JPH03215720A - Infrared thermometer - Google Patents

Infrared thermometer

Info

Publication number
JPH03215720A
JPH03215720A JP2008365A JP836590A JPH03215720A JP H03215720 A JPH03215720 A JP H03215720A JP 2008365 A JP2008365 A JP 2008365A JP 836590 A JP836590 A JP 836590A JP H03215720 A JPH03215720 A JP H03215720A
Authority
JP
Japan
Prior art keywords
infrared
temperature
black body
measurement
infrared sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008365A
Other languages
Japanese (ja)
Inventor
Yutaka Muramoto
村本 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2008365A priority Critical patent/JPH03215720A/en
Publication of JPH03215720A publication Critical patent/JPH03215720A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the inconvenience of handling and to measure temperature continuously and accurately by providing an object infrared sensor which receives infrared rays from an object and an infrared sensor for temperature calibration which receives infrared rays from a standard black body. CONSTITUTION:One infrared sensor 11 is arranged opposite to the object across an infrared-ray incidence window 15 and the other infrared sensor 12 is set opposite to the reference black body 13 which is held at specific temperature by the heater 14 to detect reference temperature. The outputs of the infrared sensors 11 and 12 are switched by a switch circuit 20 which is controlled by a CPU 23 and passed through an amplifying and detecting circuit 21 to obtain an output level V1 with the infrared rays from the object and an output level V2 with the infrared rays from the standard black body 13. The output levels V1 and V2 are converted 22 into digital data, which are stored 25. Then the CPU 23 determines the measured temperature of the object from the value (V1-V2) according to a control program which is stored 24 by using a value stored in a conversion table 24a in a ROM 24 previously.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、対象物から発射される赤外線を検出して、対
象物の温度を測定する赤外線温度計に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared thermometer that measures the temperature of an object by detecting infrared rays emitted from the object.

[従来の技術] 従来の赤外線温度計においては、対象物からの赤外線を
検出して精度よく対象物の温度を測定するために、赤外
線センサを含んだ測温ブローブ部を毎測定の始めに標準
の赤外線発生器である黒体に対面させ、赤外線センサの
温度較正を行っている。
[Prior Art] In conventional infrared thermometers, in order to accurately measure the temperature of an object by detecting infrared rays from the object, a temperature probe section containing an infrared sensor is installed as a standard at the beginning of each measurement. The temperature of the infrared sensor is calibrated by facing the black body, which is an infrared generator.

すなわち、赤外線温度計は、対象物からの赤外線を受け
る赤外線センサ及びこのセンサ出カを受けてf1幅する
#1幅検出回路と、この増幅出力を温度値に換算して表
示出力する温度表示部があるが、この赤外線温度計で対
象物の温度を精度よく読取ろうとすると、問題となるの
は赤外線センサ及び増幅検出回路の特性ドリフトである
That is, an infrared thermometer includes an infrared sensor that receives infrared rays from an object, a #1 width detection circuit that receives the output of this sensor and increases f1 width, and a temperature display section that converts this amplified output into a temperature value and outputs it for display. However, when trying to accurately read the temperature of an object with this infrared thermometer, a problem arises due to characteristic drift of the infrared sensor and amplification detection circuit.

この特性ドリフトのために精度のよい測定が出来なくな
る。従って、これを解決するため、第4図(a),(b
)に示すように計測部本体の一部に標準の赤外線温度基
準である黒体を含み、ヒータをコントロールして常にあ
る一定温度に精度よく保っている。第5図には従来の測
定手順のフローチャートを示す。
This characteristic drift makes it impossible to perform accurate measurements. Therefore, in order to solve this problem, Fig. 4 (a) and (b)
), a part of the main body of the measuring unit includes a blackbody, which is a standard infrared temperature reference, and controls the heater to maintain a constant temperature with high precision. FIG. 5 shows a flowchart of a conventional measurement procedure.

