the variation in the measurement result is reduced and stable measurement is performed. It turns out that temperature is possible.

以上に説明した結果に基づき、本実施形態の最大測温値抽出部14は、温度演算部13で得られた測温値を10msec毎にサンプリングして、0.2sec毎に最大の測温値を抽出し、抽出した最大測温値を鋼板Mの表面温度として出力する構成としている。   Based on the results described above, the maximum temperature measurement value extraction unit 14 of the present embodiment samples the temperature measurement value obtained by the temperature calculation unit 13 every 10 msec, and the maximum temperature measurement value every 0.2 sec. , And the extracted maximum temperature measurement value is output as the surface temperature of the steel plate M.

以上に説明した本実施形態に係る表面温度測定装置100によれば、放射温度計1で検出する熱放射光の波長を1.60〜1.80μmとすることにより、鋼板Mが水冷中でその表面温度が200℃程度の低温域であっても、鋼板Mの表面温度を精度良く測定可能である。
また、本実施形態に係る表面温度測定装置100によれば、ノズル2から噴射するエアーによって形成されるエアー柱Aにより、放射温度計1と鋼板Mとの間への水Wの侵入が抑制される。特に、V>2・ρ・g・h/ρを満足する流速Vでエアーを噴射することにより、水Wが効果的に排除され、鋼板Mの表面温度をより一層精度良く測定可能である。
さらに、本実施形態に係る表面温度測定装置100によれば、最大測温値抽出部14により、複数の測温値のうちの最大の測温値を鋼板Mの表面温度として出力するため、測定結果のバラツキが小さくなり、鋼板Mの表面温度をより一層精度良く測定可能である。
According to the surface temperature measuring apparatus 100 according to the present embodiment described above, the steel plate M is in water-cooled state by setting the wavelength of the heat radiation light detected by the radiation thermometer 1 to 1.60 to 1.80 μm. Even in the low temperature range where the surface temperature is about 200 ° C., the surface temperature of the steel sheet M can be measured with high accuracy.
Further, according to the surface temperature measuring apparatus 100 according to the present embodiment, the intrusion of the water W between the radiation thermometer 1 and the steel plate M is suppressed by the air column A formed by the air sprayed from the nozzle 2. The In particular, by injecting air at a flow velocity V that satisfies V 2 > 2 · ρ L · g · h / ρ g , water W is effectively eliminated and the surface temperature of the steel sheet M can be measured with higher accuracy. It is.
Furthermore, according to the surface temperature measurement device 100 according to the present embodiment, the maximum temperature measurement value extraction unit 14 outputs the maximum temperature measurement value among the plurality of temperature measurement values as the surface temperature of the steel sheet M, so that the measurement is performed. As a result, variation in the results is reduced, and the surface temperature of the steel sheet M can be measured with higher accuracy.

<第2の実施形態>
図15は、本発明の第2の実施形態に係る表面温度測定装置の概略構成を示す模式図である。図15に示すように、本実施形態に係る表面温度測定装置100Aも、第1の実施形態に係る表面温度測定装置100と同様に、放射温度計1A、ノズル2、流量調整バルブ3及びフィルタ4を備えている。そして、本実施形態の放射温度計1Aも、受光光学系11、光ファイバ12、温度演算部13及び最大測温値抽出部14を備える点で、第1の実施形態の放射温度計1と共通する。しかしながら、本実施形態の放射温度計1Aは、水厚推定部15と、測温値出力部16とを更に備える点で、第1の実施形態の放射温度計1と相違する。以下、第1の実施形態に係る表面温度測定装置100と共通する構成については、同様の機能を奏するため説明を省略し、主に上記の相違点について説明する。
<Second Embodiment>
FIG. 15 is a schematic diagram showing a schematic configuration of a surface temperature measuring apparatus according to the second embodiment of the present invention. As shown in FIG. 15, the surface temperature measuring device 100A according to the present embodiment is similar to the surface temperature measuring device 100 according to the first embodiment in that the radiation thermometer 1A, the nozzle 2, the flow rate adjusting valve 3, and the filter 4 are used. It has. The radiation thermometer 1A of the present embodiment is also common to the radiation thermometer 1 of the first embodiment in that the light receiving optical system 11, the optical fiber 12, the temperature calculation unit 13, and the maximum temperature measurement value extraction unit 14 are provided. To do. However, the radiation thermometer 1A of this embodiment is different from the radiation thermometer 1 of the first embodiment in that it further includes a water thickness estimation unit 15 and a temperature measurement value output unit 16. Hereinafter, the configuration common to the surface temperature measurement apparatus 100 according to the first embodiment will not be described because it has the same function, and the above differences will mainly be described.

