JP2001289714A - Temperature measurement method and measurement device of substrate and treating device of the substrate - Google Patents

Temperature measurement method and measurement device of substrate and treating device of the substrate

Info

Publication number
JP2001289714A
JP2001289714A JP2000105976A JP2000105976A JP2001289714A JP 2001289714 A JP2001289714 A JP 2001289714A JP 2000105976 A JP2000105976 A JP 2000105976A JP 2000105976 A JP2000105976 A JP 2000105976A JP 2001289714 A JP2001289714 A JP 2001289714A
Authority
JP
Japan
Prior art keywords
temperature
wavelength
substrate
semiconductor wafer
thermal radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000105976A
Other languages
Japanese (ja)
Inventor
Masunori Takamori
益教 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000105976A priority Critical patent/JP2001289714A/en
Publication of JP2001289714A publication Critical patent/JP2001289714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately otain a temperature accurately in a temperature measuring method for measuring the temperature of a semiconductor wafer. SOLUTION: A thermal radiation light intensity distribution relative to each wavelength of thermal radiation light radiated from a heated semiconductor wafer is measured, and the wavelength, having maximum thermal radiation light intensity in the measured thermal radiation light intensity distribution is found. Thereafter, the temperature of a corresponding semiconductor substrate is found from the wavelength found. The wavelength, having the maximum thermal radiation light intensity, does not depend on the kind of a film deposited on the semiconductor wafer or the state of the wafer surface but is determined only by the temperature of the semiconductor substrate. Therefore, the temperature of the semiconductor wafer can be measured accurately, and heating treatment at the formation time of various films on the semiconductor wafer or the like can be excited satisfactorily, by heating and controlling the semiconductor wafer at a set temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体ウエハの処理
中における半導体ウエハの温度計測方法及び温度計測装
置、並びにこの温度計測装置を使用した基板の処理装置
に関し、特に、半導体装置の製造工程でランプ若しくは
抵抗加熱などの加熱処理を対象とした半導体ウエハの温
度計測技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the temperature of a semiconductor wafer during the processing of a semiconductor wafer, and an apparatus for processing a substrate using the temperature measuring apparatus. Alternatively, the present invention relates to a semiconductor wafer temperature measurement technique for a heating process such as resistance heating.

【0002】[0002]

【従来の技術】従来より、半導体ウエハに対しては、ラ
ンプ加熱や抵抗加熱などを用いたRTP(Rapid
Thermal Process)装置、CVD(Ch
emical Vapor Deposition)装置
を使いて、半導体ウエハへの種々の膜の成膜、基板の結
晶欠陥の回復、基板ダメージ除去のためのアニールなど
種々の熱処理を行っている。前記RTP装置は、ランプ
光のエネルギー吸収により物質自体が発熱することを利
用して半導体ウエハを加熱している。また、抵抗加熱で
は、ヒーターから放出される輻射や熱伝導を利用して半
導体ウエハを加熱している。
2. Description of the Related Art Conventionally, a semiconductor wafer has been subjected to RTP (Rapid) using lamp heating or resistance heating.
Thermal Process), CVD (Ch)
Various heat treatments, such as forming various films on a semiconductor wafer, recovering crystal defects of a substrate, and annealing for removing substrate damage, are performed using an electronic vapor deposition (Evaporation) apparatus. The RTP apparatus heats a semiconductor wafer by utilizing the fact that the substance itself generates heat by absorbing the energy of lamp light. In the resistance heating, the semiconductor wafer is heated by using radiation or heat conduction emitted from the heater.

【0003】前記のような加熱源の状態を把握すること
は比較的簡単に行えるが、半導体装置の製造処理中での
半導体ウエハ自体の温度を正確に計測することは重要で
あるものの、比較的困難な技術であった。従来、半導体
ウエハ自体の温度を計測するために用いられている一般
的な方法は、ランプ加熱にしても、抵抗加熱にしても、
半導体ウエハから輻射される赤外線をパイロメーターに
より計測し、その赤外線強度から温度を求めるという方
法が一般的であった。すなわち、実験などにより、予
め、赤外線強度と対応するウエハ温度との校正曲線を求
めておき、次に、実際に特定波長の赤外線強度を測定し
て、ウエハ温度を求めていた。しかし、広い温度範囲、
例えばウエハ温度が500〜1200℃の範囲では連続
して温度測定を行い得なかった。
Although it is relatively easy to grasp the state of the heating source as described above, it is important to accurately measure the temperature of the semiconductor wafer itself during the semiconductor device manufacturing process. It was a difficult technique. Conventionally, the general method used to measure the temperature of the semiconductor wafer itself is whether it is lamp heating or resistance heating.
In general, a method is used in which infrared rays radiated from a semiconductor wafer are measured by a pyrometer, and the temperature is determined from the infrared ray intensity. That is, a calibration curve between the infrared intensity and the corresponding wafer temperature is determined in advance by experiments or the like, and then the infrared temperature of a specific wavelength is actually measured to determine the wafer temperature. However, a wide temperature range,
For example, when the wafer temperature is in the range of 500 to 1200 ° C., the temperature cannot be measured continuously.

