JPH0676922B2 - Radiation temperature measuring device - Google Patents

Radiation temperature measuring device

Info

Publication number
JPH0676922B2
JPH0676922B2 JP27397887A JP27397887A JPH0676922B2 JP H0676922 B2 JPH0676922 B2 JP H0676922B2 JP 27397887 A JP27397887 A JP 27397887A JP 27397887 A JP27397887 A JP 27397887A JP H0676922 B2 JPH0676922 B2 JP H0676922B2
Authority
JP
Japan
Prior art keywords
heating block
hole
radiant energy
temperature
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27397887A
Other languages
Japanese (ja)
Other versions
JPH01114727A (en
Inventor
敏彦 井手
利房 鈴木
孝雄 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Chino Corp
Original Assignee
Fujitsu Ltd
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Chino Corp filed Critical Fujitsu Ltd
Priority to JP27397887A priority Critical patent/JPH0676922B2/en
Publication of JPH01114727A publication Critical patent/JPH01114727A/en
Publication of JPH0676922B2 publication Critical patent/JPH0676922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、被測定物からの放射エネルギーを利用して
測温する放射温度測定装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a radiation temperature measuring device that measures temperature by using radiation energy from an object to be measured.

[従来の技術] シリコン・ウエハ等の被測定物を各種処理中に、その表
面の温度を測定することは、プロセス上重要な事項であ
る。
[Prior Art] Measuring the temperature of the surface of an object to be measured such as a silicon wafer during various processes is an important matter in the process.

従来、熱電対等を用いて、ウエハ載置台の温度を測定し
て、間接的に測温したり、あるいは、放射温度計を用い
て、ウエハ表面温度を測定することを考えられている。
Conventionally, it has been considered that the temperature of the wafer mounting table is measured indirectly by using a thermocouple or the like, or the surface temperature of the wafer is measured by using a radiation thermometer.

[この発明が解決しようとする問題点] 一般に、直接法が望ましいのであるが、測定条中等によ
り困難な場合が多い。このため、ウエハ表面の温度を放
射温度計で測定しようとすると、表面は、CVD等の各種
処理が行われるため、表面の凹凸、付着物が変化する
等、状態が変化し、放射率は変動し、正しい測温は困難
である。
[Problems to be Solved by the Invention] Generally, the direct method is desirable, but it is often difficult due to the measurement conditions. For this reason, if you try to measure the temperature of the wafer surface with a radiation thermometer, the surface undergoes various processes such as CVD, so the state changes, such as surface irregularities and deposits, and the emissivity changes. However, correct temperature measurement is difficult.

この発明の目的は、以上の点に鑑み、シリコン・ウエハ
等の被測定物の温度を放射率の影響を除去して、測定で
きるようにした放射温度測定装置を提供することであ
る。
In view of the above points, an object of the present invention is to provide a radiation temperature measuring device capable of measuring the temperature of an object to be measured such as a silicon wafer by removing the influence of emissivity.

[問題点を解決するための手段] この発明は、貫通孔が形成された加熱ブロックに、被測
定物が載置された直後のその裏面からの放射エネルギー
に基き放射率を演算し、以後この放射率を用いて被測定
物の温度を演算手段で演算するようにした放射温度測定
装置である。
[Means for Solving the Problems] The present invention calculates the emissivity based on the radiant energy from the back surface of the heating block immediately after the object to be measured is placed on the heating block having the through holes, and thereafter, This is a radiation temperature measuring device in which the temperature of the object to be measured is calculated by the calculating means using the emissivity.

[実施例] 第1図は、この発明の一実施例を示す構成説明図であ
る。
[Embodiment] FIG. 1 is a structural explanatory view showing an embodiment of the present invention.