この従来の赤外線温度計においては、ある対象物の温度
を測定する時は、必ずまず最初に第4図(b)のように
赤外線センサを含むプローブ部を計測部本体にある温度
較正用黒体に対向させるべく較正用穴に入れるのを待ち
(ステップS51)、赤外線センサ及び,増幅検出回路
の温度較正を行う(ステップS52)。この較正を行っ
てから、対象物の方にブローブ(赤外線センサ)を向け
るのを待って(ステップS53).対象物の温度をはか
る(ステップS54)。対象物の温度をはかる際も、精
度よく測定するためには赤外線センサ及び増幅検出回路
の温度較正を行ってからある一定時間内に測定を終了さ
せる必要がある。この時間以上に測定に手間どると特性
トリフトによる誤差要因が出てきて、精度良く測定する
ことが保証できなくなるからである。
In this conventional infrared thermometer, when measuring the temperature of a certain object, the probe section containing the infrared sensor must first be connected to the temperature calibration black body in the measuring section body, as shown in Figure 4(b). The infrared sensor and the amplification detection circuit are then calibrated for temperature (step S52). After performing this calibration, wait until the probe (infrared sensor) is directed toward the object (step S53). The temperature of the object is measured (step S54). When measuring the temperature of an object, in order to accurately measure the temperature, it is necessary to calibrate the temperature of the infrared sensor and the amplification detection circuit, and then complete the measurement within a certain period of time. This is because if the measurement takes longer than this time, error factors due to characteristic drift will appear, and accurate measurement cannot be guaranteed.

従って、一定時間内、例えば30秒以内に測定が終了し
たか否かをチェックし(ステップS55).一定時間以
内に測定が終了すれば、この測定結果を表示するが(ス
テップS56)、終らない場合は測定不能として(ステ
ップS57),再度測定を開始する. [発明が解決しようとする問題点コ このように、従来の赤外線温度計では、毎測定の最初に
必ず温度較正を行う(黒体の赤外線射を受けて検出系が
安定するまでに約30秒ぐらいかかる)必要があり、こ
の較正のあと測定に入った場合には、測定には手間どら
ずに手短に測定を終了させる必要がある(約30秒以内
)。
Therefore, it is checked whether the measurement is completed within a certain period of time, for example, within 30 seconds (step S55). If the measurement is completed within a certain period of time, the measurement result is displayed (step S56), but if it is not completed, the measurement is determined to be impossible (step S57) and the measurement is started again. [Problems to be solved by the invention] As described above, in conventional infrared thermometers, temperature calibration is always performed at the beginning of each measurement (it takes about 30 seconds for the detection system to stabilize after receiving infrared radiation from a black body). When starting a measurement after this calibration, it is necessary to finish the measurement quickly (within about 30 seconds) without spending much time on the measurement.

以上のように、計測手順や取扱いにいろいろ制約が入っ
てこざるを得ない。
As mentioned above, various restrictions must be placed on measurement procedures and handling.

[発明が解決しようとする問題点] 本発明は、前記従来の欠点を除去し、取扱い上の不便さ
を改善し、連続して精度よく温度測定を可能とする赤外
線温度計を提供するものである。
[Problems to be Solved by the Invention] The present invention provides an infrared thermometer that eliminates the above-mentioned conventional drawbacks, improves inconvenience in handling, and enables continuous and accurate temperature measurement. be.

[問題点を解決するための手段] この課題を解決するために、本発明の赤外線温度計は、
対象物から発射される赤外線を検出して温度を測定する
赤外線温度計において、対象物からの赤外線を受ける対
象用赤外線センサと、標準黒体からの赤外線を受ける温
度較正用赤外線センサと、前記両センサを覆い同一の周
囲温度環境を作るハウジング室とを備える。
[Means for solving the problem] In order to solve this problem, the infrared thermometer of the present invention has the following features:
An infrared thermometer that measures temperature by detecting infrared rays emitted from an object includes an object infrared sensor that receives infrared rays from the object, a temperature calibration infrared sensor that receives infrared rays from a standard black body, and both of the above. and a housing chamber that covers the sensor and creates the same ambient temperature environment.

ここで、前記温度較正用赤外センサへの標準黒体からの
赤外線の供給は光ファイバーを経由して行う。
Here, the infrared rays from the standard blackbody are supplied to the temperature calibration infrared sensor via an optical fiber.

[作用] かかる構成において、温度計測用プローブ内に対象物測
定用赤外線センサと温度基準黒体測定用赤外線センサと
を同一ハウジング内に収容し、対象物からの赤外線を検
出して温度を計測するとともに、常に温度基準黒体から
の赤外線も併行して検出することにより、常時赤外線セ
ンサ及び増幅検出回路部を温度較正することができるの
で、連続していつでも高精度の赤外線検出温度計測が行
える。
[Function] In this configuration, an infrared sensor for measuring an object and an infrared sensor for measuring a temperature reference black body are housed in the same housing in the temperature measuring probe, and the temperature is measured by detecting infrared rays from the object. In addition, by constantly detecting the infrared rays from the temperature reference blackbody in parallel, the temperature of the infrared sensor and the amplification detection circuit section can be constantly calibrated, so that highly accurate infrared detection temperature measurement can be performed continuously and at any time.