本実施形態の放射温度計1Aを構成する光ファイバ12は、途中で2本に分岐されており、一方が温度演算部13に、他方が水厚推定部15に接続されている。これにより、鋼板M表面からの熱放射光は、受光光学系11及び光ファイバ12を介して、温度演算部13及び水厚推定部15の双方に伝送される。   The optical fiber 12 constituting the radiation thermometer 1A of the present embodiment is branched into two in the middle, and one is connected to the temperature calculation unit 13 and the other is connected to the water thickness estimation unit 15. Thereby, the heat radiation light from the surface of the steel plate M is transmitted to both the temperature calculation unit 13 and the water thickness estimation unit 15 via the light receiving optical system 11 and the optical fiber 12.

第1の実施形態と同様に、温度演算部13は、光ファイバ12で伝送された熱放射光のうち1.60〜1.80μmの波長帯域の光のみを光電変換して温度に換算する。そして、最大測温値抽出部14は、温度演算部13で所定時間内に得られた複数の測温値のうち、最大の測温値を鋼板Mの表面温度として出力する。   Similar to the first embodiment, the temperature calculation unit 13 photoelectrically converts only the light in the wavelength band of 1.60 to 1.80 μm out of the thermal radiation transmitted through the optical fiber 12 and converts it into temperature. Then, the maximum temperature measurement value extraction unit 14 outputs the maximum temperature measurement value as the surface temperature of the steel plate M among the plurality of temperature measurement values obtained by the temperature calculation unit 13 within a predetermined time.

水厚推定部15は、光ファイバ12で伝送された熱放射光を複数の波長帯域に分光し、各波長帯域の熱放射光のエネルギーの比に基づいて、鋼板Mの表面(下面)と放射温度計1Aとの間(具体的には、鋼板Mの下面とノズル2の先端との間)に存在する水Wの厚みが0.1mm以下であるか否かを判断する。   The water thickness estimation unit 15 splits the heat radiation light transmitted through the optical fiber 12 into a plurality of wavelength bands, and radiates the surface (lower surface) of the steel sheet M and the radiation based on the ratio of the energy of the heat radiation light in each wavelength band. It is determined whether or not the thickness of the water W existing between the thermometer 1A (specifically, between the lower surface of the steel plate M and the tip of the nozzle 2) is 0.1 mm or less.

具体的には、本実施形態の水厚推定部15は、光ファイバ12で伝送された熱放射光を、1.60〜1.80μm、1.65〜1.75μm及び1.88〜1.94μmの各波長帯域に分光し、分光後の各波長帯域の熱放射光を検出素子としてのInGaAsフォトダイオードで光電変換して、エネルギーを算出する。上記の分光方法としては、特に限定されるものではないが、例えば、上記の各波長帯域の光のみをそれぞれ透過する3つの光学フィルタを円盤に固定し、この円盤を回転させて分光する方法が挙げられる。また、水厚推定部15に接続する光ファイバ12を3本に分岐し、分岐した3本の光ファイバの端部にそれぞれ対向して上記の3つの光学フィルタを配置する方法でもよい(この場合には、検出素子も3つ必要である)。さらには、プリズムや分光器を用いる分光方法(これらの場合には、検出素子も3つ必要)を適用することも可能である。   Specifically, the water thickness estimation unit 15 of the present embodiment converts the heat radiation transmitted through the optical fiber 12 from 1.60 to 1.80 μm, 1.65 to 1.75 μm, and 1.88 to 1.8. The spectrum is divided into each wavelength band of 94 μm, and the thermal radiation light in each wavelength band after the spectrum is photoelectrically converted by an InGaAs photodiode as a detection element to calculate energy. The spectroscopic method is not particularly limited. For example, there is a method in which three optical filters that transmit only light in each wavelength band are fixed to a disc, and the disc is rotated to perform spectroscopic analysis. Can be mentioned. Alternatively, the optical fiber 12 connected to the water thickness estimation unit 15 may be branched into three, and the above three optical filters may be arranged to face the ends of the three branched optical fibers (in this case) Requires three detector elements). Furthermore, it is also possible to apply a spectroscopic method using a prism or a spectroscope (in these cases, three detection elements are also required).

次に、水厚推定部15は、1.65〜1.75μmの波長帯域の熱放射光のエネルギーE(1.65〜1.75μm)と、1.60〜1.80μmの波長帯域の熱放射光のエネルギーE(1.60〜1.80μm)との比であるE(1.65〜1.75μm)/E(1.60〜1.80μm)を算出する。また、水厚推定部15は、1.88〜1.94μmの波長帯域の熱放射光のエネルギーE(1.88〜1.94μm)と、1.60〜1.80μmの波長帯域の熱放射光のエネルギーE(1.60〜1.80μm)との比であるE(1.88〜1.94μm)/E(1.60〜1.80μm)を算出する。   Next, the water thickness estimation unit 15 performs heat radiation light energy E (1.65 to 1.75 μm) in the wavelength band of 1.65 to 1.75 μm and heat in the wavelength band of 1.60 to 1.80 μm. E (1.65 to 1.75 μm) / E (1.60 to 1.80 μm), which is a ratio to the energy E (1.60 to 1.80 μm) of the emitted light, is calculated. Further, the water thickness estimation unit 15 includes energy E (1.88 to 1.94 μm) of heat radiation light in the wavelength band of 1.88 to 1.94 μm and heat radiation in the wavelength band of 1.60 to 1.80 μm. E (1.88 to 1.94 μm) / E (1.60 to 1.80 μm), which is a ratio to the light energy E (1.60 to 1.80 μm), is calculated.

水厚推定部15は、E(1.65〜1.75μm)/E(1.60〜1.80μm)≧0.55が成立するとき、水Wの厚みは1.0mm以上であると判断する。
また、水厚推定部15は、E(1.65〜1.75μm)/E(1.60〜1.80μm)<0.55が成立し、且つ、E(1.88〜1.94μm)/E(1.60〜1.80μm)<0.42が成立するとき、水Wの厚みは0.1mmを超え1.0mm未満であると判断する。
さらに、水厚推定部15は、E(1.65〜1.75μm)/E(1.60〜1.80μm)<0.55が成立し、且つ、E(1.88〜1.94μm)/E(1.60〜1.80μm)≧0.42が成立するとき、水Wの厚みは0.1mm以下であると判断する。
The water thickness estimation unit 15 determines that the thickness of the water W is 1.0 mm or more when E (1.65 to 1.75 μm) / E (1.60 to 1.80 μm) ≧ 0.55 is established. To do.
Further, the water thickness estimation unit 15 satisfies E (1.65 to 1.75 μm) / E (1.60 to 1.80 μm) <0.55, and E (1.88 to 1.94 μm). When / E (1.60 to 1.80 μm) <0.42, the thickness of the water W is determined to be more than 0.1 mm and less than 1.0 mm.
Further, the water thickness estimation unit 15 satisfies E (1.65 to 1.75 μm) / E (1.60 to 1.80 μm) <0.55, and E (1.88 to 1.94 μm). When / E (1.60 to 1.80 μm) ≧ 0.42, the thickness of the water W is determined to be 0.1 mm or less.

測温値出力部16は、水厚推定部15が水Wの厚みは0.1mm以下であると判断した場合にのみ、最大測温値抽出部14の出力値を鋼板Mの表面温度として出力する。水Wの厚みが0.1mm程度であれば、前述した図6に示すように、水の透過率は95%程度であり、測温値への影響は極めて少ないからである。   The temperature measurement value output unit 16 outputs the output value of the maximum temperature measurement value extraction unit 14 as the surface temperature of the steel sheet M only when the water thickness estimation unit 15 determines that the thickness of the water W is 0.1 mm or less. To do. If the thickness of the water W is about 0.1 mm, as shown in FIG. 6 described above, the water permeability is about 95%, and the influence on the temperature measurement value is extremely small.

以下、本実施形態に係る表面温度測定装置100Aの水厚推定部15において、上述した判断を行う理由について説明する。   Hereinafter, the reason why the above-described determination is performed in the water thickness estimation unit 15 of the surface temperature measurement apparatus 100A according to the present embodiment will be described.

本発明者らは、検出する熱放射光の波長を1.60〜1.80μm、1.65〜1.75μm及び1.88〜1.94μmとした放射温度計と黒体炉との間に介在させる水の厚みを適宜変更すると共に、黒体炉の温度を適宜変更して、黒体炉からの熱放射光を検出する試験を行った。   The inventors of the present invention have a detection between a radiation thermometer and a black body furnace in which the wavelength of the thermal radiation light to be detected is 1.60 to 1.80 μm, 1.65 to 1.75 μm, and 1.88 to 1.94 μm. While changing the thickness of the water to intervene suitably, the temperature of the black body furnace was changed suitably, and the test which detects the thermal radiation light from a black body furnace was done.