図において、1は、シリコン・ウエハ等の被測定物で、
加熱ブロック2の貫通孔2aの一方の開口をおおうように
載置されている。加熱ブロック2の他方の開口には、貫
通孔2aを通して被測定物1の裏面からの放射エネルギー
を検出する検出器3が設けられ、この検出器3の出力と
加熱ブロック2の温度を測定する熱電対等の温度センサ
4の出力とは演算手段5に供給され、所定の演算が行わ
れる。なお、被測定物1は、図示しない適当な環境中に
おかれ、加熱ブロック2で必要な加熱が行われ各種処理
がなされるが、被測定物1の裏面の放射率は、測定期間
中ほぼ一定である。
In the figure, 1 is an object to be measured such as a silicon wafer,
The heating block 2 is placed so as to cover one opening of the through hole 2a. The other opening of the heating block 2 is provided with a detector 3 for detecting radiant energy from the back surface of the DUT 1 through the through hole 2a, and a thermoelectric device for measuring the output of the detector 3 and the temperature of the heating block 2. The output of the comparable temperature sensor 4 is supplied to the calculation means 5 and a predetermined calculation is performed. Note that the DUT 1 is placed in an appropriate environment (not shown) and is subjected to necessary heating in the heating block 2 and various treatments are performed, but the emissivity of the back surface of the DUT 1 is almost the same during the measurement period. It is constant.

ここで、一般に被測定物1を加熱ブロック2に載置した
とき、検出器3の出力Eは次式となる。
Here, in general, when the DUT 1 is placed on the heating block 2, the output E of the detector 3 is given by the following equation.

E=εL(λ、T)+(1−ε)L(λ、T′)(1) ここで、被測定物1の放射率をε、温度をT、加熱ブロ
ック2の温度をT′、温度T、測定波長γのときの放射
エネルギーをL(λ、T)とした。
E = εL (λ, T) + (1−ε) L (λ, T ′) (1) Here, the emissivity of the DUT 1 is ε, the temperature is T, the temperature of the heating block 2 is T ′, The radiant energy at temperature T and measurement wavelength γ was L (λ, T).

つまり、(1)式第1項は被測定物1からの放射エネル
ギーの寄与分、第2項は、加熱ブロック2の貫通孔2aの
内壁からの放射エネルギーが被測定物1の裏面で反射し
たものの寄与分である。
That is, the first term in the equation (1) is the contribution of the radiant energy from the DUT 1, and the second term is the radiant energy from the inner wall of the through hole 2a of the heating block 2 reflected on the back surface of the DUT 1. It is the contribution of things.

被測定物1を加熱ブロック2に載置した直後、被測定物
1は、まだ加熱されていないため、被測定物1の温度T
は、加熱ブロック2の温度T′より十分小さいため、放
射エネルギーL(λ、T)は、L(λ、T′)より十分
小さく、(1)式第1項は無視でき、このときの検出器
3の出力をE0とすれば、次式が成り立つ。
Immediately after placing the DUT 1 on the heating block 2, the DUT 1 has not been heated yet, so the temperature T of the DUT 1 is
Is sufficiently lower than the temperature T ′ of the heating block 2, the radiant energy L (λ, T ′) is sufficiently smaller than L (λ, T ′), and the first term in the equation (1) can be ignored, and the detection at this time is performed. If the output of the container 3 is E 0 , the following equation holds.

E0=(1−ε)・L(λ、T′) (2) これより ε=1−E0/L(λ、T′) (3) となる。(3)式の右辺中、E0は検出器3の出力、L
(λ、T′)は、加熱ブロックT′の温度から求まるの
で、放射率εを求めることができる。
E 0 = (1−ε) · L (λ, T ′) (2) From this, ε = 1−E 0 / L (λ, T ′) (3) In the right side of the equation (3), E 0 is the output of the detector 3 and L
Since (λ, T ′) is obtained from the temperature of the heating block T ′, the emissivity ε can be obtained.

その後は、この放射率εを用いて(1)式から温度Tを
求めることができる。つまり、検出器3の出力Eは測定
で求まり、L(λ、T′)も温度センサ4の出力T′か
ら換算して求まり、放射率εも今述べたように求まって
いるので、L(λ、T)から温度Tが求まる。これらの
換算は、演算手段5で実行される。
After that, the temperature T can be obtained from the equation (1) using this emissivity ε. That is, the output E of the detector 3 is obtained by measurement, L (λ, T ′) is also obtained by converting from the output T ′ of the temperature sensor 4, and the emissivity ε is obtained as described above, so L ( The temperature T can be obtained from λ, T). These conversions are executed by the calculation means 5.

第2図は、この発明の他の一実施例を示す構成説明図で
ある。
FIG. 2 is a structural explanatory view showing another embodiment of the present invention.

図において、加熱ブロック2の貫通孔2aの近くに平行し
て先端が閉じた補助孔2bを形成し、もう1つの検出器3a
で、加熱ブロック2の温度T′の放射エネルギーL
(ε、T′)を直接検出し、(1)式に代入し、同様に
して、被測定物1の温度Tを求めることができる。な
お、適当な移動手段または、光路変更手段を用いて、1
個の検出器3に貫通孔2a、補助光2bの放射エネルギーを
交互に入射させるようにしてもよい。
In the figure, an auxiliary hole 2b having a closed end is formed in parallel with the through hole 2a of the heating block 2 and another detector 3a is formed.
And the radiant energy L at the temperature T ′ of the heating block 2
The temperature T of the DUT 1 can be obtained in the same manner by directly detecting (ε, T ′) and substituting it in the equation (1). In addition, by using an appropriate moving means or optical path changing means,
The radiant energy of the through hole 2a and the radiant energy of the auxiliary light 2b may be alternately incident on the individual detectors 3.

このように、補助孔2bを用いて、直接L(λ、T′)を
測定しているので、異種温度計を用いたときと比べて、
変換誤差は少く、(1)式のベース分としての第2項の
測定精度が向上し、より高精度の測温ができる。また、
1台の検出器3を用い、同一の光学系、測定系を用いる
ことにより、ドリフト等による誤差も軽減できる。つま
り、測定下限温度を広げようとすると、加熱ブロック2
の温度T′によるベース分の割合が増加するため、この
温度T′の測定精度が本方式の測定精度に大きくきいて
くるため、直接L(λ、T′)を測定するようにした。
As described above, since L (λ, T ′) is directly measured using the auxiliary hole 2b, compared to the case where a different thermometer is used,
The conversion error is small, the measurement accuracy of the second term as the base component of the equation (1) is improved, and more accurate temperature measurement can be performed. Also,
By using one detector 3 and using the same optical system and measurement system, errors due to drift and the like can be reduced. In other words, if you try to increase the lower limit of measurement temperature, the heating block 2
Since the proportion of the base component due to the temperature T'increases, the measurement accuracy of this temperature T'has a great influence on the measurement accuracy of this method, so that L (λ, T ') is directly measured.

第3図は、他の一実施例を示す構成説明図である。FIG. 3 is a configuration explanatory view showing another embodiment.

図において、加熱ブロック2の均熱性を保つため、比較
的小径の貫通孔2a、補助孔2bには、サファイアロッド、
石英ロッ、ガラスロッド、あるいは光ファイバ等の導光
手段6a、6bが設けられ、各放射エネルギーを、検出器3
に導き、第2図と同様な測温が行われる。このとき、図
示のように、導光手段6a、6bの端部は、互いに90度の角
度に配置され、切欠7aを有し表面が鏡面7bとされ、モー
タMで回転するチョッパのような光路の切換手段7によ
り、導光手段6a、6bの放射エネルギーは交互に検出器3
に入射し、演算手段で第2図と様な演算が行われる。
In the figure, in order to maintain the uniform heat distribution of the heating block 2, a sapphire rod,
Light guide means 6a, 6b such as a quartz rod, a glass rod, or an optical fiber is provided, and each radiant energy is detected by the detector 3
Then, the same temperature measurement as in FIG. 2 is performed. At this time, as shown in the drawing, the end portions of the light guide means 6a and 6b are arranged at an angle of 90 degrees with each other, have a notch 7a and have a mirror surface 7b, and an optical path like a chopper rotated by a motor M. The radiant energy of the light guiding means 6a, 6b is alternately changed by the switching means 7 of the detector 3
Then, the calculation means performs the calculation as shown in FIG.

チョッパのような切換手段7の切欠7aが導光手段6a、6b
間にくると導光手段6aからの放射エネルギーが検出器3
に入射し、鏡面7bがくると、導光手段6bの放射エネルギ
ーが反射して検出器3に入射する。
The notch 7a of the switching means 7 such as a chopper has the light guiding means 6a, 6b.
When it comes in between, the radiant energy from the light guiding means 6a is detected by the detector 3
Then, when the mirror surface 7b comes in, the radiant energy of the light guide means 6b is reflected and enters the detector 3.

[発明の効果] 以上述べたように、この発明は、加熱ブロックの貫通孔
に被測定物を載置させ、その裏面の放射エネルギーを利
用して、放射率、温度を測定しているので、被測定物の
一定した放射率を用いて、安定に、高精度に、シリコン
・ウエハのような被測定物の測温が可能となる。また、
補助孔、導光手段を用いることにより、よりいっそう高
精度、高信頼性の測温が可能となる。
[Effects of the Invention] As described above, according to the present invention, the object to be measured is placed in the through hole of the heating block, and the emissivity and temperature are measured by utilizing the radiant energy on the back surface thereof. Using the constant emissivity of the measured object, the temperature of the measured object such as a silicon wafer can be stably and accurately measured. Also,
By using the auxiliary hole and the light guiding means, it is possible to measure temperature with higher accuracy and reliability.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図、第3図は、この発明の一実施例を示す
構成説明図である。 1……被測定物、2……加熱ブロック、2a……貫通孔、
2b……補助孔、3、3a……検出器、4……温度センサ、
5……演算手段、6a、6b……導光手段、7……切換手
段、7a……切欠、7b……鏡面
FIG. 1, FIG. 2 and FIG. 3 are configuration explanatory views showing an embodiment of the present invention. 1 ... DUT, 2 ... Heating block, 2a ... Through hole,
2b ... Auxiliary hole 3,3a ... Detector, 4 ... Temperature sensor,
5 ... Computing means, 6a, 6b ... Light guiding means, 7 ... Switching means, 7a ... Notch, 7b ... Mirror surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】貫通孔が形成された加熱ブロックと、この
加熱ブロックの貫通孔をおおうよう設けられた被測定物
と、加熱ブロックの貫通孔を通して被測定物の裏面から
の放射エネルギーを検出する検出器と、被測定物を加熱
ブロックに載置した直後の検出器の出力および加熱ブロ
ックの温度またはこの温度に対応した放射エネルギーと
から被測定物の放射率を演算し、以後この放射率を用い
て被測定物の温度を測定する演算手段とを備えたことを
特徴とする放射温度測定装置。
1. A heating block in which a through hole is formed, an object to be measured provided so as to cover the through hole of the heating block, and radiant energy from the back surface of the object to be measured is detected through the through hole of the heating block. The emissivity of the DUT is calculated from the detector and the output of the detector immediately after placing the DUT on the heating block and the temperature of the heating block or the radiant energy corresponding to this temperature. A radiation temperature measuring device, comprising: an arithmetic means for measuring the temperature of an object to be measured.
【請求項2】前記加熱ブロックの貫通孔の近くに加熱ブ
ロックの温度に相当する放射エネルギーを検出するため
の先端が閉じた補助孔を形成し、この補助孔からの放射
エネルギーを検出器で検出するようにしたことを特徴と
する特許請求の範囲第1項記載の放射温度測定装置。
2. An auxiliary hole having a closed tip for detecting radiant energy corresponding to the temperature of the heating block is formed near the through hole of the heating block, and the radiant energy from the auxiliary hole is detected by a detector. The radiation temperature measuring device according to claim 1, wherein
【請求項3】前記加熱ブロックの貫通孔または補助孔か
らの放射エネルギーを、サファイアロッド、石英ロッ
ド、ガラスロッド、または光ファイバ等の導光手段を用
いて検出器に導くことを特徴とする特許請求の範囲第1
項または第2項記載の放射温度測定装置。
3. A radiant energy from a through hole or an auxiliary hole of the heating block is guided to a detector by using a light guiding means such as a sapphire rod, a quartz rod, a glass rod, or an optical fiber. Claim 1st
The radiation temperature measuring device according to item 2 or item 3.
【請求項4】前記加熱ブロックの貫通孔からの放射エネ
ルギーと、前記補助孔からの放射エネルギーとを、切換
手段により切換えて1個の検出器に入射させることを特
徴とする特許請求の範囲第2項または第3項記載の放射
温度測定装置。
4. The radiant energy from the through hole of the heating block and the radiant energy from the auxiliary hole are switched by the switching means to be incident on one detector. The radiation temperature measuring device according to item 2 or 3.
【請求項5】被測定物として、シリコン・ウエハを用い
たことを特徴とする特許請求の範囲第1項から第4項記
載の放射温度測定装置。
5. The radiation temperature measuring device according to claim 1, wherein a silicon wafer is used as the object to be measured.
JP27397887A 1987-10-28 1987-10-28 Radiation temperature measuring device Expired - Fee Related JPH0676922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27397887A JPH0676922B2 (en) 1987-10-28 1987-10-28 Radiation temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27397887A JPH0676922B2 (en) 1987-10-28 1987-10-28 Radiation temperature measuring device

