JPH05223632A - Calibrating system for light power meter - Google Patents

Calibrating system for light power meter

Info

Publication number
JPH05223632A
JPH05223632A JP2962892A JP2962892A JPH05223632A JP H05223632 A JPH05223632 A JP H05223632A JP 2962892 A JP2962892 A JP 2962892A JP 2962892 A JP2962892 A JP 2962892A JP H05223632 A JPH05223632 A JP H05223632A
Authority
JP
Japan
Prior art keywords
light
optical power
power meter
light source
accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2962892A
Other languages
Japanese (ja)
Inventor
Shigeru Yamada
茂 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2962892A priority Critical patent/JPH05223632A/en
Publication of JPH05223632A publication Critical patent/JPH05223632A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable accurate calibration free from changes in light outputs of a light source by a method wherein two lights divided with a halfmirror are allowed to pass and break simultaneously with a shutter and the luminous flux passed is received with light power meters, the one on the side of a reference device and the other on the side of a device to be inspected. CONSTITUTION:The luminous flux of a laser light radiated from a light source 1 is attenuated down to a certain level with a halfmirror 7 and further, in two directions with a halfmirror 2. Then, the shutters 3 and 4 are opened or closed simultaneously by an indication from a control section body 8 to introduce the luminous flux to a reference device 5 and a device 6 to be inspected and a light power from the light source 1 is measured simultaneously with the reference device 5 and the device 6 to be inspected. The simultaneous opening or closing of the shutters 3 and 4 enables the measurement of the power of the laser light at the simultaneous timing with the reference device 5 and the device 6 to be inspected. In this case, the measurement at the same time allows the removal of instability of the light source free from changes in the light power of the light source 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザ光のパワーを測定
する光パワーメータ校正する光パワーメータ校正システ
ムに関し、更に詳しくは光源の安定性の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical power meter calibration system for calibrating an optical power meter for measuring the power of laser light, and more particularly to improving the stability of a light source.

【0002】[0002]

【従来の技術】この種の光パワーメータ校正システムと
しては図4の構成のものが良く知られている。また、図
5は受光ヘッド部分の詳細を示す図である。
2. Description of the Related Art As an optical power meter calibration system of this type, the configuration shown in FIG. 4 is well known. FIG. 5 is a diagram showing details of the light receiving head portion.

【0003】これらの図において、11はセンサ部Sを
形成する受光体であり、内面に光吸収塗料12が塗布さ
れた筒体13及びヒータ14が埋設された伝熱板15で
構成されている。16,16aは温度差検出素子、17
は熱電冷却素子であり、これらの素子は同等な性能を有
するペルチェ素子で形成され、伝熱板15と基準ジャケ
ット18に挾まれた状態で固定されている。なお、基準
ジャケット18の外周は温度を安定化するために図5の
ように中間ジャケット19と外部ジャケット20で囲ま
れていて、センサ部Sが三重のジャケットで囲まれた受
光ヘッドAとして構成されている。なお、筒体13を含
む伝熱板15の熱容量と基準ジャケット18の熱容量
は、1:1000程度で基準ジャケット18の方が大きくなっ
ている。
In these figures, reference numeral 11 denotes a light receiving body forming the sensor section S, which is composed of a cylindrical body 13 having an inner surface coated with a light absorbing paint 12 and a heat transfer plate 15 having a heater 14 embedded therein. .. 16, 16a are temperature difference detecting elements, 17
Is a thermoelectric cooling element, and these elements are formed of Peltier elements having equivalent performance, and are fixed in a state of being sandwiched between the heat transfer plate 15 and the reference jacket 18. The outer circumference of the reference jacket 18 is surrounded by an intermediate jacket 19 and an outer jacket 20 as shown in FIG. 5 in order to stabilize the temperature, and the sensor section S is constructed as a light receiving head A surrounded by a triple jacket. ing. The heat capacity of the heat transfer plate 15 including the cylindrical body 13 and the heat capacity of the reference jacket 18 are about 1: 1000, and the reference jacket 18 is larger.