[実施例] 以下、添付図面に従って本発明の実施例を説明する。[Example] Embodiments of the present invention will be described below with reference to the accompanying drawings.

第lA図は本実施例の赤外線温度計の構成を示す図であ
る。
FIG. 1A is a diagram showing the configuration of the infrared thermometer of this embodiment.

まず、赤外線検出ブローブ10内に2個の特性のよく揃
った赤外線センサ11,12を背中合わせに密着配置す
る。一つの赤外線センサ11は、赤外線入射窓15を経
由して対象物に対向させる。もう一つの赤外線センサ1
2は、ヒータ14により所定温度にセットされる基準黒
体13に対向させ基準温度を検出させる。
First, two infrared sensors 11 and 12 with well-matched characteristics are placed back-to-back in close contact within the infrared detection probe 10. One infrared sensor 11 is made to face the object via an infrared incidence window 15. Another infrared sensor 1
2 is arranged to face a reference black body 13 which is set at a predetermined temperature by a heater 14 to detect a reference temperature.

赤外線センサ11,12よりの出力は、CPU23によ
り制御されるスイッチ回路により切り換えられ、それぞ
れ増幅検出回路21を通されて、対象物からの赤外線に
より出力レベルv1を得、基準黒体13からの赤外線に
より出力レベルv2を得る。出力レベルv,,V2はA
/D変換器22でデジタルデータに変換されて、RAM
25に記憶される。
The outputs from the infrared sensors 11 and 12 are switched by a switch circuit controlled by the CPU 23 and passed through the amplification detection circuit 21, respectively, to obtain an output level v1 by the infrared rays from the object, and by the infrared rays from the reference black body 13. The output level v2 is obtained. The output level v,,V2 is A
/D converter 22 converts it into digital data and stores it in RAM.
25.

CP023は、ROM24に格納された制御プログラム
に従って、(vI−V2)の値から予めROM24の変
換テーブル24aに格納された値に基づいて対象物の計
測温度を決定する。
According to the control program stored in the ROM 24, the CP023 determines the measured temperature of the object based on the value of (vI-V2) stored in advance in the conversion table 24a of the ROM 24.

計測温度は液晶等からなる表示部26に表示される。The measured temperature is displayed on a display unit 26 made of liquid crystal or the like.

第IB図には、変換テーブル24aの一例を示す。ここ
で、基準黒体の温度は37.0℃に維持されているとす
る。尚、変換テーブルはRAM25に設け、測定前に作
成あるいは書き込まれでも良い。
FIG. IB shows an example of the conversion table 24a. Here, it is assumed that the temperature of the reference black body is maintained at 37.0°C. Note that the conversion table may be provided in the RAM 25 and created or written before measurement.

第2図は他の実施例のブローブ部の構成を示す図である
FIG. 2 is a diagram showing the configuration of the probe section of another embodiment.

基準黒体をブローブ内に配置することによりブローブが
太くなる場合は、基準黒体13をブローブ10’の外に
置き、基準黒体13からの熱輻射を光ファイバ16によ
りプローブ10’内に導き、基準黒体熱輻射検出用セン
サl2の方に赤外線信号を入れる。これにより、ブロー
ブは細く小型に出来るので狭い所で扱うことが可能とな
る。
If the probe becomes thicker by placing the reference black body inside the probe, the reference black body 13 is placed outside the probe 10' and the thermal radiation from the reference black body 13 is guided into the probe 10' through the optical fiber 16. , an infrared signal is input to the reference black body thermal radiation detection sensor l2. This allows the probe to be made thinner and smaller, allowing it to be handled in narrow spaces.

第3図は本実施例の赤外線温度計の処理手順を示すフロ
ーチャートである。
FIG. 3 is a flowchart showing the processing procedure of the infrared thermometer of this embodiment.

まず、計測開始時には、ステップS31で計測間隔時間
(本例では0.5sec)が経過するのを待つ。経過し
た場合はステップS32に進んで、両赤外線センサ11
,12からのデータV r + Vaを入力し、ステッ
プS33で差分(v 1− V2 )を計算し、ステッ
プS34で変換テーブル24aに基づいて温度決定を行
う。温度決定終了後は、ステップS35でこの計測値を
表示し、ステップS36で連続した計測か否かを判断し
、連続計測の場合はステップS31に戻って、ステップ
S31−S36を繰り返す。
First, at the time of starting measurement, the process waits for the measurement interval time (0.5 sec in this example) to elapse in step S31. If the elapsed time has elapsed, the process advances to step S32, and both infrared sensors 11
, 12 is input, the difference (v1-V2) is calculated in step S33, and the temperature is determined based on the conversion table 24a in step S34. After the temperature determination is completed, the measured value is displayed in step S35, and it is determined in step S36 whether or not the measurement is continuous. If the measurement is continuous, the process returns to step S31 and steps S31 to S36 are repeated.