図16は、上記の試験によって得られたE(1.65〜1.75μm)/E(1.60〜1.80μm)の変化を示すグラフである。図16に示す結果から明らかなように、E(1.65〜1.75μm)/E(1.60〜1.80μm)<0.55が成立するときには、黒体炉(被測温材)の温度が200℃〜500℃の範囲で変わっても、水の厚みは1.0mm未満であるといえる。   FIG. 16 is a graph showing changes in E (1.65 to 1.75 μm) / E (1.60 to 1.80 μm) obtained by the above test. As is clear from the results shown in FIG. 16, when E (1.65 to 1.75 μm) / E (1.60 to 1.80 μm) <0.55 is established, the blackbody furnace (temperature measurement material) Even if the temperature of the water changes in the range of 200 ° C. to 500 ° C., it can be said that the thickness of water is less than 1.0 mm.

図17は、上記の試験によって得られたE(1.88〜1.94μm)/E(1.60〜1.80μm)の変化を示すグラフである。図18は、図17に示すグラフの内、水の厚みが小さい部分を拡大して示すグラフである。
図18に示す結果からすれば、E(1.88〜1.94μm)/E(1.60〜1.80μm)≧0.42が成立するとき、黒体炉(被測温材)の温度が200℃〜500℃の範囲で変わっても、水の厚みは0.1mm以下であるといえる。
しかしながら、図17に示す結果からすれば、水の厚みが4.0mmを超える場合にも、黒体炉(被測温材)の温度によっては、E(1.88〜1.94μm)/E(1.60〜1.80μm)≧0.42が成立する可能性がある。つまり、E(1.88〜1.94μm)/E(1.60〜1.80μm)≧0.42が成立するのみでは、水の厚みが0.1mm以下であると判断することはできない。
このため、E(1.88〜1.94μm)/E(1.60〜1.80μm)≧0.42が成立すると同時に、前述したE(1.65〜1.75μm)/E(1.60〜1.80μm)<0.55が成立する(つまり、水の厚みは1.0未満である)場合にのみ、水の厚みが0.1mm以下であると判断すればよい。
FIG. 17 is a graph showing changes in E (1.88 to 1.94 μm) / E (1.60 to 1.80 μm) obtained by the above test. 18 is an enlarged graph showing a portion where the thickness of water is small in the graph shown in FIG.
According to the result shown in FIG. 18, when E (1.88 to 1.94 μm) / E (1.60 to 1.80 μm) ≧ 0.42 is established, the temperature of the black body furnace (temperature measuring material) Even if it changes in the range of 200 degreeC-500 degreeC, it can be said that the thickness of water is 0.1 mm or less.
However, according to the results shown in FIG. 17, even when the thickness of water exceeds 4.0 mm, E (1.88 to 1.94 μm) / E depending on the temperature of the blackbody furnace (temperature measuring material). (1.60 to 1.80 μm) ≧ 0.42 may be satisfied. That is, it is not possible to determine that the thickness of the water is 0.1 mm or less only when E (1.88 to 1.94 μm) / E (1.60 to 1.80 μm) ≧ 0.42.
Therefore, E (1.88 to 1.94 μm) / E (1.60 to 1.80 μm) ≧ 0.42 is satisfied, and at the same time, E (1.65 to 1.75 μm) / E (1. 60 to 1.80 μm) <0.55 is satisfied (that is, the water thickness is less than 1.0), the water thickness may be determined to be 0.1 mm or less.

以上に説明した結果に基づき、本実施形態の水厚推定部15は、前述した判断を行っている。   Based on the results described above, the water thickness estimation unit 15 of the present embodiment makes the above-described determination.

以上に説明した本実施形態に係る表面温度測定装置100Aによれば、第1の実施形態に係る表面温度測定装置100の構成に加えて、測温誤差の要因となる鋼板Mの表面と放射温度計1Aとの間に存在する水Wの厚みが小さい場合(0.1mm以下の場合)にのみ、測温値を鋼板Mの表面温度として出力する構成であるため、表面温度測定装置100に比べて測温精度がより一層高まることが期待できる。   According to the surface temperature measuring apparatus 100A according to the present embodiment described above, in addition to the configuration of the surface temperature measuring apparatus 100 according to the first embodiment, the surface of the steel plate M and the radiation temperature that cause a temperature measurement error. Compared to the surface temperature measuring apparatus 100 because the temperature measurement value is output as the surface temperature of the steel plate M only when the thickness of the water W existing between the total 1A is small (in the case of 0.1 mm or less). Therefore, it can be expected that the temperature measurement accuracy will be further improved.

以下、本発明に係る表面温度測定装置を厚鋼板の製造ラインに適用して、厚鋼板を製造する方法について説明する。   Hereinafter, a method for producing a thick steel plate by applying the surface temperature measuring device according to the present invention to a production line for the thick steel plate will be described.

図19は、厚鋼板の製造ラインの概略構成例を示す模式図である。
図19に示す製造ライン10は、図面左側から、加熱炉20、粗圧延機30、仕上げ圧延機40、冷却装置50及びホットレベラー60が、この順に配置されている。加熱炉20で約1100〜1200℃に加熱されたスラブM1は、粗圧延機30で一定の厚みに減肉され、粗圧延材M2とされる。次いで、粗圧延材M2は、仕上げ圧延機40の前後を往復して所定の厚みの被圧延材M3とされる。その後、被圧延材M3は、冷却装置50により水冷されて材質が調整された後、ホットレベラー60により平坦度が矯正される。
FIG. 19 is a schematic diagram illustrating a schematic configuration example of a production line for thick steel plates.
In the production line 10 shown in FIG. 19, a heating furnace 20, a rough rolling mill 30, a finishing rolling mill 40, a cooling device 50, and a hot leveler 60 are arranged in this order from the left side of the drawing. The slab M1 heated to about 1100 to 1200 ° C. in the heating furnace 20 is reduced in thickness to a certain thickness by the roughing mill 30 to be a rough rolled material M2. Next, the rough rolled material M2 is reciprocated before and after the finish rolling mill 40 to be a rolled material M3 having a predetermined thickness. Thereafter, the material to be rolled M3 is water cooled by the cooling device 50 and the material is adjusted, and then the flatness is corrected by the hot leveler 60.

上記の構成を有する厚鋼板の製造ライン10において、本発明に係る表面温度測定装置は、冷却装置50内(具体的には、例えば、冷却装置50内に配置された搬送ロール間)に設置して用いることができる。冷却装置50は、仕上げ圧延機40を通過してもなお600〜700℃程度の温度を有する被圧延材8を室温近くまで冷却するのに用いられる。本発明に係る表面温度測定装置は、放射温度計で検出する熱放射光の波長を1.60〜1.80μmとすることにより、被圧延材8の表面温度が200℃程度の低温域であっても精度良く測温可能である。また、被圧延材8の板厚は厚いため、冷却装置50では大量の冷却水が必要となるが、本発明に係る表面温度測定装置のように、被圧延材8の表面に向けてエアーパージしてエアー柱を形成すれば、大量の冷却水が存在する環境下でも精度の高い測温が可能である。   In the thick steel plate production line 10 having the above-described configuration, the surface temperature measuring device according to the present invention is installed in the cooling device 50 (specifically, for example, between the transport rolls arranged in the cooling device 50). Can be used. The cooling device 50 is used to cool the material 8 to be rolled, which has a temperature of about 600 to 700 ° C. even after passing through the finish rolling mill 40, to near room temperature. The surface temperature measuring apparatus according to the present invention has a surface temperature of the material to be rolled 8 in a low temperature range of about 200 ° C. by setting the wavelength of the heat radiation light detected by the radiation thermometer to 1.60 to 1.80 μm. However, it is possible to measure temperature accurately. Moreover, since the plate | board thickness of the to-be-rolled material 8 is thick, although the cooling device 50 requires a lot of cooling water, it is air purge toward the surface of the to-be-rolled material 8 like the surface temperature measuring device based on this invention. If an air column is formed, highly accurate temperature measurement is possible even in an environment where a large amount of cooling water exists.

以上に説明したように、本発明に係る表面温度測定装置は、厚鋼板の製造ライン10において、大量の冷却水が用いられる冷却装置50内に設置することができる。   As described above, the surface temperature measuring device according to the present invention can be installed in the cooling device 50 in which a large amount of cooling water is used in the thick steel plate production line 10.