【0004】21は熱電冷却素子17に接続された定電
流源である。22は温度差検出素子16,16aからの
出力より等温制御のためのヒータパワーを求めるフィー
ドバックアンプである。このフィードバックアンプ22
の出力は、ヒータ14に印加されると共に、入射した光
パワーを求めるため外部に出力される。尚、フィードバ
ックアンプ22は、プリアンプ23及びPIDアンプ2
4で構成されている。
Reference numeral 21 is a constant current source connected to the thermoelectric cooling element 17. Reference numeral 22 is a feedback amplifier which obtains heater power for isothermal control from the outputs from the temperature difference detecting elements 16 and 16a. This feedback amplifier 22
Is applied to the heater 14 and is output to the outside in order to obtain the incident optical power. The feedback amplifier 22 includes the preamplifier 23 and the PID amplifier 2
It is composed of four.

【0005】上記構成において、測定光が入力されてい
ない場合、基準ジャケット18は室温とされ、ペルチェ
素子からなる熱電冷却素子17には定電流源21から一
定な値IA の電流が常時加えられ、伝熱板15側を常に
冷却している。この場合、基準ジャケット18側は加熱
されることになるが、この基準ジャケット18の熱容量
は大きく、熱電冷却素子17の加熱量は僅かである。従
って、図4に示す装置では、熱電冷却素子17と定電流
源21により、常時受光体21側の温度を低める方向に
作用している。
In the above structure, when the measuring light is not input, the reference jacket 18 is kept at room temperature, and the thermoelectric cooling element 17 composed of the Peltier element is constantly supplied with a constant current IA from the constant current source 21. The heat transfer plate 15 side is always cooled. In this case, the reference jacket 18 side is heated, but the heat capacity of the reference jacket 18 is large and the heating amount of the thermoelectric cooling element 17 is small. Therefore, in the apparatus shown in FIG. 4, the thermoelectric cooling element 17 and the constant current source 21 always act in the direction of lowering the temperature of the light receiving body 21 side.

【0006】一方、温度差検出素子16,16aはこの
温度差(基準ジャケット18と伝熱板15の温度差:n
Vレベル)を検出し、プリアンプ23はその出力を(m
Vレベル)に増幅し、PIDアンプ24に加える。そし
て、PIDアンプ24で所定の演算(この演算は伝熱板
15と基準ジャケット18の温度が速く一致するように
制御するための公知のPID演算)が施される。このP
IDアンプ24の出力はヒータ14に加えられてヒータ
14の温度を上昇させ、温度差検出素子16a,16b
の出力が零になるように制御する。
On the other hand, the temperature difference detecting elements 16 and 16a have this temperature difference (temperature difference between the reference jacket 18 and the heat transfer plate 15: n.
V level), the preamplifier 23 outputs its output (m
V level) and add to the PID amplifier 24. Then, the PID amplifier 24 performs a predetermined calculation (this calculation is a known PID calculation for controlling the temperatures of the heat transfer plate 15 and the reference jacket 18 to quickly match each other). This P
The output of the ID amplifier 24 is applied to the heater 14 to raise the temperature of the heater 14, and the temperature difference detecting elements 16a, 16b
The output of is controlled to be zero.

【0007】従って、図4の装置では、熱電冷却素子1
7と定電流源21の作用により冷却された伝熱板15に
対してPIDアンプ24から電圧(電流I)をヒータ1
4へ加えて伝熱板15を加熱し、受光体11の温度と温
度基準ジャケット18の温度が一致するように制御して
いる。
Therefore, in the apparatus of FIG. 4, the thermoelectric cooling element 1
The voltage (current I) is applied from the PID amplifier 24 to the heat transfer plate 15 cooled by the action of the constant current source 21 and the constant current source 21.
In addition to the above, the heat transfer plate 15 is heated to control the temperature of the light receiving body 11 and the temperature of the temperature reference jacket 18 to be the same.