【0004】従来のランプ加熱を用いたRTP装置の一
例の断面図を図3に示す。同図において、ほぼ密閉され
たチャンバー10内に配置された半導体ウエハ11は、
ウエハ支持台12により表面を上にして水平に支えられ
ている。この半導体ウエハ11は、特にその上方に位置
する石英板13を介してRTP装置の加熱源である複数
のランプ14で加熱される。その加熱効率を上げるため
に、ランプ13の半導体ウエハ11とは反対側には反射
板15が備えられており、半導体ウエハ11とは反対側
に照射された光のエネルギーをも反射板15で反射させ
て、半導体ウエハ11に到達させるように構成されてい
る。
FIG. 3 is a sectional view showing an example of a conventional RTP apparatus using lamp heating. In FIG. 1, a semiconductor wafer 11 arranged in a substantially sealed chamber 10 is
It is horizontally supported by the wafer support table 12 with its surface facing upward. The semiconductor wafer 11 is heated by a plurality of lamps 14 serving as a heating source of the RTP apparatus, particularly through a quartz plate 13 located above the semiconductor wafer 11. In order to increase the heating efficiency, a reflector 15 is provided on the side of the lamp 13 opposite to the semiconductor wafer 11, and the energy of light applied to the side opposite to the semiconductor wafer 11 is reflected by the reflector 15. Then, the semiconductor wafer 11 is configured to be reached.

【0005】半導体ウエハ11の温度計測は、その裏面
からの熱輻射光を石英板13を介し熱輻射光測定器16
で熱輻射光の特定の波長に対する強度を先ず測定する。
演算装置17には、予め、実験などによって求めた赤外
線強度と対応するウエハ温度との校正曲線のデータが記
憶されており、熱輻射光測定器16で測定された強度は
演算装置17に記憶されている前記データに基づいてウ
エハ温度に変換される。そして、演算装置17は、半導
体ウエハ11の温度が設定温度になるように、ランプ1
4のパワー制御信号を信号線19を通じてランプ制御系
18に送る。ランプ制御系18は、パワー供給ライン2
0を通じて個々のランプ14の出力制御を行って、半導
体ウエハ11の面内温度分布を均一にする。尚、図3で
は、パワー供給ライン20を1本で代表させているが、
実際にはランプ制御系18から各ランプ14に接続され
ている。このランプ制御系18は、演算装置17からの
パワー制御信号を受けて各ランプ14のパワーを制御
し、半導体ウエハ11を所望の温度に管理する。
To measure the temperature of the semiconductor wafer 11, heat radiation from the back surface of the semiconductor wafer 11 is transmitted through a quartz plate 13 to a heat radiation measuring device 16.
First, the intensity of the thermal radiation at a specific wavelength is measured.
The arithmetic unit 17 stores in advance data of a calibration curve between the infrared intensity obtained by an experiment or the like and the corresponding wafer temperature, and the intensity measured by the thermal radiation measuring device 16 is stored in the arithmetic unit 17. Is converted into a wafer temperature based on the data. Then, the arithmetic unit 17 sets the lamp 1 so that the temperature of the semiconductor wafer 11 becomes the set temperature.
4 is sent to the lamp control system 18 through the signal line 19. The lamp control system 18 is connected to the power supply line 2
By controlling the output of each lamp 14 through 0, the in-plane temperature distribution of the semiconductor wafer 11 is made uniform. In FIG. 3, the power supply line 20 is represented by one line.
Actually, it is connected to each lamp 14 from the lamp control system 18. The lamp control system 18 receives the power control signal from the arithmetic unit 17, controls the power of each lamp 14, and manages the semiconductor wafer 11 at a desired temperature.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記従
来のように赤外線強度からウエハ温度を求めるという方
法では、次の欠点がある。すなわち、半導体ウエハ11
が完全な黒体ではないため、求められた温度はその半導
体ウエハの赤外線輻射効率に強く依存する。すなわち、
半導体ウエハの温度は、その半導体ウエハの状態、例え
ばポリシリコン、窒化膜、酸化膜などの単膜又は積層膜
の成膜状態により大きく変動し、このような要因でウエ
ハ温度の計測誤差が発生する。また、パイロメーターを
用いる温度計測方法では、半導体ウエハ11の裏面と反
射板(パイロメーター取り付け部)15との間を多重散
乱した赤外線までも計測してしまうため、ウエハ温度の
測定誤差が更に大きくなるという問題も生じ、更には、
500℃程度の低温領域では赤外線輻射強度自体が小さ
く、このため、ウエハ温度を正確に計測できないという
問題、及び、ウエハ温度が500〜1200℃の範囲等
の広い範囲で温度変化を連続して測定し得ないという問
題があった。
However, the method of determining the wafer temperature from the infrared intensity as in the above-mentioned conventional method has the following disadvantages. That is, the semiconductor wafer 11
Is not a perfect black body, the required temperature strongly depends on the infrared radiation efficiency of the semiconductor wafer. That is,
The temperature of the semiconductor wafer greatly varies depending on the state of the semiconductor wafer, for example, the state of formation of a single film or a laminated film such as a polysilicon, a nitride film, and an oxide film, and a measurement error of the wafer temperature occurs due to such factors. . Further, in the temperature measurement method using a pyrometer, even the infrared rays that are multiply scattered between the back surface of the semiconductor wafer 11 and the reflection plate (pyrometer mounting portion) 15 are measured, so that the measurement error of the wafer temperature is further increased. Problem, and furthermore,
In the low temperature range of about 500 ° C., the infrared radiation intensity itself is small, so that the wafer temperature cannot be measured accurately, and the temperature change is continuously measured over a wide range such as a range of 500 to 1200 ° C. There was a problem that could not be done.

【0007】このような理由によって、前記従来の方法
を用いたまま温度測定精度を向上させるためには、第1
に、ウエハ温度の較正をその表面に形成されている素子
構造や堆積された膜の種類などに対応して頻繁に行うこ
とが必要となるが、この対処方法では、装置の稼働率ロ
スを招く。第2に、ウエハ裏面の状態を一定することも
必要となるが、これは、裏面に堆積した膜を除去するな
ど、本来の製造工程には何ら寄与しない冗長なプロセス
をRTP装置での処理前に付加することとなり、製造コ
ストアップを招く。
[0007] For the above reasons, in order to improve the temperature measurement accuracy while using the above-mentioned conventional method, the first method is used.
In addition, it is necessary to frequently calibrate the wafer temperature in accordance with the element structure formed on the surface thereof, the type of the deposited film, and the like. However, this method causes a loss in the operation rate of the apparatus. . Secondly, it is necessary to keep the state of the back surface of the wafer constant, but this requires a redundant process that does not contribute to the original manufacturing process, such as removing the film deposited on the back surface, before the processing in the RTP apparatus. To increase the manufacturing cost.

【0008】また、以上のような非接触の温度測定方法
以外の測定方法として、熱電対を半導体ウエハに接触さ
せてウエハ温度を計測する方法がある。この方法は、半
導体ウエハの表面状態に依存せず、比較的正確に温度計
側を行い得るが、熱電対の熱容量が半導体ウエハに比べ
て大きいために、RTP装置のような半導体ウエハの急
速な温度昇降が必要な製造工程や短時間のプロセス工程
に対して測定追従性が悪い。そのため、急速なウエハ温
度の変化を伴うRTP装置の温度計測に対して熱電対を
用いると、急速なウエハ温度の変化に追従しないため、
この場合も温度誤差が生じる。
As a measuring method other than the non-contact temperature measuring method described above, there is a method of measuring a wafer temperature by bringing a thermocouple into contact with a semiconductor wafer. This method does not depend on the surface condition of the semiconductor wafer, and can perform the thermometer side relatively accurately. However, since the heat capacity of the thermocouple is larger than that of the semiconductor wafer, rapid measurement of the semiconductor wafer such as an RTP device is possible. Poor measurement followability for manufacturing processes requiring a temperature rise or fall or short process steps. Therefore, if a thermocouple is used for the temperature measurement of the RTP apparatus accompanied by a rapid change in the wafer temperature, the thermocouple does not follow the rapid change in the wafer temperature.
Also in this case, a temperature error occurs.

【0009】従って、従来の半導体ウエハの温度計測方
法は、何れも、温度計測の精度、再現性が十分なもので
はなく、半導体製造工程中に正確に且つコストなど製造
工程に影響を与えることなくウエハ温度を計測すること
が困難であるという問題があった。
Therefore, none of the conventional methods for measuring the temperature of a semiconductor wafer has sufficient accuracy and reproducibility of the temperature measurement, so that the temperature can be accurately measured during the semiconductor manufacturing process without affecting the manufacturing process such as cost. There is a problem that it is difficult to measure the wafer temperature.

【0010】本発明は前記課題を解決するためになされ
たものであり、その目的は、半導体ウエハ上に形成され
た素子構造、成膜材料などの状態に依存することなく、
正確にウエハ温度を計測することができるウエハ温度の
計測方法及び計測装置、並びにそのウエハ温度計測装置
を用いた基板処理装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a semiconductor device without depending on the state of a device structure, a film forming material, and the like formed on a semiconductor wafer.
It is an object of the present invention to provide a wafer temperature measuring method and a measuring device capable of accurately measuring a wafer temperature, and a substrate processing apparatus using the wafer temperature measuring device.

【0011】[0011]

【課題を解決するための手段】前記従来の課題を解決す
るため、本発明者が鋭意研究したところ、半導体基板に
異なる膜が形成されたり、基板表面の状態が種々異なっ
ていても、基板からの熱輻射光強度が極大となる波長
は、これらの状態に依存しないこと、及びこの波長は基
板の温度と対応することを見い出した。従って、本発明
では、基板からの熱輻射光強度が極大となる波長を求
め、この波長から基板の温度を算出することとする。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present inventors have conducted intensive studies. It has been found that the wavelength at which the thermal radiation light intensity becomes maximum does not depend on these states, and that this wavelength corresponds to the temperature of the substrate. Therefore, in the present invention, the wavelength at which the intensity of the heat radiation light from the substrate is maximized is determined, and the temperature of the substrate is calculated from this wavelength.

【0012】すなわち、請求項1記載の発明の基板の温
度計測方法は、加熱手段により加熱される半導体基板の
温度を計測する基板の温度計測方法であって、前記半導
体基板からの熱輻射光の各波長に対する前記熱輻射光の
強度分布を測定する測定工程と、前記測定した熱輻射光
強度分布の中で熱輻射光強度が極大となる波長を求め、
その求めた波長に基づいて前記半導体基板の温度を求め
る算出工程とを含むことを特徴とする。
That is, a method of measuring the temperature of a substrate according to the present invention is a method of measuring the temperature of a semiconductor substrate heated by a heating means, wherein the temperature of the semiconductor substrate heated by the heating means is measured. A measurement step of measuring the intensity distribution of the heat radiation light for each wavelength, and the wavelength at which the heat radiation light intensity is maximum in the measured heat radiation light intensity distribution,
Calculating a temperature of the semiconductor substrate based on the obtained wavelength.

【0013】また、請求項2記載の発明は、前記請求項
1記載の基板の温度計測方法において、前記算出工程
は、前記熱輻射光強度が極大となる波長をλm、前記半
導体基板の絶対温度をT、プランクの熱輻射式から決定
される定数をCとして、下記式 λm・T=C に基づいて、前記半導体基板の絶対温度Tを求める工程
であることを特徴としている。
According to a second aspect of the present invention, in the method of measuring a temperature of a substrate according to the first aspect, the calculating step includes setting a wavelength at which the thermal radiation light intensity is maximum to λm, Where T is a constant determined by Planck's thermal radiation equation and C is a step of obtaining the absolute temperature T of the semiconductor substrate based on the following equation: λm · T = C.

【0014】更に、請求項3記載の発明の基板の温度計
測装置は、半導体基板を加熱する加熱手段と、前記加熱
手段により加熱された半導体基板からの熱輻射光の各波
長に対する前記熱輻射光の強度分布を測定する測定手段
と、前記測定された熱輻射光強度分布の中で熱輻射光強
度が極大となる波長を求める波長算出手段と、前記波長
算出手段により求めた波長に基づいて前記半導体基板の
温度を求める温度算出手段とを備えたことを特徴とす
る。
Further, according to a third aspect of the present invention, there is provided a substrate temperature measuring device, wherein the heating means heats the semiconductor substrate, and the heat radiation light for each wavelength of the heat radiation light from the semiconductor substrate heated by the heating means. Measuring means for measuring the intensity distribution of, the wavelength calculating means for determining the wavelength at which the thermal radiation light intensity is maximum in the measured thermal radiation light intensity distribution, the said based on the wavelength determined by the wavelength calculating means Temperature calculating means for determining the temperature of the semiconductor substrate.

【0015】加えて、請求項4記載の発明の基板の処理
装置は、請求項3記載の基板の温度計測装置と、求めた
半導体基板の温度に基づいて前記温度計測装置の加熱手
段を制御し、前記半導体基板を設定温度に調整制御手段
とを備えたことを特徴としている。
In addition, a substrate processing apparatus according to a fourth aspect of the present invention controls the substrate temperature measuring apparatus according to the third aspect and a heating means of the temperature measuring apparatus based on the obtained temperature of the semiconductor substrate. And a control unit for adjusting the semiconductor substrate to a set temperature.

【0016】また、請求項5記載の発明は、前記請求項
4記載の基板の処理装置において、この基板の処理装置
は、ランプ加熱又は抵抗加熱を利用したアニール装置、
酸化膜系成長装置又は化学気相成長装置であることを特
徴とする。
According to a fifth aspect of the present invention, there is provided the substrate processing apparatus according to the fourth aspect, wherein the substrate processing apparatus includes an annealing apparatus using lamp heating or resistance heating.
It is an oxide film growth apparatus or a chemical vapor deposition apparatus.

【0017】以上により、請求項1ないし請求項5記載
の発明では、半導体ウエハなどの加熱された基板からの
熱輻射光の各波長に対する熱輻射光強度分布を先ず測定
し、この測定した熱輻射光強度が極大となる波長を求
め、その求めた波長に基づいて基板の温度を求める。こ
こで、熱輻射光強度が極大となる波長は、基板に形成さ
れる膜が異なったり、基板表面の状態が異なっていて
も、これらの状態に依存しないので、基板温度を常に正
確に得ることができる。その結果、基板を適切に加熱で
きて、基板温度を設定温度に管理することが可能であ
る、
As described above, according to the first to fifth aspects of the present invention, the thermal radiation light intensity distribution for each wavelength of thermal radiation from a heated substrate such as a semiconductor wafer is first measured, and the measured thermal radiation is measured. The wavelength at which the light intensity is maximum is determined, and the temperature of the substrate is determined based on the determined wavelength. Here, the wavelength at which the thermal radiation light intensity is maximum does not depend on the state of the film formed on the substrate or the state of the substrate surface, even if the state is different. Can be. As a result, the substrate can be appropriately heated, and the substrate temperature can be managed at the set temperature.

【0018】[0018]

【発明の実施の形態】以下、本発明のウエハ温度計測方
法について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a wafer temperature measuring method according to the present invention will be described.

【0019】本発明の半導体ウエハ温度計測方法は、以
下のような考えを基礎としている。半導体ウエハからの
熱輻射のエネルギーは、種々の波長に対して、プランク
の熱輻射式(1)に比例する。その比例定数は放射係数
と呼ばれ、半導体ウエハの表面状態に依存する。
The semiconductor wafer temperature measuring method of the present invention is based on the following concept. The energy of thermal radiation from a semiconductor wafer is proportional to Planck's thermal radiation equation (1) for various wavelengths. The proportionality constant is called an emission coefficient and depends on the surface condition of the semiconductor wafer.

【0020】 εdλ=8πhc/λ5・dλ/(Exp(hc/λkT)−1) (1) ε:熱輻射光強度 λ:波長 T:絶対温度 h:プランク定数 (6.62377×10-27erg・
sec) c:光速度 (2.99796×1010cm・sec
-1) k:ボルツマン定数 (1.38026×10-16er
g・deg-1) 前記(1)式を、横軸に波長、縦軸に熱輻射強度につい
て解いたグラフを図1に示す。同図のグラフは、温度7
00℃と1000℃との2つの場合について解いた一例
である。このグラフから判るように、熱輻射光強度が極
大値を示すときの熱輻射光の波長λmは基板の絶対温度
Tと共に変化している。その極大値の軌跡をグラフ中の
破線で示す。前記波長λmと絶対温度Tとの相関を明確
にするため、前記式(1)を展開する。ここで、 x=hν/kT=hc/λkT ν:振動数、h・ν=c とおくと、前記式(1)は、 ε=8π/(hc)4・(kT)5・x5/(Exp
(x)―1) となる。熱輻射光強度εの極大値の時xは d/dx・x5/(Exp(x)―1)=0 の根として決まるので、これを解くと、xm=4.96
51…で極大を持つことが判る。すなわち、 λm・T=hc/kxm=0.2918cm・deg≡C (2) (Cはプランクの熱輻射式から決定される定数)という
式で決まる。この式を横軸に温度、縦軸に波長について
解いたグラフを図2に示す。前記波長λmは、絶対温度
Tに逆比例して、低温では長い波長にあるが、温度上昇
に伴って短い波長へと移ることが判る。この波長に対す
る熱輻射光強度分布の最大値となる熱輻射光の波長λm
がその物体の温度によって決まっている。
Εdλ = 8πhc / λ 5 · dλ / (Exp (hc / λkT) −1) (1) ε: thermal radiation light intensity λ: wavelength T: absolute temperature h: Planck constant (6.622777 × 10 −27) erg ・
sec) c: speed of light (2.99976 × 1010 cm · sec)
-1 ) k: Boltzmann constant (1.38026 × 10 -16 er)
g · deg −1 ) FIG. 1 is a graph obtained by solving the equation (1) with respect to wavelength on the horizontal axis and thermal radiation intensity on the vertical axis. The graph in FIG.
This is an example solved for two cases of 00 ° C. and 1000 ° C. As can be seen from this graph, the wavelength λm of the thermal radiation when the thermal radiation intensity has a maximum value changes with the absolute temperature T of the substrate. The locus of the maximum value is shown by a broken line in the graph. In order to clarify the correlation between the wavelength λm and the absolute temperature T, the equation (1) is developed. Here, if x = hν / kT = hc / λkT ν: frequency, h · ν = c, the above equation (1) can be expressed as: ε = 8π / (hc) 4 · (kT) 5 · x 5 / (Exp
(X) -1). When the maximum value of the thermal radiation light intensity ε is obtained, x is determined as the root of d / dx · x 5 / (Exp (x) −1) = 0, so that xm = 4.96
It can be seen that there is a maximum at 51 ... That is, λm · T = hc / kxm = 0.2918 cm · deg≡C (2) (C is a constant determined from Planck's thermal radiation equation). FIG. 2 is a graph obtained by solving this equation for the temperature on the horizontal axis and the wavelength on the vertical axis. It can be seen that the wavelength λm is inversely proportional to the absolute temperature T, and has a long wavelength at a low temperature, but shifts to a shorter wavelength as the temperature rises. The wavelength λm of the heat radiation light which becomes the maximum value of the heat radiation light intensity distribution with respect to this wavelength
Is determined by the temperature of the object.

【0021】以上のことから、本実施の形態の基板の温
度計測方法は、半導体ウエハからの熱輻射光の各波長に
対する熱輻射光の強度分布を測定工程において測定し、
その後、半導体ウエハの温度算出工程において、前記測
定した熱輻射光強度分布の中で熱輻射光強度が極大とな
る熱輻射光の波長λmを見い出し、その求めた波長λm
に基づいてこの波長λmに対応する基板の絶対温度Tを
求めることを特徴とするものである。
From the above, the method for measuring the temperature of a substrate according to the present embodiment measures the intensity distribution of heat radiation light for each wavelength of heat radiation light from a semiconductor wafer in the measurement step.
Thereafter, in the temperature calculation step of the semiconductor wafer, a wavelength λm of the heat radiation light at which the heat radiation light intensity is maximum in the measured heat radiation light intensity distribution is found, and the obtained wavelength λm
, The absolute temperature T of the substrate corresponding to the wavelength λm is obtained.

【0022】このような温度測定をすれば、半導体ウエ
ハの温度Tを決定するのは、上式から明らかなように、
熱輻射光の波長λmだけとなり、この波長λmさえ求め
れば、半導体ウエハの温度を測定できるようになる。従
って、従来より課題となっていたウエハの裏面依存性
(裏面に堆積された膜材料依存性など)や、図3に示す
半導体ウエハ11裏面と反射板15との間の多重散乱な
どの影響による温度計測誤差の発生という問題を解決す
ることができる。
By performing such a temperature measurement, the temperature T of the semiconductor wafer is determined as apparent from the above equation.
Only the wavelength λm of the thermal radiation light is obtained, and the temperature of the semiconductor wafer can be measured if only this wavelength λm is obtained. Therefore, the influence of the back surface dependence of the wafer (such as the dependence of the film material deposited on the back surface) and the multiple scattering between the back surface of the semiconductor wafer 11 and the reflection plate 15 shown in FIG. The problem of occurrence of a temperature measurement error can be solved.

【0023】即ち、従来の基板温度計測方法のように熱
輻射光の特定波長に対する強度を測定してその熱輻射光
強度に対応するウエハ温度を求める計測方法では、半導
体ウエハから輻射される特定波長の熱輻射光強度がウエ
ハの状態に応じて変化するために、半導体ウエハの正確
な温度計測が困難であったが、本発明者は、半導体ウエ
ハの状態が変化しても、半導体ウエハからの熱輻射光強
度が最大となる波長はこのウエハ状態の変化に依存しな
い点に着目し、この着目点から本願発明は、半導体ウエ
ハからの熱輻射光強度の最大となる波長を用いて半導体
ウエハの温度計測を行う点に特徴を有する。
That is, in the measurement method for measuring the intensity of the thermal radiation at a specific wavelength and obtaining the wafer temperature corresponding to the thermal radiation intensity as in the conventional substrate temperature measuring method, the specific wavelength radiated from the semiconductor wafer is used. It has been difficult to accurately measure the temperature of the semiconductor wafer because the thermal radiation light intensity of the semiconductor wafer changes in accordance with the state of the wafer. Focusing on the fact that the wavelength at which the thermal radiation light intensity is maximum does not depend on this change in the wafer state, and from this point of view, the present invention uses the wavelength at which the thermal radiation light intensity from the semiconductor wafer becomes the maximum to obtain the wavelength of the semiconductor wafer. The feature is that the temperature is measured.

【0024】尚、多重散乱による輻射光強度の減衰は熱
輻射光の波長に依存しないので、これに基づく減衰係数
は一定である。この減衰係数は、測定器の取り付け位
置、検出器の検出立体角などの物理的要素で決まる。
Since the attenuation of the radiation light intensity due to multiple scattering does not depend on the wavelength of the thermal radiation light, the attenuation coefficient based on this is constant. This attenuation coefficient is determined by physical factors such as the mounting position of the measuring instrument and the solid angle detected by the detector.

【0025】次に、本実施の形態の半導体ウエハ温度の
計測方法の具体的な例を図3に示すRTP装置について
説明する。本実施の形態の温度計測方法は、基本的には
従来の構成のRTP装置を採用することができる。
Next, a specific example of the semiconductor wafer temperature measuring method according to the present embodiment will be described with reference to the RTP apparatus shown in FIG. The temperature measurement method according to the present embodiment can basically employ a conventional RTP device.

【0026】ウエハの温度計測は、半導体ウエハ(半導
体基板)11の裏面からの熱輻射光を石英板13を介
し、半導体ウエハ11に対向して複数個配列された熱輻
射光測定器(測定手段)16を用いて、図1に例示した
ような熱輻射光の各波長に対しての熱輻射光の強度分布
を測定する。図3のRTP装置例では、熱輻射光測定器
16は、半導体ウエハ11の中心から片側にだけ半径方
向に並べられている。半導体ウエハ11の面内温度分布
の均一性を向上させるために、ランプ14と半導体ウエ
ハ11の何れか一方又は両方を回転させるようにした場
合には、このような配置で半導体ウエハ11の全面の温
度分布を測定できる。半導体ウエハ11の各位置におい
て個々の熱輻射光測定器16で測定された熱輻射光の強
度分布信号は演算装置17に入力される。
In measuring the temperature of the wafer, a plurality of heat radiation light measuring instruments (measurement means) are arranged such that heat radiation from the back surface of the semiconductor wafer (semiconductor substrate) 11 is opposed to the semiconductor wafer 11 via the quartz plate 13. 1), the intensity distribution of the thermal radiation for each wavelength of the thermal radiation as illustrated in FIG. 1 is measured. In the example of the RTP apparatus in FIG. 3, the thermal radiation measurement devices 16 are arranged radially only on one side from the center of the semiconductor wafer 11. When one or both of the lamp 14 and the semiconductor wafer 11 are rotated in order to improve the uniformity of the in-plane temperature distribution of the semiconductor wafer 11, the entire surface of the semiconductor wafer 11 is arranged in such an arrangement. Temperature distribution can be measured. The intensity distribution signal of the thermal radiation measured at each position of the semiconductor wafer 11 by the individual thermal radiation measuring devices 16 is input to the arithmetic unit 17.

【0027】前記演算装置(波長算出手段及び温度算出
手段)17では、測定された熱輻射光の強度分布出力信
号となった強度分布曲線について微分などの演算処理を
行って、熱輻射光強度の変化がゼロとなる点を求め、熱
輻射光強度が極大値となる時の熱輻射光の波長λmを求
める。演算装置17には、例えば、別に前記波長λmと
半導体ウエハ11の温度Tとの関係式(2)、又は図2
に示したようなデータが内蔵されており、求めた波長λ
mから半導体ウエハ11の絶対温度Tを計測することが
できる。図3の装置には、複数本の熱輻射光測定器16
が設置され、しかも、ランプ14又は半導体ウエハ11
が回転しているので、半導体ウエハ11の面内温度分
布、特に半径方向の温度分布情報も得ることができる。
The arithmetic unit (wavelength calculating means and temperature calculating means) 17 performs an arithmetic process such as differentiation on the intensity distribution curve which has become the intensity distribution output signal of the measured thermal radiation, to calculate the thermal radiation intensity. The point at which the change becomes zero is determined, and the wavelength λm of the thermal radiation when the thermal radiation intensity reaches a maximum value is determined. The arithmetic unit 17 includes, for example, a relational expression (2) between the wavelength λm and the temperature T of the semiconductor wafer 11, or FIG.
The data as shown in the figure is built in, and the obtained wavelength λ
The absolute temperature T of the semiconductor wafer 11 can be measured from m. The apparatus shown in FIG. 3 includes a plurality of thermal radiation light measuring instruments 16.
Is installed, and the lamp 14 or the semiconductor wafer 11
Is rotated, it is also possible to obtain information on the in-plane temperature distribution of the semiconductor wafer 11, particularly the temperature distribution in the radial direction.

【0028】更に、演算装置17には、半導体ウエハ1
1の設定温度が記憶されており、半導体ウエハ11上の
計測された温度Tと前記設定温度とを比較して、その温
度差に基づいて、半導体ウエハ11の温度Tが前記設定
温度になるように、ランプ(加熱手段)14のパワーを
制御する命令信号が演算装置17から出力される。この
命令信号は、信号線19を通じてランプ制御系18に入
力される。ランプ14の出力は、ランプ制御系(調整制
御手段)18によってパワー供給ライン20を通じて補
正されるので、半導体ウエハ11の面内温度分布の均一
性が向上する。尚、パワー供給ライン20は、図3にお
いては簡単のために1本しか記載していないが、実際に
は、ランプ制御系18からランプ14の各々に接続され
ており、独立にパワー制御が行えるようになっている。
従って、複数本の熱輻射光測定器16によって半導体ウ
エハ11の面内温度分布が測定されるので、ランプ14
の供給パワーを独立に制御でき、半導体ウエハ11の温
度均一性を向上させることができる。半導体ウエハ11
への処理としては、ランプ加熱又は抵抗加熱を利用した
半導体ウエハ11の結晶結果の回復などのためのアニー
ルや、半導体ウエハ11への酸化膜系の膜成長又は化学
気相成長などがある。
Further, the arithmetic unit 17 includes the semiconductor wafer 1
1 is stored, the measured temperature T on the semiconductor wafer 11 is compared with the set temperature, and based on the temperature difference, the temperature T of the semiconductor wafer 11 is set to the set temperature. Then, a command signal for controlling the power of the lamp (heating means) 14 is output from the arithmetic unit 17. This command signal is input to the lamp control system 18 through the signal line 19. Since the output of the lamp 14 is corrected by the lamp control system (adjustment control means) 18 through the power supply line 20, the uniformity of the in-plane temperature distribution of the semiconductor wafer 11 is improved. Although only one power supply line 20 is shown in FIG. 3 for simplicity, the power supply line 20 is actually connected to each of the lamps 14 from the lamp control system 18 so that power control can be performed independently. It has become.
Therefore, the in-plane temperature distribution of the semiconductor wafer 11 is measured by the plurality of thermal radiation light measuring devices 16, and the lamp 14
Can be controlled independently, and the temperature uniformity of the semiconductor wafer 11 can be improved. Semiconductor wafer 11
Examples of the processing include annealing for recovering the crystal result of the semiconductor wafer 11 using lamp heating or resistance heating, and growth of an oxide film or chemical vapor deposition on the semiconductor wafer 11.

【0029】尚、以上では、RTP装置におけるウエハ
温度計測方法の例は、ランプ加熱方式を用いて半導体ウ
エハ11を1枚ずつ熱処理する枚葉式熱処理の場合につ
いて説明したが、ランプ加熱方式に代えて抵抗加熱方式
を採用する場合にも同様に実施することができる。ま
た、枚葉式熱処理以外の装置にも適用できることは、本
発明の温度測定方法の原理を考慮すると言うまでもない
のは勿論である。
In the above, an example of the wafer temperature measuring method in the RTP apparatus has been described in the case of the single-wafer heat treatment in which the semiconductor wafers 11 are heat-treated one by one using a lamp heating method. In the case where a resistance heating method is adopted, the same can be implemented. Further, it goes without saying that the principle of the temperature measuring method of the present invention is taken into consideration that the present invention can be applied to an apparatus other than the single-wafer heat treatment.

【0030】[0030]

【発明の効果】以上説明したように、請求項1ないし請
求項5記載の発明によれば、半導体ウエハ上への成膜な
どの状態に依存することなく、半導体ウエハの基板温度
を正確に計測することが可能である。また、半導体装置
の製造過程において基板温度を設定温度に正確に加熱、
管理して、半導体ウエハ上への種々の膜の成膜、基板の
結晶欠陥の回復などの種々の熱処理を適切に行うことが
可能である。
As described above, according to the first to fifth aspects of the present invention, the substrate temperature of the semiconductor wafer can be accurately measured without depending on the state of film formation on the semiconductor wafer. It is possible to In the process of manufacturing a semiconductor device, the substrate temperature is accurately heated to a set temperature.
It is possible to appropriately perform various heat treatments such as formation of various films on a semiconductor wafer and recovery of a crystal defect of a substrate by management.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱輻射光の波長と熱輻射強度との相関関係を示
す図である。
FIG. 1 is a diagram showing a correlation between a wavelength of heat radiation light and a heat radiation intensity.

【図2】熱輻射強度が最大となる波長と温度との相関関
係を示す図である。
FIG. 2 is a diagram showing a correlation between a wavelength at which the thermal radiation intensity is maximum and a temperature.

【図3】RTP装置の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of an RTP device.

【符号の説明】[Explanation of symbols]

10 RTP装置のチャンバー 11 半導体ウエハ(半導体基板) 12 ウエハ支持台 13 石英板 14 ランプ(加熱手段) 15 反射板 16 熱輻射光測定器(測定手段) 17 演算装置(波長算出手段及び温度算出手段) 18 ランプ制御系(調整制御手段) 19 信号線 20 パワー供給ライン Reference Signs List 10 Chamber of RTP apparatus 11 Semiconductor wafer (semiconductor substrate) 12 Wafer support 13 Quartz plate 14 Lamp (heating means) 15 Reflector 16 Thermal radiation measuring instrument (measuring means) 17 Arithmetic apparatus (wavelength calculating means and temperature calculating means) 18 Lamp control system (adjustment control means) 19 Signal line 20 Power supply line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/31 H01L 21/31 E 21/26 T ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/31 H01L 21/31 E 21/26 T

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 加熱手段により加熱される半導体基板の
温度を計測する基板の温度計測方法であって、 前記半導体基板からの熱輻射光の各波長に対する前記熱
輻射光の強度分布を測定する測定工程と、 前記測定した熱輻射光強度分布の中で熱輻射光強度が極
大となる波長を求め、その求めた波長に基づいて前記半
導体基板の温度を求める算出工程とを含むことを特徴と
する基板の温度計測方法。
1. A substrate temperature measuring method for measuring the temperature of a semiconductor substrate heated by a heating means, comprising: measuring an intensity distribution of the heat radiation light with respect to each wavelength of the heat radiation light from the semiconductor substrate. And calculating a wavelength at which the thermal radiation light intensity is maximum in the measured thermal radiation intensity distribution, and calculating the temperature of the semiconductor substrate based on the determined wavelength. How to measure substrate temperature.
【請求項2】 前記算出工程は、 前記熱輻射光強度が極大となる波長をλm、前記半導体
基板の絶対温度をT、プランクの熱輻射式から決定され
る定数をCとして、下記式 λm・T=C に基づいて、前記半導体基板の絶対温度Tを求める工程
であることを特徴とする請求項1記載の基板の温度計測
方法。
2. The calculation step is defined as follows: λm is a wavelength at which the thermal radiation light intensity is maximum, T is an absolute temperature of the semiconductor substrate, and C is a constant determined by Planck's thermal radiation equation. 2. The method according to claim 1, further comprising the step of obtaining an absolute temperature T of the semiconductor substrate based on T = C.
【請求項3】 半導体基板を加熱する加熱手段と、 前記加熱手段により加熱された半導体基板からの熱輻射
光の各波長に対する前記熱輻射光の強度分布を測定する
測定手段と、 前記測定された熱輻射光強度分布の中で熱輻射光強度が
極大となる波長を求める波長算出手段と、 前記波長算出手段により求めた波長に基づいて前記半導
体基板の温度を求める温度算出手段とを備えたことを特
徴とする基板の温度計測装置。
Heating means for heating the semiconductor substrate; measuring means for measuring an intensity distribution of the heat radiation light with respect to each wavelength of the heat radiation light from the semiconductor substrate heated by the heating means; Wavelength calculating means for determining a wavelength at which the thermal radiation light intensity is maximum in the thermal radiation light intensity distribution; anda temperature calculating means for determining the temperature of the semiconductor substrate based on the wavelength determined by the wavelength calculating means. A substrate temperature measuring device, characterized in that:
【請求項4】 請求項3記載の基板の温度計測装置と、 求めた半導体基板の温度に基づいて前記温度計測装置の
加熱手段を制御し、前記半導体基板を設定温度に調整制
御手段とを備えたことを特徴とする基板の処理装置。
4. A temperature measuring device for a substrate according to claim 3, further comprising: a control unit for controlling a heating unit of the temperature measuring device based on the obtained temperature of the semiconductor substrate to adjust the semiconductor substrate to a set temperature. A substrate processing apparatus.
【請求項5】 基板の処理装置は、 ランプ加熱又は抵抗加熱を利用したアニール装置、酸化
膜系成長装置又は化学気相成長装置であることを特徴と
する請求項4記載の基板の処理装置。
5. The substrate processing apparatus according to claim 4, wherein the substrate processing apparatus is an annealing apparatus using lamp heating or resistance heating, an oxide film growth apparatus, or a chemical vapor deposition apparatus.
JP2000105976A 2000-04-07 2000-04-07 Temperature measurement method and measurement device of substrate and treating device of the substrate Pending JP2001289714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000105976A JP2001289714A (en) 2000-04-07 2000-04-07 Temperature measurement method and measurement device of substrate and treating device of the substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000105976A JP2001289714A (en) 2000-04-07 2000-04-07 Temperature measurement method and measurement device of substrate and treating device of the substrate

Publications (1)

Publication Number Publication Date
JP2001289714A true JP2001289714A (en) 2001-10-19

Family

ID=18619222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000105976A Pending JP2001289714A (en) 2000-04-07 2000-04-07 Temperature measurement method and measurement device of substrate and treating device of the substrate

Country Status (1)

Country Link
JP (1) JP2001289714A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079336A (en) * 2003-08-29 2005-03-24 Toshiba Corp Heat treatment apparatus, heat treatment method and method for manufacturing semiconductor device
WO2010073358A1 (en) 2008-12-26 2010-07-01 有限会社ワイ・システムズ Method and device for measuring temperature during deposition of semiconductor
WO2013018197A1 (en) 2011-08-02 2013-02-07 有限会社ワイ・システムズ Method and apparatus for measuring temperature of semiconductor layer
JP2014182061A (en) * 2013-03-21 2014-09-29 Dainippon Screen Mfg Co Ltd Temperature measuring device and thermal processing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079336A (en) * 2003-08-29 2005-03-24 Toshiba Corp Heat treatment apparatus, heat treatment method and method for manufacturing semiconductor device
WO2010073358A1 (en) 2008-12-26 2010-07-01 有限会社ワイ・システムズ Method and device for measuring temperature during deposition of semiconductor
US8673656B2 (en) 2008-12-26 2014-03-18 Ysystems, Ltd. Method and device for measuring temperature during deposition of semiconductor
WO2013018197A1 (en) 2011-08-02 2013-02-07 有限会社ワイ・システムズ Method and apparatus for measuring temperature of semiconductor layer
JP2014182061A (en) * 2013-03-21 2014-09-29 Dainippon Screen Mfg Co Ltd Temperature measuring device and thermal processing apparatus

Similar Documents

Publication Publication Date Title
KR101019932B1 (en) Adaptive control method for rapid thermal processing of a substrate
US6191399B1 (en) System of controlling the temperature of a processing chamber
JP2923008B2 (en) Film forming method and film forming apparatus
US9245768B2 (en) Method of improving substrate uniformity during rapid thermal processing
US6798036B2 (en) Temperature measuring method and apparatus in semiconductor processing apparatus, and semiconductor processing method and apparatus
US6265696B1 (en) Heat treatment method and a heat treatment apparatus for controlling the temperature of a substrate surface
JP3023840B2 (en) Method and apparatus for detecting misalignment of a semiconductor wafer
JP2002522912A (en) Tuning of substrate temperature measurement system
TWI343474B (en) Methods and apparatus for determining the temperature of a substrate
JP2007081348A (en) Method for controlling temperature of thermal process, method of thermal process of substrate and device of thermal process of substrate
JP2001289714A (en) Temperature measurement method and measurement device of substrate and treating device of the substrate
JPH02298829A (en) Heat treatment apparatus
JPH07201765A (en) Heat-treating device and heat treatment
JPH10321539A (en) Method and device for producing semiconductor
JPS6250627A (en) Controlling method for surface temperature of substrate
JPH0853766A (en) Vapor growth device
JP3895893B2 (en) Substrate heating apparatus and substrate heating method
JPH06242840A (en) Sheet type heat treatment processor and heat treatment temperature monitoring method
JP2000218151A (en) Vacuum apparatus
JP3244463B2 (en) Vacuum processing apparatus, film forming apparatus and film forming method using the same
JPH05217930A (en) Wafer heating apparatus
JP2769824B2 (en) Heat treatment equipment
JPH07150353A (en) Vacuum treating device and film forming device and film forming method using the same
JPH04226047A (en) Heating and monitoring system of wafer and its operating method
JP2000223435A (en) Substrate temperature detecting method, substrate temperature detecting device, and substrate processing apparatus provided therewith