JPH0469531A - Temperature measuring method by radiation thermometer - Google Patents

Temperature measuring method by radiation thermometer

Info

Publication number
JPH0469531A
JPH0469531A JP2182489A JP18248990A JPH0469531A JP H0469531 A JPH0469531 A JP H0469531A JP 2182489 A JP2182489 A JP 2182489A JP 18248990 A JP18248990 A JP 18248990A JP H0469531 A JPH0469531 A JP H0469531A
Authority
JP
Japan
Prior art keywords
temperature
measured
wafer
radiation thermometer
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2182489A
Other languages
Japanese (ja)
Inventor
Minoru Yazawa
矢沢 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2182489A priority Critical patent/JPH0469531A/en
Publication of JPH0469531A publication Critical patent/JPH0469531A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correct temperature with the output of the radiation thermometer and temperature conversion data by detecting the temperature, etc., of a body to be processed by a temperature measuring element and reading out the temperature conversion data which is characteristic to the body to be measured, etc., according to the detection data. CONSTITUTION:A wafer 10 to be measured is mounted on a supporting pin 12. Before this wafer 10 is processed, the wafer 10 is heated by a heating lamp 14 and placed in a heating state where the radiation thermometer 20 obtains an output A shown in figure 2. After this heat treatment, the output of a thermocouple 30 is monitored. Namely, the temperature detected by the thermocouple 20 is substituted in a function regarding an inclination S and an offset F which is stored in a table memory 32 to know an inclination S and an offset F which are characteristic to the top surface of the wafer. Thus, the emissivity in the reverse surface state of the wafer 10 to be measured is specified.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、放射温度計による温度測定方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a temperature measurement method using a radiation thermometer.

(従来の技術) 近年、半導体の進歩は著しいものがあり、これに伴って
半導体を製造する加工プロセスも、複雑かつ精密な制御
が要求されている。特に、加工プロセスを実行している
際のウェハ温度は、加工プロセスの結果に重要な影響を
与える。例えば、CVD装置では、半導体ウェハの表面
温度が成膜条件と密接な関係にあり、ウェハ温度を正確
に測定し、これに基づいて温度の正確な制御を行なうこ
とが、緻密な制御を行なうことで不可欠となっている。
(Prior Art) In recent years, semiconductors have made remarkable progress, and along with this, processing processes for manufacturing semiconductors are also required to be controlled with complexity and precision. In particular, the wafer temperature during the fabrication process has an important effect on the outcome of the fabrication process. For example, in CVD equipment, the surface temperature of a semiconductor wafer is closely related to the film formation conditions, and accurate measurement of the wafer temperature and accurate control of the temperature based on this is the key to precise control. It has become indispensable.

このようなウェハ温度の測定について、従来より熱雷対
を用いたものと、放射温度計を用いたものとが知られて
いる。放射温度計を用いた測定方法では、熱電対のよう
に被測定体であるウェハに直接接触させずに温度測定を
行える点と応答が速い点で優れている。
Conventionally, methods using a thermal lightning pair and methods using a radiation thermometer are known for measuring the wafer temperature. The measurement method using a radiation thermometer is superior in that temperature can be measured without direct contact with the wafer, which is the object to be measured, unlike thermocouples, and in that it has a quick response.

放射温度計の原理は、全ての物体がその温度において赤
外線を放射しており、この放射された赤外線を測定する
ことで被測定体の温度を知るものである。このような放
射温度計の最大の問題点としては、被測定体の放射面の
状態により、放射率か変化するということである。例え
ば半導体ウェハを例に挙げれば、ウェハ裏面の荒さ状態
により、あるいは裏面に形成されている膜厚により、同
一温度の場合でも放射率が変化してしまうということで
ある。従って、放射温度計の出力だけでは正確な温度測
定を行うことが出来ず、被測定体の放射面での状態に応
じて、すなわち放射率に応じて放射温度計の出力を補正
することが必要である。
The principle of a radiation thermometer is that all objects emit infrared rays at their temperature, and by measuring the emitted infrared rays, the temperature of the object to be measured can be determined. The biggest problem with such radiation thermometers is that the emissivity changes depending on the condition of the radiation surface of the object to be measured. For example, in the case of a semiconductor wafer, the emissivity changes even at the same temperature depending on the roughness of the back surface of the wafer or the thickness of the film formed on the back surface. Therefore, it is not possible to accurately measure temperature using only the output of the radiation thermometer, and it is necessary to correct the output of the radiation thermometer according to the condition on the radiation surface of the object to be measured, that is, according to the emissivity. It is.

従来は、例えばリアルタイムで放射率を補正する方法に
、反射率を用いるものがあった。被測定体の放射率が不
明であるとき、放射率εは、ε−1−ρ(ρは反射率) で求められる。
Conventionally, there have been methods that use reflectance, for example, to correct emissivity in real time. When the emissivity of the object to be measured is unknown, the emissivity ε can be found as ε-1-ρ (ρ is the reflectance).

(発明が解決しようとする課題) 上述した従来の方法では、反射強度を正しく求めるのが
困難である。この検出センサには、被測定体以外からの
放射光が入射してしまい、正しく温度計測ができないと
いう問題があった。 本発明では、被測定体の正確な温
度制御を行ない得る測定精度で被測定体の温度測定を可
能とするために、測定誤差の原因となる被測定体の裏面
の情報、すなわち放射面の荒さあるいは放射面への膜付
きの程度などを峻別せず、しかも放射率に応じた補正の
ために特別な構成を要せず、最終的に被測定体を十分な
精度にて温度制御することが可能となる放射温度計によ
る温度測定方法を提供するものである。
(Problems to be Solved by the Invention) With the conventional method described above, it is difficult to accurately determine the reflection intensity. This detection sensor has a problem in that radiation light from sources other than the object to be measured enters the sensor, making it impossible to accurately measure temperature. In the present invention, in order to make it possible to measure the temperature of the object to be measured with a measurement accuracy that enables accurate temperature control of the object to be measured, information on the back surface of the object to be measured, that is, the roughness of the radiation surface, which causes measurement errors, is provided. Alternatively, it is possible to ultimately control the temperature of the object to be measured with sufficient accuracy without making a sharp distinction between the degree of film attachment to the radiation surface, and without requiring a special configuration for correction according to emissivity. The present invention provides a temperature measurement method using a radiation thermometer that makes it possible.

「発明の構成J (課題を解決するための手段) 本発明は、被測定体からの放射に基づき温度を測定する
放射温度計と、上記被測定体の温度またはその周囲温度
を測定する温度測定素子とを用い、放射面の状態が異な
る複数種の参照物体について、予め温度換算データを収
集してテーブル化しておき、 被測定体の温度測定を行なう前に、上記放射温度計のあ
る出力値時の上記被処理体の温度またはその周囲温度を
温度測定素子で検出し、このデータに基づき上記テーブ
ルより該被測定体固有の温度換算データを読み出し、 被測定体の温度測定時には、上記放射温度計の出力と上
記温度換算データとから温度を補正することを特徴とす
る。
``Structure J of the Invention (Means for Solving the Problems) The present invention provides a radiation thermometer that measures temperature based on radiation from an object to be measured, and a temperature sensor that measures the temperature of the object to be measured or its surrounding temperature. Collect temperature conversion data in advance and create a table for multiple types of reference objects with different radiation surface conditions using a sensor, and before measuring the temperature of the object to be measured, calculate the output value of a certain radiation thermometer. Detect the temperature of the object to be measured or the ambient temperature thereof at the time of the measurement using a temperature measuring element, and read out the temperature conversion data specific to the object to be measured from the table based on this data. The present invention is characterized in that the temperature is corrected from the output of the meter and the temperature conversion data.

(作用) 被測定体の放射率は、放射面の荒さあるいは放射面にお
ける膜付きの程度など、種々の条件により相違しており
、個々の被測定体に関してこれらの放射面の情報を得る
ことは極めて困難である。
(Function) The emissivity of the object to be measured differs depending on various conditions such as the roughness of the radiation surface or the degree of coating on the radiation surface, and it is difficult to obtain information on the radiation surface for each object to be measured. It is extremely difficult.

本発明は、予め放射面の状態の異なる複数種の参照物体
について、放射温度計及び温度測定素子を用いて温度測
定を行ない、各参照物体ついての温度換算データを収集
してテーブル化し記憶しておく。次に、個々の被測定体
の温度測定を行なう前に、この被測定体がいずれの裏面
放射率に対応しているかを選択している。すなわち、個
々の被測定体について、放射温度計の出力を固定したと
き、その時の被測定体の温度またはその周囲温度を温度
測定素子により測定している。この温度は、必ずしも正
確な被測定体の温度ではないが、被測定体の放射面の状
態に依存する温度として得られる。
The present invention measures the temperature of multiple types of reference objects with different radiation surface states in advance using a radiation thermometer and a temperature measurement element, collects temperature conversion data for each reference object, and stores it in a table. put. Next, before measuring the temperature of each object to be measured, it is selected which back surface emissivity corresponds to this object to be measured. That is, when the output of the radiation thermometer is fixed for each object to be measured, the temperature of the object or its surrounding temperature at that time is measured by the temperature measuring element. This temperature is not necessarily the exact temperature of the object to be measured, but is obtained as a temperature that depends on the state of the radiation surface of the object to be measured.

予めテーブル化された参照物体についての温度、lr算
データとして、放射温度計出力及びこの時の被測定体の
温度データを有しており、この結果、被測定体より得た
2つのデータに基づき、テーブル上のある1種の放射率
と対応する被測定体であることが特定できる。そして、
個々の被測定体の温度測定を行なう際には、放射温度計
の出力を、温度換算データを用いて演算することで、こ
の被測定体の放射面の状態がいずれの場合にも、被測定
体の正しい温度に換算できる。
As the temperature and LR calculation data for the reference object that has been tabulated in advance, it has the radiation thermometer output and the temperature data of the object to be measured at this time, and as a result, based on the two data obtained from the object to be measured, , it can be identified that the object to be measured corresponds to a certain type of emissivity on the table. and,
When measuring the temperature of an individual object to be measured, the output of the radiation thermometer is calculated using temperature conversion data. It can be converted to the correct body temperature.

(実施例) 以下、本発明を適用した放射温度計による温度測定方法
の一実施例について、図面を参照して具体的に説明する
(Example) Hereinafter, an example of a temperature measurement method using a radiation thermometer to which the present invention is applied will be specifically described with reference to the drawings.

第1図において、半導体ウエノ11−Oは、例えば3本
の支持用ピン12によって3点支持されている。そして
、このウェハ10の表面上方に複数の加熱ランプ14を
設け、この加熱ランプ14によリウエハ10を加熱処理
するように構成している。
In FIG. 1, the semiconductor wafer 11-O is supported at three points by, for example, three support pins 12. A plurality of heating lamps 14 are provided above the surface of the wafer 10, and the rewafer 10 is heated by the heating lamps 14.

ウェハ10の下方には、放射温度計20が設けられてい
る。この放射温度計20の出力は、アナログ/デジタル
(A/D)変換器22を介して、温度演算回路24に入
力されるようになっている。
A radiation thermometer 20 is provided below the wafer 10. The output of this radiation thermometer 20 is input to a temperature calculation circuit 24 via an analog/digital (A/D) converter 22.

この温度演算回路24は前記放射温度計20の出力を入
力し、これを補正データに基づき補正演算し、この温度
情報を前記加熱ランプ14を駆動するためのランプ駆動
回路28に出力し、ウェハ10の温度を所定温度にコン
トロールするものである。
This temperature calculation circuit 24 inputs the output of the radiation thermometer 20, performs correction calculations on it based on correction data, outputs this temperature information to a lamp drive circuit 28 for driving the heating lamp 14, temperature to a predetermined temperature.

前記温度演算回路24ての補正演算を行なうために、熱
電対30及びテーブルメモリ32を設けている。熱電対
30は、ウェハ10の放射面(裏面)の状態により、ウ
ェハ10の加熱された温度を測定するためのもので、ウ
ェハ10の熱伝導を測定する如く設けられている。本実
施例ではウェハ10より離れた箇所に熱電対30を設け
、その周囲温度を測定するように構成しているが、ウェ
ハ10に直接接触させても良い。テーブルメモリ32は
、放射面の状態の異なる複数種の参照物体について、前
記放射温度計20及び熱電対30を用いて収集された温
度換算データを記憶したものである。
A thermocouple 30 and a table memory 32 are provided to perform correction calculations in the temperature calculation circuit 24. The thermocouple 30 is used to measure the heated temperature of the wafer 10 depending on the state of the radiation surface (back surface) of the wafer 10, and is provided to measure the thermal conduction of the wafer 10. In this embodiment, the thermocouple 30 is provided at a location away from the wafer 10 to measure the ambient temperature, but the thermocouple 30 may be brought into direct contact with the wafer 10. The table memory 32 stores temperature conversion data collected using the radiation thermometer 20 and thermocouple 30 for a plurality of types of reference objects having different radiation surface states.

テーブルメモリ32に記憶される情報について、第2図
を参照して説明する。
Information stored in the table memory 32 will be explained with reference to FIG. 2.

例えば、5枚のダミーウェハを用意し、この5枚のダミ
ーウェハはそれぞれ裏面の荒さ状態、あるいは裏面への
膜付き状態が相違している。この5枚のダミーウェハを
、N001〜No、5と称する。NO,1のダミーウェ
ハを前記支持用ピン12上に配置し、加熱ランプ14に
て例えば徐々に温度を上げながら、そのときの放射温度
計20のl力及び熱電対30の出力を収集する。この結
果、第2図に示すように、放射温度計20の出力を横軸
にとり、熱電対30の出力であるウニl\温度を縦軸に
取ることで、例えばリニアに変化するNO1]のダミー
ウェハに関する温度情報を得ることができる。同様に、
NO,2〜N0.5のダミーウェハについて、第2図の
ような情報を収集してクラ7を得る。第2図から明らか
なように、T−5Xt+F ここて、T;ウェハ温度 S;傾き t:放射温度計出力 F;オフセット値 この様に、NO,1〜No、5のダミーウェハに関して
温度情報を得ることで、各裏面の状態の相違したダミー
ウェハに関する、温度式の傾きSと、オフセット値Fを
得ることができる。
For example, five dummy wafers are prepared, and each of the five dummy wafers has a different back surface roughness or a different film coating state on the back surface. These five dummy wafers are referred to as N001 to No.5. A dummy wafer No. 1 is placed on the support pin 12, and while the temperature is gradually raised using a heating lamp 14, the power of the radiation thermometer 20 and the output of the thermocouple 30 at that time are collected. As a result, as shown in FIG. 2, by taking the output of the radiation thermometer 20 on the horizontal axis and the temperature of the sea urchin, which is the output of the thermocouple 30, on the vertical axis, the dummy wafer of NO1 changes linearly. temperature information can be obtained. Similarly,
Regarding the dummy wafers No. 2 to No. 5, the information as shown in FIG. 2 is collected to obtain the crack 7. As is clear from Fig. 2, T-5Xt+F Here, T: Wafer temperature S; Slope t: Radiation thermometer output F; Offset value In this way, temperature information regarding the dummy wafers No. 1 to No. 5 is obtained. By doing this, it is possible to obtain the slope S of the temperature formula and the offset value F for each dummy wafer with a different back surface state.

そして、放射温度計20の出力を例えば第2図中のAに
固定したときの、熱電対30の5種類の値T1〜T5及
び5種類の傾きS、オフセットFの値に基づき、放射温
度計20の出力をA値に固定したときの熱電対出力Tの
関数として、傾き−S  (T) オフセット−F (T) の関係か例えば最小自乗法により近似して求められ、前
記テーブルメモリ32には、この各関数が記憶されるこ
とになる。
Then, when the output of the radiation thermometer 20 is fixed, for example, at A in FIG. 2, the radiation thermometer is As a function of the thermocouple output T when the output of 20 is fixed at the A value, the relationship of slope - S (T) offset - F (T) is obtained by approximating, for example, by the method of least squares, and is stored in the table memory 32. , each of these functions will be stored.

次に、上記の構成の温度測定装置の作用について説明す
る。被測定体であるウェハ1oを支持用ピン12上に載
置し、このウェハ10を処理する前に、次のような動作
を行なう。すなわち、加熱ランプ14によってウェハl
Oを加熱することで、その放射温度射20が第2図に示
す出力Aを得る値にて加熱状態を維持する。例えば、ウ
ェハ1゜を350℃で35秒間加熱処理する。そして、
この加熱処理を行なった後に、熱電対3oの出力をモニ
タする。
Next, the operation of the temperature measuring device having the above configuration will be explained. The wafer 1o, which is the object to be measured, is placed on the support pins 12, and before processing the wafer 10, the following operations are performed. That is, the heating lamp 14 heats the wafer l.
By heating O, the radiant heat radiation 20 maintains the heated state at a value that provides the output A shown in FIG. For example, a 1° wafer is heat-treated at 350° C. for 35 seconds. and,
After performing this heat treatment, the output of the thermocouple 3o is monitored.

この熱電対30の温度は、ウェハ1oの裏面状態により
、ウェハ10の温度を反映するものである。従って、第
2図において、測定された熱電対30の温度を縦軸上に
プロットし、このウェハ温度と前記放射温度計20の出
力である固定値Aとの交点を得る。換言すれば、この交
点よリウェハ裏面に固有な傾きS及びオフセット値Fを
知ることができる。すなわち、テーブルメモリ32に記
憶されている傾きS及びオフセットFに関する関数に、
前記熱電対20で検出された温度を人力することで、ウ
ェハ裏面に固有な傾きS及びオフセット値Fを知ること
ができる。
The temperature of this thermocouple 30 reflects the temperature of the wafer 10 depending on the state of the back surface of the wafer 1o. Therefore, in FIG. 2, the measured temperature of the thermocouple 30 is plotted on the vertical axis, and the intersection of this wafer temperature and the fixed value A, which is the output of the radiation thermometer 20, is obtained. In other words, it is possible to know the slope S and offset value F specific to the back surface of the rewafer from this point of intersection. That is, in the functions related to the slope S and offset F stored in the table memory 32,
By manually measuring the temperature detected by the thermocouple 20, the slope S and offset value F specific to the back surface of the wafer can be determined.

この様な作業により、測定体であるウェハ1oの裏面状
態による放射率を特定することができる。
Through such operations, it is possible to specify the emissivity depending on the state of the back surface of the wafer 1o, which is the object to be measured.

上記実施例によれば、熱電対30はウェハ1゜の温度測
定時には、必要となるものでなく、ダミーウェハに関す
る温度換算データの収集及び被測定体であるウェハ10
が設置された際に、その裏面状態を特定するためだけに
用いられる。従って、この熱電対30は、その後被測定
体であるウェハ10をある処理条件下において処理する
際には必ずしも要しない。従って、従来の熱電対による
直接接触方式による温度測定を行なう必要なく、少なく
とも熱電対による直接接触方式での温度精度と同一の精
度にて、非接触型の放射温度計20を用いた精度の良い
温度測定を行うことが可能となる。
According to the above embodiment, the thermocouple 30 is not required when measuring the temperature of 1° of the wafer, but is used to collect temperature conversion data regarding the dummy wafer and the wafer 10 which is the object to be measured.
It is used only to identify the state of the back surface when it is installed. Therefore, this thermocouple 30 is not necessarily required when the wafer 10 as the object to be measured is subsequently processed under certain processing conditions. Therefore, it is not necessary to perform temperature measurement using the conventional direct contact method using thermocouples, and the non-contact type radiation thermometer 20 can be used with high accuracy, at least with the same temperature accuracy as the direct contact method using thermocouples. It becomes possible to measure temperature.

なお、本発明は、上記実施例に限定されるものではなく
、本発明の要旨の範囲内で、種々の変形実施か可能であ
る。例えば、参照物体についての温度換算データの測定
、及び、被測定体と近似した参照物体と特定するために
用いられる温度測定素子としては、上述した熱電対30
に限定されるものではない。また、熱電対30を上記の
機能として用いる場合には、被測定体に直接接触させて
その被測定体の温度測定を行なうようにしても良い。こ
の様な場合にも、被測定体の処理時にあっては、この熱
電対を処理中に亘って被接触体と直接接触させる必要が
ないので、従来の熱電対のみによる温度測定方法と比較
すれば、熱電対30の持つ熱容量に起因した測定誤差を
低減することが可能となる。
Note that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made within the scope of the gist of the present invention. For example, the above-mentioned thermocouple 30 is used as a temperature measuring element used to measure temperature conversion data about a reference object and to identify a reference object that is similar to the measured object.
It is not limited to. Furthermore, when the thermocouple 30 is used for the above function, it may be brought into direct contact with the object to be measured to measure the temperature of the object. Even in such cases, when processing the object to be measured, there is no need for the thermocouple to be in direct contact with the object during processing, so it is better to compare this method with the conventional temperature measurement method using only thermocouples. For example, measurement errors caused by the heat capacity of the thermocouple 30 can be reduced.

[発明の効果] 以上説明したように、本発明によれば、被測定体の処理
時にあっては、放射温度計により、被接触で温度測定を
可能とし、しかも、被測定体の放射面の状態にかかわら
ず、この被測定体の温度を比較的正確に測定できる。
[Effects of the Invention] As explained above, according to the present invention, when processing an object to be measured, it is possible to measure the temperature without contact using a radiation thermometer, and moreover, when processing an object to be measured, temperature can be measured without contact. Regardless of the state, the temperature of this object can be measured relatively accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法を実施するための温度測定装置の
実施例を示す概略説明図、 第2図は、第1図中テーブルメモリに記憶されるための
特性図である。 10・・・被測定体 20・・・放射温度計 24・・・温度演算回路 30・・・温度測定素子(熱電対) 32・・・テーブルメモリ。
FIG. 1 is a schematic explanatory diagram showing an embodiment of a temperature measuring device for carrying out the method of the present invention, and FIG. 2 is a characteristic diagram to be stored in the table memory in FIG. 1. 10... Object to be measured 20... Radiation thermometer 24... Temperature calculation circuit 30... Temperature measurement element (thermocouple) 32... Table memory.

Claims (1)

【特許請求の範囲】[Claims] (1)被測定体からの放射に基づき温度を測定する放射
温度計と、上記被測定体の温度またはその周囲温度を測
定する温度測定素子とを用い、放射面の状態が異なる複
数種の参照物体について、予め温度換算データを収集し
てテーブル化しておき、被測定体の温度測定を行なう前
に、上記放射温度計のある出力値時の上記被処理体の温
度またはその周囲温度を温度測定素子で検出し、このデ
ータに基づき上記テーブルより該被測定体固有の温度換
算データを読み出し、 被測定体の温度測定時には、上記放射温度計の出力と上
記温度換算データとから温度を補正することを特徴とす
る放射温度計を用いた温度測定方法。
(1) Using a radiation thermometer that measures temperature based on radiation from an object to be measured and a temperature measurement element that measures the temperature of the object to be measured or its surrounding temperature, multiple types of references with different radiation surface conditions are used. Collect temperature conversion data for the object in advance and create a table, and before measuring the temperature of the object, measure the temperature of the object or the surrounding temperature at a certain output value of the radiation thermometer. Detected by the element, based on this data read temperature conversion data specific to the object to be measured from the table, and when measuring the temperature of the object to be measured, correct the temperature from the output of the radiation thermometer and the temperature conversion data. A temperature measurement method using a radiation thermometer characterized by:
JP2182489A 1990-07-09 1990-07-09 Temperature measuring method by radiation thermometer Pending JPH0469531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2182489A JPH0469531A (en) 1990-07-09 1990-07-09 Temperature measuring method by radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2182489A JPH0469531A (en) 1990-07-09 1990-07-09 Temperature measuring method by radiation thermometer

Publications (1)

Publication Number Publication Date
JPH0469531A true JPH0469531A (en) 1992-03-04

Family

ID=16119178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2182489A Pending JPH0469531A (en) 1990-07-09 1990-07-09 Temperature measuring method by radiation thermometer

Country Status (1)

Country Link
JP (1) JPH0469531A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147943A (en) * 2004-11-22 2006-06-08 Kokusai Electric Semiconductor Service Inc Substrate processor and semiconductor device manufacturing method
JP2011211092A (en) * 2010-03-30 2011-10-20 Dainippon Screen Mfg Co Ltd Substrate-processing apparatus and method for measuring processing-liquid temperature
WO2015041273A1 (en) * 2013-09-23 2015-03-26 ブラザー工業株式会社 Film-forming device, temperature calculation method and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147943A (en) * 2004-11-22 2006-06-08 Kokusai Electric Semiconductor Service Inc Substrate processor and semiconductor device manufacturing method
JP2011211092A (en) * 2010-03-30 2011-10-20 Dainippon Screen Mfg Co Ltd Substrate-processing apparatus and method for measuring processing-liquid temperature
WO2015041273A1 (en) * 2013-09-23 2015-03-26 ブラザー工業株式会社 Film-forming device, temperature calculation method and program
JP2015061930A (en) * 2013-09-23 2015-04-02 ブラザー工業株式会社 Film deposition device, temperature calculation method, and program

Similar Documents

Publication Publication Date Title
US6579731B2 (en) Temperature measuring method and apparatus in semiconductor processing apparatus, and semiconductor processing method and apparatus
US5114242A (en) Bichannel radiation detection method
KR970077431A (en) Method and apparatus for substrate temperature measurement
JP2001257169A5 (en)
CN114127524B (en) Non-contact low substrate temperature measurement method
JPH0469531A (en) Temperature measuring method by radiation thermometer
JPH02298829A (en) Heat treatment apparatus
JPH01268120A (en) Temperature measurement for semiconductor device wafer
JPH01114727A (en) Radiation temperature measuring instrument
Fiory et al. Optical Fiber Pyrometry with in-Situ Detection of Wafer Radiance and Emittance—Accufiber's Ripple Method
JPH07101704B2 (en) Method and apparatus for in-situ measurement of thin film thickness deposited on a wafer
Yamada et al. In situ silicon-wafer surface-temperature measurements utilizing polarized light
JPS61270840A (en) Temperature measurement of semiconductor wafer
JP2000218151A (en) Vacuum apparatus
Adams et al. In‐Situ Optical Wafer Temperature Measurement
WO2020261859A1 (en) Method for measuring thickness of semiconductor wafer, and system for measuring thickness of semiconductor wafer
Kreider et al. Lightpipe proximity effects on Si wafer temperature in rapid thermal processing tools
Dilhac et al. In Situ Wafer Emissivity Variation Measurement in a Rapid Thermal Processor
Anderson Review of temperature measurements in the semiconductor industry
JPH109963A (en) Temperature measuring structure of silicon wafer by thermometric resistance element
JPH04239742A (en) Film thickness measuring method in manufacturer of semiconductor
JPS6038627A (en) Temperature measuring apparatus
JP2001289714A (en) Temperature measurement method and measurement device of substrate and treating device of the substrate
Meyer et al. ITS-90 calibration of radiation thermometers for RTP using wire/thin-film thermocouples on a wafer
JPH02132824A (en) Semiconductor manufacturing device