【0008】このような状態で、測定すべきレーザ光L
aが筒体13の上部から入射されると受光体11が光を
吸収し、その光パワーに応じて温度が上昇する。その熱
は伝熱板15に伝導され、温度平衡状態にあった伝熱板
15と基準ジャケット18間に温度差が発生する。この
温度差を温度差検出素子16a,16bが検出し、PI
Dアンプ24はヒータ14に送出していた電圧値を減少
させる。従って、ヒータ14の温度は低下し、伝熱板1
5と基準ジャケット18の温度は再び一致する。
In such a state, the laser light L to be measured
When a is incident from the upper part of the cylindrical body 13, the light receiving body 11 absorbs light, and the temperature rises according to the light power. The heat is conducted to the heat transfer plate 15, and a temperature difference is generated between the heat transfer plate 15 and the reference jacket 18 which are in a temperature equilibrium state. This temperature difference is detected by the temperature difference detection elements 16a and 16b, and PI
The D amplifier 24 reduces the voltage value sent to the heater 14. Therefore, the temperature of the heater 14 drops, and the heat transfer plate 1
5 and the temperature of the reference jacket 18 again coincide.

【0009】[0009]

【発明が解決しようとする課題】以上のような等温制御
形カロリメータを比較,校正する場合を考える。このよ
うな場合、光源からの光束を2分割し、予め校正された
標準測定用のカロリメータ(標準器)と未だ校正が完了
していない被測定用のカロリメータ(被検器)とで校正
を行う。そして、光源からの光束を受けた2つのカロリ
メータ(標準器と被検器)で、交互に測定を繰り返すこ
とにより、被検器の校正を行うようにしている。
Consider a case where the above isothermal control type calorimeters are compared and calibrated. In such a case, the light flux from the light source is divided into two, and calibration is performed with a pre-calibrated calorimeter for standard measurement (standard instrument) and a calorimeter for measurement (test instrument) that has not been calibrated yet. .. The two calorimeters (standard device and test device) receiving the light flux from the light source alternately repeat the measurement to calibrate the test device.

【0010】このようにして、被検器の校正を行った場
合、光源の安定性が校正精度に大きな影響を与えること
がある。すなわち、標準器で測定を行っている時と、被
検器で測定,校正を行っている時とで、光源の光出力が
変動すると校正精度(測定確度及びリニアリティ)が著
しく低下することになる。
When the device under test is calibrated in this manner, the stability of the light source may greatly affect the calibration accuracy. That is, if the optical output of the light source fluctuates between when the measurement is performed with the standard device and when the measurement and calibration are performed with the device under test, the calibration accuracy (measurement accuracy and linearity) is significantly reduced. ..

【0011】本発明はこのような点に着目してなされた
ものであり、その目的は、正確な校正を行うことが可能
な光パワーメータ校正システムを提供することにある。
The present invention has been made in view of such a point, and an object thereof is to provide an optical power meter calibration system capable of performing accurate calibration.

【0012】[0012]

【課題を解決するための手段】上記課題を解決する本発
明は、標準器となる光パワーメータと被検器となる光パ
ワーメータとを測定することにより被検器側の光パワー
メータの確度及びリニアリティーを測定する光パワーメ
ータ校正システムにおいて、光源からの光を2分割する
光分割手段と、光分割手段により分割された2つの光を
同時に通過/遮断させるシャッタ手段と、シャッタ手段
を通過した光束をそれぞれ受ける標準器側の光パワーメ
ータ及び被検器側の光パワーメータと、標準器側の光パ
ワーメータ及び被検器側の光パワーメータで測定された
光パワーの確度の差E1並びに標準器と被検器とを入れ
替えて測定された光パワーの確度の差E2とを参照し
て、それぞれの確度の差(E1,E2)の和の半分の値
から、被検器の確度を求める制御手段とを有することを
特徴とするものである。
According to the present invention for solving the above-mentioned problems, the accuracy of the optical power meter on the device under test side is measured by measuring the optical power meter as the standard device and the optical power meter as the device under test. And an optical power meter calibration system for measuring linearity, a light splitting means for splitting light from a light source into two, a shutter means for simultaneously passing / blocking two lights split by the light splitting means, and a shutter means for passing the light. The optical power meter on the standard device side and the optical power meter on the test device side that receive the light flux respectively, and the difference E1 in the accuracy of the optical power measured by the optical power meter on the standard device side and the optical power meter on the test device side, and By referring to the difference E2 in the accuracy of the optical power measured by exchanging the standard device and the device under test, the accuracy of the device under test is calculated from the half value of the sum of the differences in accuracy (E1, E2). It is characterized in that a control means for determining.

【0013】[0013]

【作用】本発明において、光分割手段により分割された
光束はシャッタ手段により同時に遮断/通過が制御され
ており、このシャッタ手段を通過した光束を標準器及び
被検器で受けてそれぞれの確度の差を求める。制御手段
はそれぞれの確度の差の和の半分の値から、被検器の確
度を求める。このため、光源の不安定性の影響を受ける
ことがなくなる。
In the present invention, the light beam split by the light splitting means is controlled to be blocked / passed by the shutter means at the same time. The light flux passing through this shutter means is received by the standard device and the device under test, and the respective accuracy of Find the difference. The control means obtains the accuracy of the device under test from the half value of the sum of the differences in accuracy. Therefore, it is not affected by the instability of the light source.

【0014】[0014]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は本発明の一実施例の校正を示す構成
図である。この図において、1はHeNeレーザ等の光
源、2は反射率及び透過率が可変のハーフミラー、3は
光源1からの光束を透過/遮断するための第一のシャッ
タ、4は光源1からの光束を透過/遮断するための第二
のシャッタ、5は標準器としてのカロリメータ、6は被
検器としてのカロリメータ、7は光源1からの光パワー
を制御する可変式のハーフミラー、8はカロリメータを
制御する制御部本体である。また、図2はシャッタ3及
び4の開閉タイミングを示したタイミング図、図3はハ
ーフミラー2での光パワーの分割比率を示す説明図であ
る。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the calibration of one embodiment of the present invention. In this figure, 1 is a light source such as a HeNe laser, 2 is a half mirror whose reflectance and transmittance are variable, 3 is a first shutter for transmitting / blocking the light flux from the light source 1, and 4 is a light source from the light source 1. Second shutter for transmitting / blocking the light flux, 5 is a calorimeter as a standard device, 6 is a calorimeter as a device under test, 7 is a variable half mirror for controlling the optical power from the light source 1, and 8 is a calorimeter. It is a control unit main body for controlling. 2 is a timing chart showing the opening / closing timing of the shutters 3 and 4, and FIG. 3 is an explanatory diagram showing the division ratio of the optical power in the half mirror 2.

【0015】このように構成した本実施例装置の動作は
以下のとおりである。光源1から照射されたレーザ光の
光束はハーフミラー7によりあるレベルまで減衰され、
更にハーフミラー2で2方向に分割される。この分割の
際に光量が1:1になるように予め設定しておく。そし
て、制御部本体8からの指示によりシャッタ3及び4を
同時に開閉し、光束を標準器5及び被検器6に導く。そ
して、標準器5及び被検器6で同時に光源1からの光パ
ワーを測定する。
The operation of the apparatus of this embodiment thus constructed is as follows. The luminous flux of the laser light emitted from the light source 1 is attenuated to a certain level by the half mirror 7,
Further, it is divided into two directions by the half mirror 2. It is set in advance so that the light quantity becomes 1: 1 during this division. Then, the shutters 3 and 4 are simultaneously opened and closed according to an instruction from the control unit main body 8 to guide the luminous flux to the standard device 5 and the device under test 6. Then, the optical power from the light source 1 is simultaneously measured by the standard device 5 and the device under test 6.

【0016】そして、図2に示すように、シャッタ3及
び4を同時に開閉することで、標準器5及び被検器6で
同時タイミングのレーザ光のパワーを測定することがで
きる。この場合、光源1の光パワーに変動があっても、
同一時刻の測定であるために、光源の不安定性を除去す
ることができる。
As shown in FIG. 2, by simultaneously opening and closing the shutters 3 and 4, the power of the laser light at the same timing can be measured by the standard device 5 and the device under test 6. In this case, even if the optical power of the light source 1 varies,
Since the measurements are made at the same time, the instability of the light source can be eliminated.

【0017】標準器5と被検器6との確度の差εには、
2分割された光束のパワーの不均等の影響が含まれてい
る。そこで、この測定結果からεを正確に求めるには、
標準器5と被検器6との場所を交換して再度測定する必
要がある。ここで、ハーフミラー2により分割された光
パワーが、図3に示すように、90度反射方向にP+Δ
P[mW]、直進方向にP[mW]であるとする。1回
目の測定で得られた標準器と被検器との測定値をP,p
1、位置交換後の2回目の測定で得られた測定値をP+
ΔP,p2とする。
The difference ε in accuracy between the standard device 5 and the device under test 6 is
The influence of the non-uniformity of the power of the light flux divided into two is included. Therefore, to obtain ε accurately from this measurement result,
It is necessary to exchange the locations of the standard device 5 and the device under test 6 and measure again. Here, the optical power split by the half mirror 2 is P + Δ in the 90 ° reflection direction as shown in FIG.
It is assumed that P [mW] and P [mW] in the straight traveling direction. The measured values of the standard device and the device under test obtained in the first measurement are P and p.
1, P + the measured value obtained in the second measurement after the position exchange
Let ΔP, p2.

【0018】この場合の1回目の(被検器)−(標準
器)の差E1は、 E1=p1−P、 この場合の2回目の(被検器)−(標準器)の差E2
は、 E2=p2+δ(P/(2P+ΔP))−P−ΔP−δ
((P+ΔP)/(2PΔP)) である。ここで、δ
の項は光パワーの1回目と2回目との間の変動であり、
相殺されてほぼ無視できる値になる。求めたいε(ε=
(被検器)−(標準器))の値は、 1回目:ε=p1−P 2回目:ε=p2−P−ΔP で表せるから、 ε=1/2(p1+p2−ΔP−2P) =1/2(E1+E2) となる。すなわち、1回目と
2回目との確度の差の和を2で割ることにより、標準器
5と被検器6との確度の差εを求めることができる。
In this case, the difference (E1) between the (test device) and the (standard device) at the first time is: E1 = p1-P, and the difference E2 between the (test device) and the (standard device) at the second time
Is E2 = p2 + δ (P / (2P + ΔP)) − P−ΔP−δ
((P + ΔP) / (2PΔP)). Where δ
The term is the fluctuation of the optical power between the first and second times,
These values are offset and become almost negligible. I want to obtain ε (ε =
The value of (test device)-(standard device)) can be represented by the first time: ε = p1-P, the second time: ε = p2-P-ΔP, and thus ε = 1/2 (p1 + p2-ΔP-2P) = It becomes 1/2 (E1 + E2). That is, the accuracy difference ε between the standard device 5 and the device under test 6 can be obtained by dividing the sum of the accuracy differences between the first and second times by 2.

【0019】このように、制御部本体8が以上のような
手順に従って演算を行い、確度の差εを求める。これに
より、光源の不安定性の影響を受けることなく精度の高
い測定を行うことができる。
In this way, the control unit main body 8 performs the calculation in accordance with the above procedure to obtain the accuracy difference ε. As a result, highly accurate measurement can be performed without being affected by the instability of the light source.

【0020】以上のように本実施例によれば、光パワー
測定装置の確度とリニアリティの測定をする際に、光源
の不安定性の影響を受けることが殆ど無くなり、精度を
向上させることが可能になる。
As described above, according to the present embodiment, in measuring the accuracy and linearity of the optical power measuring device, the influence of the instability of the light source is almost eliminated, and the accuracy can be improved. Become.

【0021】[0021]

【発明の効果】以上詳細に説明したように、本発明によ
れば、光源の光出力が変動する様な場合であっても、正
確な校正を行うことが可能な光パワーメータ校正システ
ムを提供することができる。
As described in detail above, according to the present invention, there is provided an optical power meter calibration system capable of performing accurate calibration even when the optical output of a light source fluctuates. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す構成図である。FIG. 1 is a configuration diagram showing a configuration of an embodiment of the present invention.

【図2】本発明の一実施例にかかる装置の測定状態を示
す説明図である。
FIG. 2 is an explanatory diagram showing a measurement state of the device according to one example of the present invention.

【図3】本発明の一実施例にかかる装置の測定状態を示
す説明図である。
FIG. 3 is an explanatory diagram showing a measurement state of the device according to one example of the present invention.

【図4】従来の光パワーメータの構成を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a configuration of a conventional optical power meter.

【図5】従来の光パワーメータの主要部の構成を示す構
成図である。
FIG. 5 is a configuration diagram showing a configuration of a main part of a conventional optical power meter.

【符号の説明】 1 光源 2 ハーフミラー 3,4 シャッタ 5 標準器 6 被検器 7 ハーフミラー 8 制御部本体[Explanation of reference numerals] 1 light source 2 half mirror 3,4 shutter 5 standard device 6 test device 7 half mirror 8 control unit main body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 標準器となる光パワーメータ(5)と被
検器となる光パワーメータ(6)とを測定することによ
り被検器側の光パワーメータ(6)の確度及びリニアリ
ティーを測定する光パワーメータ校正システムにおい
て、 光源(1)からの光を2分割する光分割手段(2)と、 光分割手段(2)により分割された2つの光を同時に通
過/遮断させるシャッタ手段(3,4)と、 シャッタ手段(3,4)を通過した光束をそれぞれ受け
る標準器側の光パワーメータ(5)及び被検器側の光パ
ワーメータ(6)と、 標準器側の光パワーメータ(5)及び被検器側の光パワ
ーメータ(6)で測定された光パワーの確度の差E1並
びに標準器と被検器とを入れ替えて測定された光パワー
の確度の差E2とを参照して、それぞれの確度の差(E
1,E2)の和の半分の値から、被検器の確度を求める
制御手段(8)とを有することを特徴とする光パワーメ
ータ校正システム。
1. The accuracy and linearity of the optical power meter (6) on the device under test are measured by measuring the optical power meter (5) as a standard device and the optical power meter (6) as a device under test. In the optical power meter calibration system, the light splitting means (2) for splitting the light from the light source (1) into two and the shutter means (3) for simultaneously passing / blocking the two lights split by the light splitting means (2). , 4), the optical power meter (5) on the standard device side and the optical power meter (6) on the test device side, which receive the light fluxes passing through the shutter means (3, 4), respectively, and the optical power meter on the standard device side. See (5) and the difference E1 in the accuracy of the optical power measured by the optical power meter (6) on the side of the device under test, and the difference E2 in the accuracy of the optical power measured by replacing the standard device and the device under test. Then, the difference in accuracy (E
1. An optical power meter calibration system, comprising: a control means (8) for obtaining the accuracy of the device under test from the half value of the sum of (1, E2).
JP2962892A 1992-02-17 1992-02-17 Calibrating system for light power meter Pending JPH05223632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2962892A JPH05223632A (en) 1992-02-17 1992-02-17 Calibrating system for light power meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2962892A JPH05223632A (en) 1992-02-17 1992-02-17 Calibrating system for light power meter

Publications (1)

Publication Number Publication Date
JPH05223632A true JPH05223632A (en) 1993-08-31

Family

ID=12281356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2962892A Pending JPH05223632A (en) 1992-02-17 1992-02-17 Calibrating system for light power meter

Country Status (1)

Country Link
JP (1) JPH05223632A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818623A (en) * 2012-08-31 2012-12-12 广东威创视讯科技股份有限公司 Method and system for calibrating brightness and chrominance meter
CN102890423A (en) * 2011-07-20 2013-01-23 上海微电子装备有限公司 Calibration device and calibration method for photoelectric detector
RU2687303C1 (en) * 2018-09-28 2019-05-13 Федеральное государственное унитарное предприятие "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОПТИКО-ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ" (ФГУП "ВНИИОФИ") Method of calibration / verification of laser radiation power measuring devices
RU2757471C1 (en) * 2021-01-28 2021-10-18 Федеральное государственное унитарное предприятие "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОПТИКО-ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ" (ФГУП "ВНИИОФИ") Method for calibration/verification of the laser radiation power measuring instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890423A (en) * 2011-07-20 2013-01-23 上海微电子装备有限公司 Calibration device and calibration method for photoelectric detector
CN102818623A (en) * 2012-08-31 2012-12-12 广东威创视讯科技股份有限公司 Method and system for calibrating brightness and chrominance meter
RU2687303C1 (en) * 2018-09-28 2019-05-13 Федеральное государственное унитарное предприятие "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОПТИКО-ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ" (ФГУП "ВНИИОФИ") Method of calibration / verification of laser radiation power measuring devices
RU2757471C1 (en) * 2021-01-28 2021-10-18 Федеральное государственное унитарное предприятие "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОПТИКО-ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ" (ФГУП "ВНИИОФИ") Method for calibration/verification of the laser radiation power measuring instrument

Similar Documents

Publication Publication Date Title
US3715923A (en) Temperature measuring method and apparatus
US8011827B1 (en) Thermally compensated dual-probe fluorescence decay rate temperature sensor
West et al. A reference calorimeter for laser energy measurements
Hernandez et al. Experimental validation of a pyroreflectometric method to determine the true temperature on opaque surface without hampering reflections
US2658390A (en) Radiation pyrometry
US2846882A (en) Apparatus for measuring and/or controlling surface temperatures under non-black-body conditions
JPH05223632A (en) Calibrating system for light power meter
US4185497A (en) Adiabatic laser calorimeter
Li et al. Nonlinearity measurements of high-power laser detectors at NIST
JP3202183B2 (en) Scale and length measurement method using laser light
Decker et al. The design and operation of a precise, high sensitivity adiabatic laser calorimeter for window and mirror material evaluation
JPH0676922B2 (en) Radiation temperature measuring device
US20230304871A1 (en) Temperature measurement system and method using multimode of an optical resonator
US3376748A (en) Method and apparatus for radiation pyrometry
JP2664088B2 (en) Thermal change temperature measurement method
JPS5847654B2 (en) Hannokongobutsuno Kiyuukodoo
US20220364930A1 (en) Radiation thermometer, temperature measurement method, and temperature measurement program
JPH03215720A (en) Infrared thermometer
JPH0112188Y2 (en)
JPH0876857A (en) Temperature control method for thermostatic chamber of ic handler
SU748212A1 (en) Apparatus for determining temperature-dependence of substance optical characteristics
JP2004157009A (en) Balanced type radiation temperature / emissivity measuring apparatus and method
JPH0392734A (en) Measuring method for environment temperature by use of optical fiber sensor
SU473906A1 (en) Infrared radiometer
JPH04301728A (en) Isothermal control type calorimeter