上記第IA図及び第2図のブローブを用いると、2個の
赤外線センサ11,12の特性を揃えてあるので、セン
サ周辺の雰囲気温度の変化に対しても、センサ出力の差
が非常に少ないか、あるいは差が出ても補正により十分
良い計測精度で温度が測れる. このセンサ系によると、片方の基準黒体熱輻射検出用セ
ンサ12は常に基準黒体の輻射を受けているので、この
温度測定系の中に常に基準黒体温に相当する熱輻射信号
が取り入れられている。
When using the probes shown in Figures IA and 2 above, the two infrared sensors 11 and 12 have the same characteristics, so there is very little difference in sensor output even when the ambient temperature around the sensor changes. Or, even if there is a difference, the temperature can be measured with sufficient measurement accuracy by correction. According to this sensor system, one of the reference black body thermal radiation detection sensors 12 always receives radiation from the reference black body, so a thermal radiation signal corresponding to the reference black body temperature is always incorporated into this temperature measurement system. ing.

このため、短い測定周期(例えば、0,5〜lsec)
ごとに1回基準較正値が取り込まれるので、この温度測
定系は常に較正されていると考えて良い。このため、従
来の温度計のようにある一測定周期(例えば約1分)ご
とに測定の最初に必ず温度較正を行う必要がなく、引続
いて連続的に温度測定を行うことができる。
For this reason, short measurement periods (e.g. 0.5 to lsec)
Since the reference calibration value is taken in once every time, this temperature measurement system can be considered to be constantly calibrated. Therefore, unlike conventional thermometers, it is not necessary to perform temperature calibration at the beginning of every measurement period (for example, about 1 minute), and it is possible to continuously measure temperature.

以上説明したように、本実施例の赤外線温度計を用いれ
ば、常に温度較正を行っているので、いつでも高精度の
温度測定が可能であり、温度測定を連続して行うことが
可能であり、途中で必ず温度較正操作を挟む従来の温度
計にあるような煩わしい作業を行わずに温度測定ができ
る。
As explained above, if the infrared thermometer of this embodiment is used, temperature calibration is always performed, so highly accurate temperature measurement is possible at any time, and temperature measurement can be performed continuously. Temperature measurement can be performed without the troublesome work required with conventional thermometers, which always requires temperature calibration in between.

[発明の効果] 本発明により、取扱い上の不便さを改善し、連続して精
度よく温度測定を可能とする赤外線温度計を提供できる
. すなわち、従来の赤外線温度計では、一温度測定が終了
した後で、必ず基準黒体輻射源による赤外線センサ及び
温度測定回路の較正を行う必要があったが、本発明の赤
外線温度計では、常に基準黒体輻射源による温度較正が
行われているので、一温度測定が終了した後ですぐに次
の温度測定に引続いて入ることができる。
[Effects of the Invention] According to the present invention, it is possible to provide an infrared thermometer that improves the inconvenience in handling and enables continuous and accurate temperature measurement. In other words, with conventional infrared thermometers, it was necessary to calibrate the infrared sensor and temperature measurement circuit using a reference blackbody radiation source after each temperature measurement was completed, but with the infrared thermometer of the present invention, the infrared sensor and temperature measurement circuit always need to be calibrated using a reference blackbody radiation source. Since temperature calibration is performed using a reference blackbody radiation source, one temperature measurement can be immediately followed by the next one.

【図面の簡単な説明】[Brief explanation of drawings]

第lA図は本実施例の赤外線温度計の構成を示す図、 第IB図は本実施例の変換テーブルを示す図、第2図は
他の実施例の赤外線温度計のプローブ部の構成を示す図
、 第3図は本実施例の赤外線温度計の温度測定手順を示す
フローチャート, 第4図(a),(b)は従来の赤外線温度計による温度
測定を示す図、 第5図は従来の赤外線温度計の温度測定手順を示すフロ
ーチャートである。 図中、10.10’−・・ブローブ、11・・・対象物
用赤外線センサ、12・・・基準温度検出用赤外線セン
サ、13・・・黒体、14・・・ヒータ、15・・・赤
外線透過窓、16・・・光ファイバ、20・・・スイッ
チ回路、2l・・・増幅検出回路、22・・・A/D変
換器、2 3−C P U、24−ROM,24a・・
・変換テーブル、25・・・RAM、26・・・表示部
である。 第3図
Figure 1A is a diagram showing the configuration of the infrared thermometer of this embodiment, Figure IB is a diagram showing the conversion table of this embodiment, and Figure 2 is a diagram showing the configuration of the probe section of the infrared thermometer of another embodiment. Figure 3 is a flowchart showing the temperature measurement procedure of the infrared thermometer of this embodiment, Figures 4 (a) and (b) are diagrams showing temperature measurement using a conventional infrared thermometer, and Figure 5 is a flowchart showing the temperature measurement procedure of the infrared thermometer of this embodiment. It is a flowchart which shows the temperature measurement procedure of an infrared thermometer. In the figure, 10.10'--Probe, 11--Infrared sensor for object, 12--Infrared sensor for reference temperature detection, 13--Black body, 14--Heater, 15-- Infrared transmission window, 16... Optical fiber, 20... Switch circuit, 2l... Amplification detection circuit, 22... A/D converter, 2 3-CPU, 24-ROM, 24a...
- Conversion table, 25... RAM, 26... Display section. Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)対象物から発射される赤外線を検出して温度を測
定する赤外線温度計において、 対象物からの赤外線を受ける対象用赤外線センサと、 標準黒体からの赤外線を受ける温度較正用赤外線センサ
と、 前記両センサを覆い同一の周囲温度環境を作るハウジン
グ室とを備えることを特徴とする赤外線温度計。
(1) In an infrared thermometer that measures temperature by detecting infrared rays emitted from an object, there are two types: an infrared sensor for the object that receives infrared rays from the object, and an infrared sensor for temperature calibration that receives infrared rays from a standard black body. , and a housing chamber that covers both the sensors and creates the same ambient temperature environment.
(2)前記温度較正用赤外センサへの標準黒体からの赤
外線の供給は光ファイバーを経由して行うことを特徴と
する請求項第1項記載の赤外線温度計。
(2) The infrared thermometer according to claim 1, wherein the infrared rays from the standard black body are supplied to the temperature calibration infrared sensor via an optical fiber.
JP2008365A 1990-01-19 1990-01-19 Infrared thermometer Pending JPH03215720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008365A JPH03215720A (en) 1990-01-19 1990-01-19 Infrared thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008365A JPH03215720A (en) 1990-01-19 1990-01-19 Infrared thermometer

Publications (1)

Publication Number Publication Date
JPH03215720A true JPH03215720A (en) 1991-09-20

Family

ID=11691211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008365A Pending JPH03215720A (en) 1990-01-19 1990-01-19 Infrared thermometer

Country Status (1)

Country Link
JP (1) JPH03215720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008067063A2 (en) * 2006-11-30 2008-06-05 General Electric Company Infrared sensor calibration system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008067063A2 (en) * 2006-11-30 2008-06-05 General Electric Company Infrared sensor calibration system and method
WO2008067063A3 (en) * 2006-11-30 2009-02-12 Gen Electric Infrared sensor calibration system and method
US7582859B2 (en) 2006-11-30 2009-09-01 General Electric Company Infrared sensor calibration system and method

Similar Documents

Publication Publication Date Title
US4919542A (en) Emissivity correction apparatus and method
US5150969A (en) System and method for temperature determination and calibration in a biomedical probe
US6609824B1 (en) Radiation thermometer
JP2603004B2 (en) Temperature measuring device and method for providing temperature signal
US20040057494A1 (en) Ear thermometer with improved temperature coefficient and method of calibration thereof
US4204120A (en) Process and apparatus for the measurement of the factor of infra-red absorption or emission of materials
JPH03215720A (en) Infrared thermometer
JPS63286729A (en) Thermopile detector
JPH03273121A (en) Radiation thermometer
JPS633231A (en) Radiation thermometer
JP2671946B2 (en) Eardrum temperature measuring device
JPH05223632A (en) Calibrating system for light power meter
JPS6155049B2 (en)
JP3733846B2 (en) Correction system control method, thermometer and correction device
JP2001281182A (en) Humidity detector
JPH05288611A (en) Temperature measuring apparatus
JP2861070B2 (en) Infrared imaging device
JPS61207934A (en) Radiation thermometer
JPH07218345A (en) Temperature-measuring device of high-temperature object
JPS6273127A (en) Far infrared temperature detector
JPH09257589A (en) Temperature drift correcting device for infrared ray heat image forming device
JPH06347330A (en) Temperature measuring method and apparatus with infrared sensor
JPH07280650A (en) Radiation thermometer
JPS59116517A (en) Infrared ray temperature measuring device
JPH06137953A (en) Method and apparatus for measuring temperature through infrared sensor and method and equipment for measuring emissivity