1・・・放射温度計
2・・・ノズル
3・・・流量調整バルブ
4・・・フィルタ
11・・・受光光学系
12・・・光ファイバ
13・・・温度演算部
14・・・最大測温値抽出部
100・・・表面温度測定装置
A・・・エアー柱
W・・・水
M・・・鋼板(被測温材)
DESCRIPTION OF SYMBOLS 1 ... Radiation thermometer 2 ... Nozzle 3 ... Flow control valve 4 ... Filter 11 ... Light-receiving optical system
DESCRIPTION OF SYMBOLS 12 ... Optical fiber 13 ... Temperature calculation part 14 ... Maximum temperature measurement value extraction part 100 ... Surface temperature measurement apparatus A ... Air column W ... Water M ... Steel plate (to be measured Warm material)

Claims (8)

水冷中の被測温材の表面から放射された熱放射光を該被測温材の表面に対向配置した放射温度計で検出することにより、該被測温材の表面温度を測定する方法であって、
前記放射温度計で検出する熱放射光の波長を1.60〜1.80μmとすることを特徴とする表面温度測定方法。
A method of measuring the surface temperature of the temperature-measured material by detecting thermal radiation emitted from the surface of the temperature-measured material during water cooling with a radiation thermometer disposed opposite to the surface of the temperature-measured material. There,
A method for measuring a surface temperature, wherein the wavelength of thermal radiation detected by the radiation thermometer is 1.60 to 1.80 μm.
前記放射温度計から前記被測温材の表面に向けてエアーを噴射することにより、前記被測温材の表面と前記放射温度計との間にエアー柱を形成し、
前記エアー柱を介して前記被測温材の表面から放射された熱放射光を前記放射温度計で検出することを特徴とする請求項1に記載の表面温度測定方法。
By injecting air from the radiation thermometer toward the surface of the temperature measuring material, an air column is formed between the surface of the temperature measuring material and the radiation thermometer,
2. The surface temperature measuring method according to claim 1, wherein the radiation thermometer detects thermal radiation emitted from the surface of the temperature-measuring material through the air column.
前記放射温度計によって所定時間内に得られた複数の測温値のうち、最大の測温値を前記被測温材の表面温度として出力することを特徴とする請求項1又は2に記載の表面温度測定方法。   The maximum temperature measurement value among a plurality of temperature measurement values obtained within a predetermined time by the radiation thermometer is output as the surface temperature of the temperature measurement material. Surface temperature measurement method. 前記被測温材の表面と前記放射温度計との間に存在し得る水の厚みをhとした場合、以下の式を満足する流速Vで、前記放射温度計から前記被測温材の表面に向けてエアーを噴射することを特徴とする請求項2又は3に記載の表面温度測定方法。
>2・ρ・g・h/ρ
ただし、上記の式において、ρは水の密度を、ρはエアーの密度を、gは重力加速度を意味する。
When the thickness of water that can exist between the surface of the temperature measuring material and the radiation thermometer is h, the surface of the temperature measuring material from the radiation thermometer at a flow velocity V that satisfies the following formula: The surface temperature measuring method according to claim 2, wherein air is jetted toward the surface.
V 2 > 2 · ρ L · g · h / ρ g
However, in said formula, (rho) L means the density of water, (rho) g means the density of air, and g means a gravitational acceleration.
前記被測温材の表面から放射された熱放射光を複数の波長帯域に分光し、各波長帯域の熱放射光のエネルギーの比に基づいて、前記被測温材の表面と前記放射温度計との間に存在する水の厚みが0.1mm以下であるか否かを判断し、前記水の厚みが0.1mm以下であると判断した場合にのみ、前記被測温材の表面温度を出力することを特徴とする請求項1から4のいずれかに記載の表面温度測定方法。   The thermal radiation light radiated from the surface of the temperature measurement material is divided into a plurality of wavelength bands, and the surface of the temperature measurement material and the radiation thermometer based on the ratio of the energy of the thermal radiation light of each wavelength band Only when it is determined whether the thickness of the water existing between and is 0.1 mm or less and the thickness of the water is 0.1 mm or less, the surface temperature of the temperature-measured material is determined. 5. The surface temperature measuring method according to claim 1, wherein the surface temperature is measured. 前記被測温材の表面から放射された熱放射光を、1.60〜1.80μm、1.65〜1.75μm及び1.88〜1.94μmの各波長帯域に分光することを特徴とする請求項5に記載の表面温度測定方法。   The present invention is characterized in that the heat radiation emitted from the surface of the temperature-measuring material is split into each wavelength band of 1.60 to 1.80 μm, 1.65 to 1.75 μm, and 1.88 to 1.94 μm. The surface temperature measuring method according to claim 5. 水冷中の被測温材の表面に対向配置された放射温度計を備え、該被測温材の表面から放射された熱放射光を該放射温度計で検出することにより、該被測温材の表面温度を測定する装置であって、
前記被測温材の表面と前記放射温度計の検出素子との間に、1.60〜1.80μmの波長帯域の光のみを透過する光学フィルタを備えることを特徴とする表面温度測定装置。
A radiation thermometer disposed opposite to the surface of the temperature-measuring material during water cooling, and detecting the heat radiation emitted from the surface of the temperature-measuring material by the radiation thermometer; An apparatus for measuring the surface temperature of
An apparatus for measuring a surface temperature, comprising an optical filter that transmits only light having a wavelength band of 1.60 to 1.80 μm between a surface of the temperature-measured material and a detection element of the radiation thermometer.
前記被測温材が鋼材であり、
請求項1から6のいずれかに記載の方法によって表面温度を測定する工程を有することを特徴とする鋼材の製造方法。
The measured temperature material is a steel material,
A method for producing a steel material, comprising a step of measuring a surface temperature by the method according to claim 1.
JP2009201445A 2009-09-01 2009-09-01 Surface temperature measuring method and steel material manufacturing method Active JP5333933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009201445A JP5333933B2 (en) 2009-09-01 2009-09-01 Surface temperature measuring method and steel material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009201445A JP5333933B2 (en) 2009-09-01 2009-09-01 Surface temperature measuring method and steel material manufacturing method

Publications (2)

Publication Number Publication Date
JP2011053047A true JP2011053047A (en) 2011-03-17
JP5333933B2 JP5333933B2 (en) 2013-11-06

Family

ID=43942213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009201445A Active JP5333933B2 (en) 2009-09-01 2009-09-01 Surface temperature measuring method and steel material manufacturing method

Country Status (1)

Country Link
JP (1) JP5333933B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013154369A (en) * 2012-01-30 2013-08-15 Nippon Steel & Sumitomo Metal Corp Continuous casting method
JP2013240824A (en) * 2012-05-22 2013-12-05 Nippon Steel & Sumitomo Metal Corp Method of measuring surface temperature of continuously cast slab and continuous casting method using the same
JP2015167963A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 continuous casting method of steel
JP2019023635A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Temperature measuring device, temperature measuring method, and program

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192231A (en) * 1984-03-14 1985-09-30 Kawasaki Steel Corp Device for measuring surface temperature and detecting position of high-temperature object
JPS63163124A (en) * 1986-12-25 1988-07-06 Chino Corp Apparatus for measuring temperature of char bed of black liquor recovery boiler
JPH0431340B2 (en) * 1983-02-22 1992-05-26
JPH0510822A (en) * 1991-06-28 1993-01-19 Nippon Steel Corp Radiation temperature measuring instrument
JPH06117939A (en) * 1992-10-08 1994-04-28 Nippon Steel Corp Lateral plate thermometer in furnace
JPH06229834A (en) * 1993-02-01 1994-08-19 Kawasaki Steel Corp Optical fiber thermometer and temperature measuring method
JPH07270254A (en) * 1994-03-31 1995-10-20 Chino Corp Optical fiber type device for measuring temperature
JPH08247860A (en) * 1995-03-13 1996-09-27 Kawasaki Steel Corp Material temperature measuring method and device in hot rolling machine
JP2001194239A (en) * 2000-01-04 2001-07-19 Nkk Corp Device and method for cooling radiation thermometer, backlight shield plate for radiation thermometer, and method for cooling backlight shield plate
JP2002039865A (en) * 2000-07-25 2002-02-06 Sumitomo Metals (Kokura) Ltd Method of measuring temperature of wire rod coil during conveyance, cooling method therefor, and method of cooling wire rod under rolling
JP2007017408A (en) * 2005-07-11 2007-01-25 Sumitomo Metal Ind Ltd Surface temperature measuring method and surface temperature measuring device of steel product, and manufacturing method of steel product
JP2009144440A (en) * 2007-12-14 2009-07-02 Toto Ltd Urine temperature measuring device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431340B2 (en) * 1983-02-22 1992-05-26
JPS60192231A (en) * 1984-03-14 1985-09-30 Kawasaki Steel Corp Device for measuring surface temperature and detecting position of high-temperature object
JPS63163124A (en) * 1986-12-25 1988-07-06 Chino Corp Apparatus for measuring temperature of char bed of black liquor recovery boiler
JPH0510822A (en) * 1991-06-28 1993-01-19 Nippon Steel Corp Radiation temperature measuring instrument
JPH06117939A (en) * 1992-10-08 1994-04-28 Nippon Steel Corp Lateral plate thermometer in furnace
JPH06229834A (en) * 1993-02-01 1994-08-19 Kawasaki Steel Corp Optical fiber thermometer and temperature measuring method
JPH07270254A (en) * 1994-03-31 1995-10-20 Chino Corp Optical fiber type device for measuring temperature
JPH08247860A (en) * 1995-03-13 1996-09-27 Kawasaki Steel Corp Material temperature measuring method and device in hot rolling machine
JP2001194239A (en) * 2000-01-04 2001-07-19 Nkk Corp Device and method for cooling radiation thermometer, backlight shield plate for radiation thermometer, and method for cooling backlight shield plate
JP2002039865A (en) * 2000-07-25 2002-02-06 Sumitomo Metals (Kokura) Ltd Method of measuring temperature of wire rod coil during conveyance, cooling method therefor, and method of cooling wire rod under rolling
JP2007017408A (en) * 2005-07-11 2007-01-25 Sumitomo Metal Ind Ltd Surface temperature measuring method and surface temperature measuring device of steel product, and manufacturing method of steel product
JP2009144440A (en) * 2007-12-14 2009-07-02 Toto Ltd Urine temperature measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013154369A (en) * 2012-01-30 2013-08-15 Nippon Steel & Sumitomo Metal Corp Continuous casting method
JP2013240824A (en) * 2012-05-22 2013-12-05 Nippon Steel & Sumitomo Metal Corp Method of measuring surface temperature of continuously cast slab and continuous casting method using the same
JP2015167963A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 continuous casting method of steel
JP2019023635A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Temperature measuring device, temperature measuring method, and program
JP7024644B2 (en) 2017-07-21 2022-02-24 日本製鉄株式会社 Temperature measuring device, temperature measuring method and program

Also Published As

Publication number Publication date
JP5333933B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5333933B2 (en) Surface temperature measuring method and steel material manufacturing method
US7938576B1 (en) Sensing system for obtaining images and surface temperatures
JP2019023635A (en) Temperature measuring device, temperature measuring method, and program
JP5708891B2 (en) Surface temperature measuring apparatus and surface temperature measuring method
CN101441119B (en) High temperature solid surface long term accurate temperature measuring system in complicated environment
CN101664794B (en) Continuous casting two cold closed chamber casting blank surface temperature field measuring device
US20160033431A1 (en) Thermal diffusivity measuring device
JP4924952B2 (en) Hot-rolled steel sheet cooling method and cooling equipment
JP4569873B2 (en) Steel surface temperature measuring method, surface temperature measuring device, and steel manufacturing method
JP4151022B2 (en) Steel surface temperature measuring method, surface temperature measuring device, and steel manufacturing method
JP5622084B2 (en) Steel surface temperature measuring device, surface temperature measuring method, and steel manufacturing method
KR101197790B1 (en) Apparatus for measuring radiation temperature
US10345229B2 (en) Furnace atmosphere measurement
Golinelli et al. IR sensor for gas turbine inlet temperature (TIT) measurements: preliminary results on a test rig
Becker et al. In-situ monitoring of the Laser Powder Bed Fusion build process via bi-chromatic optical tomography
TW201600838A (en) Temperature measurement method for correcting dual waveband temperature measurement error and system
JP2016145737A5 (en)
US11567001B2 (en) Apparatus and method for identifying a refrigerant fluid contained in a tank or in measuring cell of a system for recharging an air-conditioning plant
RU2495388C1 (en) Measuring method of thermogas-dynamic flow parameters
JP5310149B2 (en) Thick steel plate quality assurance equipment
JP2017146107A (en) Apparatus and method for measuring temperature of rolling object material between continuous hot rolling mill stands
Xue et al. Uncertainty model and estimation for emissivity of a steel plate with a multi-wavelength pyrometer
RU129856U1 (en) DEVICE FOR FORMING PARTS FROM HEAT-RESISTANT ALLOYS
CN112296301A (en) Steel billet temperature colorimetric measurement system and method in steelmaking continuous casting secondary cooling chamber
CN112247095A (en) Steel billet temperature monochromatic measurement system and method in steelmaking continuous casting secondary cooling chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R151 Written notification of patent or utility model registration

Ref document number: 5333933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350