Publications (2)

Publication Number Publication Date
JPH01114727A JPH01114727A (en) 1989-05-08
JPH0676922B2 true JPH0676922B2 (en) 1994-09-28

Family

ID=17535227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27397887A Expired - Fee Related JPH0676922B2 (en) 1987-10-28 1987-10-28 Radiation temperature measuring device

Country Status (1)

Country Link
JP (1) JPH0676922B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147498A (en) * 1990-04-09 1992-09-15 Anelva Corporation Apparatus for controlling temperature in the processing of a substrate
JP2001522141A (en) * 1997-11-03 2001-11-13 エーエスエム アメリカ インコーポレイテッド Wafer processing method using low mass support
US6596973B1 (en) 2002-03-07 2003-07-22 Asm America, Inc. Pyrometer calibrated wafer temperature estimator
US6818864B2 (en) 2002-08-09 2004-11-16 Asm America, Inc. LED heat lamp arrays for CVD heating
JP4275723B2 (en) 2007-07-09 2009-06-10 花王株式会社 Surfactant composition
US9885123B2 (en) 2011-03-16 2018-02-06 Asm America, Inc. Rapid bake of semiconductor substrate with upper linear heating elements perpendicular to horizontal gas flow

Also Published As

Publication number Publication date
JPH01114727A (en) 1989-05-08

Similar Documents

Publication Publication Date Title
JP4128590B2 (en) Self-calibrating temperature probe
KR101590389B1 (en) Rotating-element spectroscopic ellipsometer and method for measurement precision prediction of rotating-element spectroscopic ellipsometer, and recording medium storing program for executing the same, and recording medium storing program for executing the same
JPH06323915A (en) Method of thermometry for material body
CN102889934A (en) Method for measuring temperature in real time
JP7274512B2 (en) Method and apparatus for measuring temperature
US11280686B2 (en) Temperature measurement using etalons
JPH0676922B2 (en) Radiation temperature measuring device
RU2083961C1 (en) Method of measurement of temperature and emissivity of surface
Ishii et al. Fourier transform spectrometer for thermal-infrared emissivity measurements near room temperatures
Fiory et al. Optical Fiber Pyrometry with in-Situ Detection of Wafer Radiance and Emittance—Accufiber's Ripple Method
JPS63286729A (en) Thermopile detector
Wangmaneerat et al. Quantitative infrared emission spectroscopy of phosphosilicate glass on silicon wafers using multivariate calibration
Dai et al. Peak-wavelength method for temperature measurement
Lehnert et al. In situ spectroscopic ellipsometry for advanced process control in vertical furnaces
JP2006090978A (en) Radiation temperature measuring method, radiation temperature indicator and substrate processing apparatus
JPH0469531A (en) Temperature measuring method by radiation thermometer
CZ306316B6 (en) Method of measuring total emissivity of material surfaces
Sturm et al. Low Temperature (≥ 400° C) Silicon Pyrometry AT 1.1 μm with Emissivity Correction
Taubert et al. Radiometric characterization of a high temperature blackbody in the visible and near infrared
RU2087880C1 (en) Method of contactless measurement of temperature of object
KR0151150B1 (en) Indirect temperature-measurement of films formed on semiconductor wafers
Midyk et al. Methods of measuring and controlling temperature and the possibility of their involvement for the formation of temperature subsystems
JPH08122155A (en) Radiation temperature measurement method for temperature object surface
Xue et al. Uncertainty model and estimation for emissivity of a steel plate with a multi-wavelength pyrometer
JPS6184528A (en) Temperature measuring instrument

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees