JPH07270254A - Optical fiber type device for measuring temperature - Google Patents

Optical fiber type device for measuring temperature

Info

Publication number
JPH07270254A
JPH07270254A JP6085555A JP8555594A JPH07270254A JP H07270254 A JPH07270254 A JP H07270254A JP 6085555 A JP6085555 A JP 6085555A JP 8555594 A JP8555594 A JP 8555594A JP H07270254 A JPH07270254 A JP H07270254A
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
length
ratio
end part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6085555A
Other languages
Japanese (ja)
Other versions
JP3405589B2 (en
Inventor
Takeo Yamada
健夫 山田
Isao Hishikari
功 菱刈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP08555594A priority Critical patent/JP3405589B2/en
Publication of JPH07270254A publication Critical patent/JPH07270254A/en
Application granted granted Critical
Publication of JP3405589B2 publication Critical patent/JP3405589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/602Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using selective, monochromatic or bandpass filtering

Abstract

PURPOSE:To enable highly accurate measurement of temperature without being affected by the length of an optical fiber, by utilizing a plurality of lights being different in wavelength. CONSTITUTION:The fore end part 10 of an optical fiber 1 covered by a metal pipe is inserted into a liquid metal 2 of high temperature in a vessel 20. The other end part 11 of the optical fiber 1 converges a radiation energy from the fore end part 10 and the energy is divided in three through the intermediary of half mirrors 51 and 52. The branched lights are passed through filters 61, 62 and 63 transmitting lights different in wavelength from one another and are detected by detecting elements 71, 72 and 73. The respective outputs of these elements are amplified by amplifying means A1, A2 and A3 and outputs of the amplifying means A1 and A2 are subjected to computation of a ratio by a ratio computing means 80. A ratio signal thereof is made a temperature signal by a converting means 81. An output of the amplifying means A3 is also made a temperature signal by a converting means 82. Based on a difference between the temperature signals of these converting means 81 and 82, a computing means 9 executes correction of the length of the optical fiber 1 and thereby a correct temperature signal is obtained. Thereby, measurement for a long time can be executed without being affected by a change in the length of the optical fiber 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光ファイバを用いて
測温する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring temperature using an optical fiber.

【0002】[0002]

【従来の技術】溶鋼等の高温の液体金属等の温度を検出
するために、先端部を測温エレメントとした金属管被覆
ファイバを溶融金属に挿入して測温するものが提案され
ている(特開平5−248960号公報)。
2. Description of the Related Art In order to detect the temperature of high temperature liquid metal such as molten steel, there has been proposed one in which a metal tube-coated fiber having a temperature measuring element at its tip is inserted into molten metal to measure the temperature ( JP-A-5-248960).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、光ファ
イバを高温の溶融金属に挿入すると先端部が消耗するの
で、順次くり出して使用する。このため光ファイバの先
端からの放射エネルギーが、他端の検出素子に達するま
での長さが異なってくるので、伝送損失の相違が発生
し、測定誤差が発生するおそれがある。
However, when the optical fiber is inserted into the molten metal having a high temperature, the tip portion is consumed, and therefore the optical fiber is sequentially fed out for use. Therefore, the length of the radiant energy from the tip of the optical fiber until it reaches the detection element at the other end is different, which may cause a difference in transmission loss and may cause a measurement error.

【0004】このため、特開平5−142049号公報
において、2つの温度信号差を利用して、光ファイバの
伝送損失を補正して真温度を求めるものが提案されてい
る。
For this reason, Japanese Patent Application Laid-Open No. 5-142049 proposes a method in which the difference between two temperature signals is used to correct the transmission loss of the optical fiber to obtain the true temperature.

【0005】この発明の目的は、以上の点に鑑み、3つ
の波長を利用して光ファイバの長さの影響を受けずに、
より高精度の測温を可能とした光ファイバ式温度測定装
置を提供することである。
In view of the above points, an object of the present invention is to utilize three wavelengths without being affected by the length of an optical fiber,
An object of the present invention is to provide an optical fiber type temperature measuring device capable of measuring temperature with higher accuracy.

【0006】[0006]

【課題を解決するための手段】この発明は、光ファイバ
を介し測定対象からの放射エネルギーを受光し少くとも
3つの異なる波長についての光を検出する検出素子と、
この検出素子の各波長の出力のうち2つの波長について
の出力信号の比率信号を求め、この比率信号と他の波長
についての出力信号との差に基いて光ファイバの長さに
よる補正演算を行い温度を求める演算手段とを備えるよ
うにした光ファイバ式温度測定装置である。
SUMMARY OF THE INVENTION The present invention comprises a detector element for receiving radiant energy from an object to be measured through an optical fiber and detecting light of at least three different wavelengths,
The ratio signals of the output signals for two wavelengths of the output of each wavelength of the detection element are obtained, and the correction operation is performed by the length of the optical fiber based on the difference between the ratio signal and the output signals for other wavelengths. It is an optical fiber type temperature measuring device provided with a calculating means for obtaining a temperature.

【0007】[0007]

【実施例】図1(a)は、この発明の一実施例を示す構
成説明図で、図において、1は金属管等で被覆された光
ファイバで、その先端部10は、容器20等に収容され
る高温液体金属2に挿入される。この光ファイバ1は、
繰り出し装置3で連続的ないし間欠的にくり出され、ド
ラム4に必要分巻き取られている。そして、光ファイバ
1の他端部11は、先端部10からの放射エネルギーを
集光し、ハーフミラー51、52を介し、3方に分岐
し、互いに異なった波長λ1、λ2、λ3の光を透過す
るフィルタ61、62、63を介し、検出素子71、7
2、73で検出される。各検出素子71、72、73の
各出力は増幅手段A1、A2、A3で増幅処理され、増
幅手段A1、A2の出力は比率演算手段80で比率がと
られ、この比率信号は変換手段81で温度信号とされ、
また、増幅手段A3の出力も変換手段82で温度信号と
される。これら変換手段81、82の温度信号の差に基
いて、演算手段9は、光ファイバ1の長さの補正を行い
正しい温度信号を得るようにする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 (a) is a structural explanatory view showing an embodiment of the present invention. In the figure, reference numeral 1 is an optical fiber coated with a metal tube or the like, and its tip 10 is attached to a container 20 or the like. It is inserted into the high temperature liquid metal 2 to be contained. This optical fiber 1
It is continuously or intermittently fed by the feeding device 3 and wound on the drum 4 by a necessary amount. Then, the other end portion 11 of the optical fiber 1 collects the radiant energy from the tip portion 10 and splits it into three directions via the half mirrors 51 and 52 to emit lights having different wavelengths λ1, λ2, and λ3. Through the filters 61, 62, 63 that pass through, the detection elements 71, 7
It is detected at 2, 73. The outputs of the detection elements 71, 72, 73 are amplified by the amplification means A1, A2, A3, the outputs of the amplification means A1, A2 are ratioed by the ratio calculation means 80, and the ratio signals are converted by the conversion means 81. A temperature signal,
The output of the amplification means A3 is also converted into a temperature signal by the conversion means 82. Based on the difference between the temperature signals of the conversion means 81 and 82, the calculation means 9 corrects the length of the optical fiber 1 to obtain a correct temperature signal.

【0008】また、図1(b)で示すように、フィルタ
61、62、63を回転セクタ6に載置し、光ファイバ
1の他端部10からの光を1個の検出素子7に入射させ
て検出するように構成してもよい。また、検出素子7の
出力を増幅手段Aで増幅した後、変換や演算をマイクロ
コンピュータのような演算手段90を用いてデジタル的
に処理してもよい。
Further, as shown in FIG. 1B, the filters 61, 62, 63 are mounted on the rotating sector 6, and the light from the other end 10 of the optical fiber 1 is made incident on one detecting element 7. Alternatively, the detection may be performed. Alternatively, after the output of the detection element 7 is amplified by the amplification means A, conversion or calculation may be digitally processed using the calculation means 90 such as a microcomputer.

【0009】ここで、互いに異なる2個の測定波長帯λ
1、λ2の放射輝度比を求める2色温度計について考え
ると、波長λ、温度Tの分光放射輝度L(λ、T)は、
ウィーンの公式より L(λ、T)=2C1λ5 exp(−C2/λT) (1) で与えられるので、その比率出力R(T)は次式とな
る。
Here, two different measurement wavelength bands λ
Considering a two-color thermometer for obtaining the radiance ratio of 1 and λ2, the spectral radiance L (λ, T) at the wavelength λ and the temperature T is
According to the Wien's formula, L (λ, T) = 2C1λ 5 exp (−C2 / λT) (1), so the ratio output R (T) is as follows.

【0010】 R(T)=(λ2/λ1)5 exp{(1/λ2−1/λ1)・C2/T} (2) ここで、C2=0.014388mKである。R (T) = (λ2 / λ1) 5 exp {(1 / λ2-1 / λ1) · C2 / T} (2) Here, C2 = 0.014388 mK.

【0011】光ファイバの分光吸収に注目すると、吸収
係数がα、長さがxのとき、透過率はexp(−αx)
で表されるから、測定波長帯λ1、λ2における吸収係
数が夫々α1、α2で、長さxなる光ファイバを介して
温度T(K)の黒体を計測したときS1,2 (K)なる示
度を得たとすると、 R(S1,2 )=[exp(−α1x)/exp(−α2x)]・R(T) (3) なる関係が成立する。R(S1,2 )とR(T)にウィー
ンの公式を適用して整理すれば次式を得る。
Focusing on the spectral absorption of the optical fiber, when the absorption coefficient is α and the length is x, the transmittance is exp (-αx).
Therefore, S1,2 (K) is obtained when a black body at temperature T (K) is measured through an optical fiber having length x and absorption coefficients α1 and α2 in the measurement wavelength bands λ1 and λ2, respectively. If the reading is obtained, the relationship of R (S1,2) = [exp (-α1x) / exp (-α2x)] R (T) (3) holds. Applying the Vienna formula to R (S1,2) and R (T) and rearranging, we obtain the following formula.

【0012】 (1/λ2−1/λ1)C2/S1,2 =(α2−α1)x+(1/λ2−1/λ1)C2/T (4) これを温度S1,2 およびTについて求めると、 1/S1,2 −1/T=(α2−α1)x/{(1/λ2−1/λ1)C2} (5) を得る。これによれば、α2=α1、すなわち光ファイ
バの分光吸収係数、したがって、分光透過率が互いに等
しいとき、T=S1,2 となって光フアイバの長さxに関
係なく測定誤差は発生しないことになる。
(1 / λ2-1 / λ1) C2 / S1,2 = (α2-α1) x + (1 / λ2-1 / λ1) C2 / T (4) When this is obtained for temperatures S1,2 and T , 1 / S1,2−1 / T = (α2-α1) x / {(1 / λ2-1 / λ1) C2} (5) is obtained. According to this, when α2 = α1, that is, when the spectral absorption coefficient of the optical fiber, that is, the spectral transmittances are equal to each other, T = S1,2, and no measurement error occurs regardless of the length x of the optical fiber. become.

【0013】光フアイバの分光吸収特性を、「光通信要
覧」(1984年8月科学新聞社発行)第34頁の図
2.3.1(超高感度光ファイバの損失特性)から引用
して図2に示す。これによると、分光吸収としての損失
(dB)は、測定波長が0.6μmより長くなるにつれ
て減少し、1.4〜1.6μm帯で最低となって、1.
6μm以上では再び増加する。しかも、(2)式より理
解されるように、2色温度計の感度は、2つの測定波長
λ2、λ1が互いに離れているほうが大きくなる。それ
ゆえ、図2を参考に、互いに離れた波長帯で、かつ、損
失の等しい波長帯を選定することが望ましい。このよう
な観点から、たとえば、λ1=1.30μm、λ2=
1.62μm、又は、λ1=1.40μm、λ2=1.
60μmなど種々の組み合わせが選定できる。このよう
に選定し、α1=α2が実現できれば、基本的には、光
ファイバ長の変化による指示誤差は生じない。
The spectral absorption characteristics of the optical fiber are quoted from FIG. 2.3.1 (loss characteristics of ultra-sensitive optical fiber) on page 34 of "Optical Communication Manual" (published by Kagaku Shimbun, August 1984). As shown in FIG. According to this, the loss (dB) as the spectral absorption decreases as the measurement wavelength becomes longer than 0.6 μm and becomes the lowest in the 1.4 to 1.6 μm band.
When it is 6 μm or more, it increases again. In addition, as understood from the equation (2), the sensitivity of the two-color thermometer becomes larger when the two measurement wavelengths λ2 and λ1 are separated from each other. Therefore, referring to FIG. 2, it is desirable to select wavelength bands that are separated from each other and have the same loss. From such a viewpoint, for example, λ1 = 1.30 μm, λ2 =
1.62 μm, or λ1 = 1.40 μm, λ2 = 1.
Various combinations such as 60 μm can be selected. If .alpha.1 = .alpha.2 can be realized by selecting in this way, basically, an instruction error due to a change in the optical fiber length does not occur.

【0014】しかしながら、実際上、光ファイバのロッ
ト間の微妙なバラツキ、あるいは、測定波長帯を制御す
る光フィルタのロット間のバラツキは避けられず、必ず
しもα1=α2は成立しない。α1≠α2のとき、
(5)式から明らかなように、光ファイバ長xによる指
示変化を発生する。たとえば、互いの損失の差異が1%
で長さ1Kmの光ファイバを用いてT=1800Kの場
合、(5)式から、λ1=1.30μm、λ2=1.6
2μmのとき、T−S1,2 =−14.8K、同じく、λ
1=1.40μm、λ2=1.60μmのとき、T−S
1,2 =−25.2Kが求まる。これらの誤差は、長さに
比例するから、500mでは1/2、100mでは、1
/10となる。精密な温度計測を実現するため、この誤
差は無視できない。
However, in practice, subtle variations between lots of optical fibers or lots of optical filters that control the measurement wavelength band cannot be avoided, and α1 = α2 does not always hold. When α1 ≠ α2,
As is clear from the equation (5), an instruction change is generated depending on the optical fiber length x. For example, the difference in loss between each other is 1%
When T = 1800K using an optical fiber having a length of 1 Km, λ1 = 1.30 μm and λ2 = 1.6 are obtained from the equation (5).
At 2 μm, T−S1,2 = −14.8K, similarly, λ
When 1 = 1.40 μm and λ2 = 1.60 μm, T−S
1,2 = -25.2K is obtained. Since these errors are proportional to the length, 1/2 at 500 m and 1 at 100 m
It becomes / 10. This error cannot be ignored in order to realize accurate temperature measurement.

【0015】そこで、光ファイバの損失の大きい波長帯
に第3の測定波長帯を設け、これによる分光輝度の測定
によって、長さの補正を行うことが本願発明の目的であ
る。
Therefore, it is an object of the present invention to correct the length by providing a third measurement wavelength band in the wavelength band in which the loss of the optical fiber is large and measuring the spectral luminance by this.

【0016】すなわち、測定波長λ3における光ファイ
バの吸収係数をα3、長さxのとき、温度T(K)の黒
体を計測したときの示度S3 (K)とするとウィーンの
公式から (C1/λ3 5 )・exp(−C2/λ3 S3 ) =exp(−α3x)・(C1/λ3 5 )・exp(−C2/λ3 T) (6) が成立し、これを温度TおよびS3 について整理し、 1/S3 −1/T−=α3 xλ3 /C2 (7) が得られ、T−S3 の示度差は、光ファイバの長さxに
比例する。測定波長帯として、λ3=0.9μmとし、
長さ1kmの光ファイバの吸収係数を図2を参考にして
求め(1.7dB、0.324/km)、温度1800
Kにおける示度差T−S3 を、(7)式から求めるとT
−S3 =65.7Kが得られる。
That is, when the absorption coefficient of the optical fiber at the measurement wavelength λ3 is α3 and the length is x, the reading S3 (K) when measuring a black body at temperature T (K) is given by the Wien's formula (C1 / λ3 5) · exp (-C2 / λ3 S3) = exp (-α3x) · (C1 / λ3 5) · exp (-C2 / λ3 T) (6) is satisfied, organize this for temperature T and S3 Then, 1 / S3-1 / T-=. Alpha.3.times..lambda.3 / C2 (7) is obtained, and the reading difference of T-S3 is proportional to the length x of the optical fiber. As the measurement wavelength band, λ3 = 0.9 μm,
The absorption coefficient of the optical fiber having a length of 1 km was obtained with reference to FIG. 2 (1.7 dB, 0.324 / km), and the temperature was 1800.
When the reading difference T-S3 in K is calculated from the equation (7), T
-S3 = 65.7K is obtained.

【0017】次に、(5)式と(7)式から光ファイバ
長xは、 x=[1/S1,2 −1/S3 ]/ [{−α3λ3+(α2−α1)/(1/λ2−1/λ1)}/C2] (8) と求められる。これを(5)式に適用して、温度Tが求
められる。
Next, from the equations (5) and (7), the optical fiber length x is x = [1 / S1,2-1 / S3] / [{-α3λ3 + (α2-α1) / (1 / λ2 −1 / λ1)} / C2] (8) The temperature T is obtained by applying this to the equation (5).

【0018】 1/T=1/S1,2 −(S1,2 −S3 ) /[−α3λ3・(1/λ2−1/λ1)/(α2−α1)+1] (9) ここで、λ1、λ2、λ3は夫々の測定波長帯、α1、
α2、α3は各測定波長における光ファイバの吸収係数
で、初期値として扱えるから、温度Tは、光ファイバの
長さに関係なく2色測温の示度S1,2 および単色測温の
示度S3 から求めることができる。
1 / T = 1 / S1,2- (S1,2-S3) / [-α3λ3 · (1 / λ2-1 / λ1) / (α2-α1) +1] (9) where λ1, λ2 and λ3 are the respective measurement wavelength bands, α1,
Since α2 and α3 are absorption coefficients of the optical fiber at each measurement wavelength and can be treated as initial values, the temperature T is the two-color temperature reading S1,2 and the single-color temperature reading regardless of the length of the optical fiber. It can be calculated from S3.

【0019】[0019]

【発明の効果】以上述べたように、この発明は、光ファ
イバを介し、3つの異なる波長の検出出力から2色演算
を行うとともに、もう1つの波長の検出出力とから光フ
ァイバの長さ補正を行うようにしたものである。このた
め、2色演算を行っているので、光ファイバの透過率の
変動の影響が少く高精度測定を行うことができ、しか
も、長さについても補正が可能で光ファイバ長の変化の
影響を受けずに、連続的に長い時間測定が安定的、高精
度に可能となる。
As described above, according to the present invention, the two-color calculation is performed from the detection output of three different wavelengths through the optical fiber, and the length of the optical fiber is corrected from the detection output of the other wavelength. Is to do. For this reason, since the two-color operation is performed, the influence of the change in the transmittance of the optical fiber is small, and the high-precision measurement can be performed. Moreover, the length can be corrected, and the influence of the change in the optical fiber length can be obtained. This enables stable and highly accurate continuous long-time measurement without receiving it.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す構成説明図である。FIG. 1 is a structural explanatory view showing an embodiment of the present invention.

【図2】この発明の一実施例を示す特性説明図である。FIG. 2 is a characteristic explanatory view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光ファイバ 10 先端部 2 測定対象 3 繰り出し装置 4 ドラム 51、52、53 ハーフミラー 61、62、63 フィルタ 71、72、73 検出素子 80 比率演算手段 81、82 変換手段 9 演算手段 A1、A2、A3 増幅手段 DESCRIPTION OF SYMBOLS 1 Optical fiber 10 Tip part 2 Measuring object 3 Feeding device 4 Drums 51, 52, 53 Half mirrors 61, 62, 63 Filters 71, 72, 73 Detection element 80 Ratio calculation means 81, 82 Conversion means 9 Calculation means A1, A2, A3 amplification means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光ファイバを介し測定対象からの放射エネ
ルギーを受光し少くとも3つの異なる波長についての光
を検出する検出素子と、この検出素子の各波長の出力の
うち2つの波長についての出力信号の比率信号を求め、
この比率信号と他の波長についての出力信号との差に基
いて光ファイバの長さによる補正演算を行い温度を求め
る演算手段とを備えたことを特徴とする光ファイバ式温
度測定装置。
1. A detection element for receiving radiant energy from an object to be measured through an optical fiber and detecting light of at least three different wavelengths, and an output for two wavelengths of each wavelength output of the detection element. Signal ratio signal,
An optical fiber type temperature measuring device, comprising: a calculating means for calculating a temperature by performing a correction calculation based on the length of the optical fiber based on the difference between the ratio signal and the output signals for other wavelengths.
JP08555594A 1994-03-31 1994-03-31 Optical fiber type temperature measuring device Expired - Fee Related JP3405589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08555594A JP3405589B2 (en) 1994-03-31 1994-03-31 Optical fiber type temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08555594A JP3405589B2 (en) 1994-03-31 1994-03-31 Optical fiber type temperature measuring device

Publications (2)

Publication Number Publication Date
JPH07270254A true JPH07270254A (en) 1995-10-20
JP3405589B2 JP3405589B2 (en) 2003-05-12

Family

ID=13862076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08555594A Expired - Fee Related JP3405589B2 (en) 1994-03-31 1994-03-31 Optical fiber type temperature measuring device

Country Status (1)

Country Link
JP (1) JP3405589B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007451A (en) * 2003-06-20 2005-01-13 Jfe Koken Corp Method for measuring temperature of weld zone
JP2011053047A (en) * 2009-09-01 2011-03-17 Sumitomo Metal Ind Ltd Surface temperature measuring method, surface temperature measuring apparatus, and steel manufacturing method
JP2011122940A (en) * 2009-12-10 2011-06-23 Yamatake Corp Fluorescent-type temperature sensor and temperature measuring method
CN105784121A (en) * 2016-04-01 2016-07-20 华北电力大学 Nine-channel adaptive large-range two-dimensional temperature field measuring device and measuring method thereof
JP2019020370A (en) * 2017-07-21 2019-02-07 新日鐵住金株式会社 Temperature measurement device, temperature measurement method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007451A (en) * 2003-06-20 2005-01-13 Jfe Koken Corp Method for measuring temperature of weld zone
JP4603776B2 (en) * 2003-06-20 2010-12-22 Jfeメカニカル株式会社 Weld temperature measurement method
JP2011053047A (en) * 2009-09-01 2011-03-17 Sumitomo Metal Ind Ltd Surface temperature measuring method, surface temperature measuring apparatus, and steel manufacturing method
JP2011122940A (en) * 2009-12-10 2011-06-23 Yamatake Corp Fluorescent-type temperature sensor and temperature measuring method
CN105784121A (en) * 2016-04-01 2016-07-20 华北电力大学 Nine-channel adaptive large-range two-dimensional temperature field measuring device and measuring method thereof
JP2019020370A (en) * 2017-07-21 2019-02-07 新日鐵住金株式会社 Temperature measurement device, temperature measurement method, and program

Also Published As

Publication number Publication date
JP3405589B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
CA1265938A (en) Temperature measurement
KR0160239B1 (en) Method and apparatus for measuring temperature using an optical fiber
US4576485A (en) Method and apparatus for measuring temperature profile with a single optical fiber
JPH07270254A (en) Optical fiber type device for measuring temperature
JP2008268106A (en) Method of measuring temperature information
KR20040010172A (en) Emissivity distribution measuring method and apparatus
RU2253845C1 (en) Multichannel radiation pyrometer
JP3325700B2 (en) Optical fiber radiation thermometer
JPH11237287A (en) Temperature distribution measuring apparatus
JPH10104084A (en) Multicolor thermometer
JPH04318432A (en) Distribution temperature measuring method by optical fiber sensor
JPS6114528A (en) Measuring method of temperature using optical fiber
JPH0198930A (en) Radiation thermometer replaced with equivalent black body
JPH07324983A (en) Consumption-type optical fiber thermometer
JP2897389B2 (en) Temperature measuring method and distributed optical fiber temperature sensor
JPH05231944A (en) Method for radiometric temperature measurement using multiple wavelength
JPH06307939A (en) Radiation thermometer
JPH0684912B2 (en) thermometer
JPH03215720A (en) Infrared thermometer
JPS6190024A (en) Radiation thermometer
JPS625605Y2 (en)
JPS60151524A (en) Ambient temperature correcting method of fiber type radiation thermometer
JPS61290329A (en) Head for infrared thermometer
JP3115163B2 (en) Temperature distribution detector
JPH06137953A (en) Method and apparatus for measuring temperature through infrared sensor and method and equipment for measuring emissivity

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees