JPH11237287A - Temperature distribution measuring apparatus - Google Patents

Temperature distribution measuring apparatus

Info

Publication number
JPH11237287A
JPH11237287A JP10039000A JP3900098A JPH11237287A JP H11237287 A JPH11237287 A JP H11237287A JP 10039000 A JP10039000 A JP 10039000A JP 3900098 A JP3900098 A JP 3900098A JP H11237287 A JPH11237287 A JP H11237287A
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
temperature distribution
sensor
distribution measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10039000A
Other languages
Japanese (ja)
Inventor
Tokio Kai
登喜雄 開
Tsuyotoshi Yamaura
剛俊 山浦
Yoshiaki Inoue
好章 井上
Tadashi Sugimura
忠士 杉村
Masazumi Tsukano
正純 塚野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10039000A priority Critical patent/JPH11237287A/en
Publication of JPH11237287A publication Critical patent/JPH11237287A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the temperature at a local high temperature part of an object by winding an optical fiber sensor, obtained by bonding a single optical fiber onto a supporting member in ring shape, around an object and measuring the backscattering light of the optical fiber. SOLUTION: An optical fiber 1 is coiled by several turns with diameter D of about 60 mm and bonded onto a thin plate 7 of copper, nickel, or the like, having width W of about 70 mm at an interval L of about 600 mm in the longitudinal direction to form an optical fiber sensor 8. The sensor 8 is then wound round a high temperature piping (object) A at a specified interval and backscattering light is measured thus measuring temperature distribution at each position of the piping A by means of a temperature distribution meter 2. When a sensor 8 comprising an optical fiber 1 turned twice with diameter D of about 60 mm is used, for example, total length of the fiber 1 exceeds 3 m at a local high temperature part (hot spot) 6 of 100 deg.C and a highest temperature part of about 100 deg.C can be detected. Temperature can be measured even when the area of high temperature part of object A is small and the temperature increases locally.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバのラマ
ン散乱光を分析することにより、光ファイバ各部の温度
を計測する温度分布計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature distribution measuring device for measuring the temperature of each part of an optical fiber by analyzing Raman scattered light of the optical fiber.

【0002】[0002]

【従来の技術】この種の温度分布計測装置では、光ファ
イバの片端からレーザパルス光を入射する。すると、該
光ファイバ内でラマン散乱光が発生し、後方散乱光とし
て再び入射端に戻ってくる。この後方散乱光のストーク
ス光とアンチストークス光との強度比及び温度には、次
式(1)の関係が成立する。
2. Description of the Related Art In this type of temperature distribution measuring device, laser pulse light is incident from one end of an optical fiber. Then, Raman scattered light is generated in the optical fiber, and returns to the incident end again as back scattered light. The relationship of the following equation (1) is established between the intensity ratio and the temperature of the Stokes light and the anti-Stokes light of the backscattered light.

【0003】 T=−hcv/k・log(Ias/αIs) …(1) T:絶対温度、h:プランク定数、c:真空中の光速、
k:ボルツマン定数、Ias:アンチストークス光強
度、Is:ストークス光強度、α:補正係数、ν:ラマ
ンシフト量 また、パルス光を入射してから散乱光が返ってくるまで
の時間は、パルス光の光路により決まるので、その時間
から測定位置を知ることができる。この関係は、次式
(2)で与えられる。
T = −hcv / k · log (Ias / αIs) (1) T: absolute temperature, h: Planck constant, c: speed of light in vacuum,
k: Boltzmann's constant, Ias: anti-Stokes light intensity, Is: Stokes light intensity, α: correction coefficient, ν: Raman shift amount The time from when the pulsed light is incident until the scattered light returns is the pulsed light. The measurement position can be known from that time. This relationship is given by the following equation (2).

【0004】L=C0 t/2n …(2) L:距離、C0 :真空中の光速、n:光ファイバの屈折
率 t:パルス入射から散乱光を受けるまでの遅れ時間 ここで、距離Lの分解能は、パルス入射から散乱光を受
けるまでの遅れ時間tの間隔を小さく測定すれば向上す
る。そのためには、パルス入射光の幅を短くすればよい
が、その場合反面散乱光強度が小さくなるため、距離分
解能には限界がある。
L = C0 t / 2n (2) L: distance, C0: speed of light in vacuum, n: refractive index of optical fiber t: delay time from pulse incident to receiving scattered light Here, distance L The resolution can be improved by measuring a small interval of the delay time t from the incidence of the pulse to the reception of the scattered light. For this purpose, the width of the pulse incident light may be reduced, but in this case, the intensity of the scattered light is reduced, so that the distance resolution is limited.

【0005】図4は、上述した原理を用いた温度分布計
測器による光ファイバの温度に対する距離分解能の試験
状況を示す図である。図4において、1は光ファイバ、
2は温度分布計測器、3は恒温炉を示す。恒温炉3の内
部温度を100℃一定になるよう制御し、恒温炉3の内
部に入れる光ファイバ1のl1 〜l2 間の長さを3m,
2m,1m及び0.5mと変化させ、温度分布計測器2
を用いて各長さにおける温度分布を測定する。
FIG. 4 is a diagram showing a test situation of a distance resolution with respect to the temperature of an optical fiber by a temperature distribution measuring device using the above principle. In FIG. 4, 1 is an optical fiber,
2 denotes a temperature distribution measuring instrument, and 3 denotes a constant temperature furnace. The inside temperature of the constant temperature furnace 3 is controlled to be constant at 100 ° C., and the length between l 1 and l 2 of the optical fiber 1 inserted into the constant temperature furnace 3 is 3 m.
2m, 1m and 0.5m, temperature distribution measuring instrument 2
Is used to measure the temperature distribution at each length.

【0006】図5は上記距離分解能試験の結果を示す図
であり、横軸に恒温炉3内の光ファイバ1の中心を0点
とした測定位置、縦軸に恒温炉3内の光ファイバ1の長
さが3m,2m,1m及び0.5mである場合の温度測
定結果を、それぞれ3L,2L,1L及び0.5Lで示
している。図5から分かるように、恒温炉3内に光ファ
イバ1を3m入れた場合のみ(3L)、光ファイバ1の
中心部が100℃を示すが、それより短い場合はいずれ
も恒温炉3内で100℃より低い値を示している。この
ように、光ファイバ1は局部的温度の検出能力が悪いこ
とが分かる。
FIG. 5 is a diagram showing the results of the distance resolution test. The horizontal axis represents the measurement position with the center of the optical fiber 1 in the constant temperature furnace 3 as 0 point, and the vertical axis represents the optical fiber 1 in the constant temperature furnace 3. The temperature measurement results when the lengths are 3 m, 2 m, 1 m and 0.5 m are indicated by 3 L, 2 L, 1 L and 0.5 L, respectively. As can be seen from FIG. 5, the center of the optical fiber 1 shows 100 ° C. only when the optical fiber 1 is placed 3 m into the constant temperature furnace 3 (3 L). The value is lower than 100 ° C. Thus, it can be seen that the optical fiber 1 has poor local temperature detection ability.

【0007】図6は、光ファイバを用いた従来の温度分
布計測法の適用例である高温配管の異常監視装置を示す
図である。図6において、4は鋼鉄管、5は耐熱材、G
は高温ガス、6は局所高温部(以下、ホットスポットと
称す)を示している。図6では、高温配管Aの内部に高
温ガスGが流れるため、耐熱材5を貼り付けることで鋼
鉄管4を保護している。しかし、耐熱材5にクラックや
剥離が起こると鋼鉄管4が損傷するため、光ファイバ1
を鋼鉄管4に巻き付けて敷設し、温度分布計測器2によ
り高温配管の温度監視を行なっている。
FIG. 6 is a diagram showing an apparatus for monitoring abnormalities in a high-temperature pipe, which is an application example of a conventional temperature distribution measuring method using an optical fiber. In FIG. 6, 4 is a steel tube, 5 is a heat-resistant material, G
Denotes a high-temperature gas, and 6 denotes a local high-temperature portion (hereinafter, referred to as a hot spot). In FIG. 6, since the high-temperature gas G flows inside the high-temperature pipe A, the steel pipe 4 is protected by attaching the heat-resistant material 5. However, if the heat-resistant material 5 is cracked or peeled, the steel tube 4 is damaged.
Is wrapped around a steel tube 4, and the temperature of the high-temperature pipe is monitored by the temperature distribution measuring device 2.

【0008】[0008]

【発明が解決しようとする課題】図6に示した高温配管
Aの耐熱材5にクラックや剥離が起こると、鋼鉄管4の
表面にホットスポット6が生じる。その部分の光ファイ
バ1の温度が上昇したことを温度分布計測器2で計測す
ることにより、異常を検知する。しかし、ホットスポッ
トの面積が小さく局部的な温度上昇の場合、上述したよ
うに光ファイバ1は局部的温度の検出能力が悪いため、
異常を見落とすという問題がある。本発明の目的は、測
定対象の局部的な高温部の温度計測を行なうことができ
る温度分布計測装置を提供することにある。
When a crack or peeling occurs in the heat-resistant material 5 of the high-temperature pipe A shown in FIG. 6, a hot spot 6 is generated on the surface of the steel pipe 4. An abnormality is detected by measuring the rise in the temperature of the optical fiber 1 in that portion with the temperature distribution measuring device 2. However, when the area of the hot spot is small and the temperature is locally increased, the optical fiber 1 has a poor local temperature detection capability as described above.
There is a problem of overlooking abnormalities. An object of the present invention is to provide a temperature distribution measurement device capable of measuring the temperature of a local high-temperature portion of a measurement target.

【0009】[0009]

【課題を解決するための手段】上記課題を解決し目的を
達成するために、本発明の温度分布計測装置は以下の如
く構成されている。 (1)本発明の温度分布計測装置は、一本の光ファイバ
を複数の輪状に形成し支持部材に貼付けてなる光ファイ
バセンサと、この光ファイバセンサを測定対象に設け、
前記光ファイバの後方散乱光を計測することで前記測定
対象の位置に対する温度分布を計測する計測手段と、か
ら構成されている。 (2)本発明の温度分布計測装置は上記(1)に記載の
装置であり、かつ前記光ファイバセンサは、前記光ファ
イバを所定径にて所定回数巻いた輪状のものを前記支持
部材の長手方向に沿い所定間隔をもって貼り付けた。
Means for Solving the Problems To solve the above problems and achieve the object, a temperature distribution measuring device of the present invention is configured as follows. (1) A temperature distribution measuring device according to the present invention includes: an optical fiber sensor formed by forming one optical fiber into a plurality of rings and affixing the optical fiber sensor to a support member;
Measuring means for measuring the temperature distribution with respect to the position of the measurement target by measuring the backscattered light of the optical fiber. (2) The temperature distribution measuring device according to the present invention is the device described in (1) above, wherein the optical fiber sensor is formed by winding the optical fiber into a ring shape having a predetermined diameter and a predetermined number of times. Attached at predetermined intervals along the direction.

【0010】[0010]

【発明の実施の形態】図1は、本発明の実施の形態に係
る温度分布計測装置を高温配管の異常監視に適用した構
成を示す図である。図1において図6と同一な部分には
同一符号を付してある。図1に示す高温配管Aでは、鋼
鉄管4の内面に耐熱材5が貼り付けられている。鋼鉄管
4の外面には、リボンケーブル状の光ファイバセンサ8
が鋼鉄管4の長手方向に対して所定間隔をもって巻かれ
ている。光ファイバセンサ8には、後述するように光フ
ァイバ1が複数の輪を有するよう巻かれており、光ファ
イバ1の末端は温度分布計測器2に接続されている。
FIG. 1 is a diagram showing a configuration in which a temperature distribution measuring device according to an embodiment of the present invention is applied to abnormal monitoring of a high-temperature pipe. In FIG. 1, the same parts as those in FIG. 6 are denoted by the same reference numerals. In the high-temperature pipe A shown in FIG. 1, a heat-resistant material 5 is attached to the inner surface of the steel pipe 4. An optical fiber sensor 8 in the form of a ribbon cable is provided on the outer surface of the steel tube 4.
Are wound at predetermined intervals in the longitudinal direction of the steel tube 4. The optical fiber 1 is wound around the optical fiber sensor 8 so as to have a plurality of loops as described later, and the end of the optical fiber 1 is connected to the temperature distribution measuring device 2.

【0011】図2は、光ファイバセンサ8の構成を示す
図である。図2では、銅、ニッケル等からなり幅(W)
が約70mm程度である薄板7上に、光ファイバ1を直
径(D)約60mmで数回(図2では2回)巻いたもの
を、薄板7の長手方向へ約60mm強の間隔(L)で接
着剤等により貼付けている。光ファイバは、曲げ径が小
さくなると透過光の減衰が起こり温度計測精度が低下す
るので、直径(D)60mm以上で巻くことが望まし
い。また、巻数を何回にするかは、温度検出感度との関
係を考慮して決定する。
FIG. 2 is a diagram showing the configuration of the optical fiber sensor 8. As shown in FIG. In FIG. 2, the width (W) is made of copper, nickel, or the like.
The optical fiber 1 is wound several times (twice in FIG. 2) with a diameter (D) of about 60 mm on a thin plate 7 having a diameter of about 70 mm, and an interval (L) of about 60 mm in the longitudinal direction of the thin plate 7. Is attached with an adhesive or the like. It is desirable that the optical fiber be wound with a diameter (D) of 60 mm or more because the transmitted light is attenuated when the bending diameter is reduced, and the accuracy of temperature measurement is reduced. The number of turns is determined in consideration of the relationship with the temperature detection sensitivity.

【0012】以下、ホットスポットと検出温度の関係を
述べる。図6に示した従来方法において、100℃のホ
ットスポット6の直径が0.5mであり、光ファイバ1
がホットスポット6の中央部に敷設されていたとする。
この場合、ホットスポット6上の光ファイバ1の長さは
約0.5mであるため、図5に示すように測定温度が最
高部で約45℃となり、100℃のホットスポット6の
検出を行なえない。
The relationship between the hot spot and the detected temperature will be described below. In the conventional method shown in FIG. 6, the diameter of the hot spot 6 at 100.degree.
Is laid at the center of the hot spot 6.
In this case, since the length of the optical fiber 1 on the hot spot 6 is about 0.5 m, the measurement temperature is about 45 ° C. at the highest part as shown in FIG. 5, and the hot spot 6 at 100 ° C. can be detected. Absent.

【0013】これに対して、本実施の形態による光ファ
イバセンサ8のように、光ファイバ1を直径約60mm
で例えば2回巻いたものを使用した場合、100℃のホ
ットスポット6の直径が0.5mであるとすると、光フ
ァイバ1の総長Lは下式(3)の通りとなる。
On the other hand, like the optical fiber sensor 8 according to the present embodiment, the optical fiber 1 has a diameter of about 60 mm.
For example, when a wire wound twice is used and the diameter of the hot spot 6 at 100 ° C. is 0.5 m, the total length L of the optical fiber 1 is as shown in the following equation (3).

【0014】[0014]

【数1】 すなわち、光ファイバ1の総長Lは3mを越えるため、
図5から最高部で約100℃が検知でき、100℃のホ
ットスポット6の検出が可能になる。
(Equation 1) That is, since the total length L of the optical fiber 1 exceeds 3 m,
From FIG. 5, about 100 ° C. can be detected at the highest part, and the hot spot 6 at 100 ° C. can be detected.

【0015】図3は、上記光ファイバセンサ8の変形例
である光ファイバセンサ8’の構成を示す図である。図
3において図2と同一な部分には同一符号を付してあ
る。図3では薄板7上に、光ファイバ1を直径(D)約
60mmで1回巻いたものを、薄板7の長手方向へ約6
0mm毎に接着剤等により貼付けている。この場合も上
述したと同様に、100℃のホットスポット6の検出が
可能になる。
FIG. 3 is a diagram showing a configuration of an optical fiber sensor 8 'which is a modified example of the optical fiber sensor 8. As shown in FIG. 3, the same parts as those in FIG. 2 are denoted by the same reference numerals. In FIG. 3, the optical fiber 1 is wound on the thin plate 7 once with a diameter (D) of about 60 mm, and is wound about 6 mm in the longitudinal direction of the thin plate 7.
It is stuck every 0 mm with an adhesive or the like. In this case as well, the detection of the hot spot 6 at 100 ° C. becomes possible as described above.

【0016】被温度測定物である高温配管Aに直接光フ
ァイバ1を直径約60mmで数回巻いて敷設することは
作業に多大な手間がかかる。よって、光ファイバセンサ
8,8’のように、検出目的に適合した光ファイバ1の
直径と巻数を有するリボンケーブル状のものを予め製作
し高温配管Aに巻き付けることで、作業の簡易化を図る
ことができる。
It takes a lot of work to directly lay the optical fiber 1 several times with a diameter of about 60 mm around the high temperature pipe A which is the object to be measured. Therefore, as in the case of the optical fiber sensors 8 and 8 ', a ribbon cable having the diameter and the number of turns of the optical fiber 1 suitable for the detection purpose is manufactured in advance and wound around the high-temperature pipe A, thereby simplifying the operation. be able to.

【0017】なお、本発明は上記実施の形態のみに限定
されず、要旨を変更しない範囲で適時変形して実施でき
る。例えば、上記光ファイバ1の直径、巻数及び巻き方
は、検出目的に応じて適宜変形して実施できる。
The present invention is not limited to the above-described embodiment, but can be implemented with appropriate modifications without departing from the scope of the invention. For example, the diameter, the number of turns, and the winding method of the optical fiber 1 can be appropriately modified according to the purpose of detection.

【0018】(実施の形態のまとめ)実施の形態に示さ
れた構成及び作用効果をまとめると次の通りである。 [1]実施の形態に示された温度分布計測装置は、一本
の光ファイバ1を複数の輪状に形成し支持部材(7)に
貼付けてなる光ファイバセンサ(8,8’)と、この光
ファイバセンサ(8,8’)を測定対象(A)に設け、
前記光ファイバ1の後方散乱光を計測することで前記測
定対象(A)の位置に対する温度分布を計測する計測手
段(2)と、から構成されている。
(Summary of Embodiment) The configuration, operation and effect shown in the embodiment are summarized as follows. [1] The temperature distribution measuring device shown in the embodiment has an optical fiber sensor (8, 8 ') formed by forming one optical fiber 1 into a plurality of rings and affixing it to a support member (7). Optical fiber sensors (8, 8 ') are provided on the measurement target (A),
Measuring means (2) for measuring the temperature distribution with respect to the position of the measurement target (A) by measuring the backscattered light of the optical fiber 1.

【0019】したがって上記温度分布計測装置によれ
ば、測定対象(A)の高温部(6)の面積が小さく局部
的に温度が上昇した場合でも、温度計測を行なうことが
でき、前記測定対象(A)の異常を検知できる。 [2]実施の形態に示された温度分布計測装置は上記
[1]に記載の装置であり、かつ前記光ファイバセンサ
(8)は、前記光ファイバ1を所定径にて所定回数巻い
た輪状のものを前記支持部材(7)の長手方向に沿い所
定間隔をもって貼り付けた。したがって上記温度分布計
測装置によれば、簡易な作業で光ファイバ1を測定対象
(A)に敷設することができる。
Therefore, according to the temperature distribution measuring device, even when the area of the high temperature portion (6) of the measurement object (A) is small and the temperature locally rises, the temperature can be measured, and the measurement object (A) can be measured. The abnormality of A) can be detected. [2] The temperature distribution measuring device described in the embodiment is the device described in the above [1], and the optical fiber sensor (8) has a ring shape in which the optical fiber 1 is wound with a predetermined diameter a predetermined number of times. Were attached at predetermined intervals along the longitudinal direction of the support member (7). Therefore, according to the temperature distribution measuring device, the optical fiber 1 can be laid on the measurement target (A) by a simple operation.

【0020】[0020]

【発明の効果】本発明の温度分布計測装置によれば、測
定対象の高温部の面積が小さく局部的に温度が上昇した
場合でも、温度計測を行なうことができ、前記測定対象
の異常を検知できる。本発明の温度分布計測装置によれ
ば、簡易な作業で光ファイバを測定対象に敷設すること
ができる。
According to the temperature distribution measuring apparatus of the present invention, even when the area of the high-temperature portion to be measured is small and the temperature locally rises, the temperature can be measured and the abnormality of the measuring object can be detected. it can. ADVANTAGE OF THE INVENTION According to the temperature distribution measuring device of this invention, an optical fiber can be laid to a measuring object by simple operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る温度分布計測装置を
高温配管の異常監視に適用した構成を示す図。
FIG. 1 is a diagram showing a configuration in which a temperature distribution measuring device according to an embodiment of the present invention is applied to monitoring of abnormalities in a high-temperature pipe.

【図2】本発明の実施の形態に係る光ファイバセンサの
構成を示す図。
FIG. 2 is a diagram showing a configuration of an optical fiber sensor according to the embodiment of the present invention.

【図3】本発明の実施の形態に係る光ファイバセンサの
変形例を示す図。
FIG. 3 is a diagram showing a modification of the optical fiber sensor according to the embodiment of the present invention.

【図4】従来例に係る温度分布計測器による光ファイバ
の温度に対する距離分解能の試験状況を示す図。
FIG. 4 is a diagram illustrating a test situation of a distance resolution with respect to an optical fiber temperature by a temperature distribution measuring device according to a conventional example.

【図5】本発明の実施の形態及び従来例に係る距離分解
能試験の結果を示す図。
FIG. 5 is a diagram showing a result of a distance resolution test according to the embodiment of the present invention and a conventional example.

【図6】従来例に係る高温配管の異常監視装置を示す
図。
FIG. 6 is a diagram showing an abnormality monitoring apparatus for a high-temperature pipe according to a conventional example.

【符号の説明】[Explanation of symbols]

1…光ファイバ 2…温度分布計測器 3…恒温炉 4…鋼鉄管 5…耐熱材 6…局所高温部 7…薄板 8,8’…光ファイバセンサ A…高温配管 G…高温ガス DESCRIPTION OF SYMBOLS 1 ... Optical fiber 2 ... Temperature distribution measuring device 3 ... Constant temperature furnace 4 ... Steel tube 5 ... Heat resistant material 6 ... Local high temperature part 7 ... Thin plate 8, 8 '... Optical fiber sensor A ... High temperature piping G ... High temperature gas

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年12月14日[Submission date] December 14, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0013】これに対して、本実施の形態による光ファ
イバセンサ8のように、光ファイバ1を直径約60mm
で例えば2回巻いたものを使用した場合、100℃のホ
ットスポット6の直径が0.5mであるとすると、ホッ
トスポット6部分での光ファイバ1の総長Lは下式
(3)の通りとなる。
On the other hand, like the optical fiber sensor 8 according to the present embodiment, the optical fiber 1 has a diameter of about 60 mm.
If in using that wound for example, twice the diameter of the 100 ° C. hot spot 6 is assumed to be 0.5 m, hot
The total length L of the optical fiber 1 at the spot 6 is given by the following equation (3).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉村 忠士 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 塚野 正純 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tadashi Sugimura 5-717-1 Fukabori-cho, Nagasaki-shi, Nagasaki Sanishi Heavy Industries Co., Ltd. Nagasaki Research Institute (72) Inventor Masazumi Tsukano 1-1-1, Akunoura-cho, Nagasaki-shi, Nagasaki No.Mitsubishi Heavy Industries, Ltd.Nagasaki Shipyard

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一本の光ファイバを複数の輪状に形成し支
持部材に貼付けてなる光ファイバセンサと、 この光ファイバセンサを測定対象に設け、前記光ファイ
バの後方散乱光を計測することで前記測定対象の位置に
対する温度分布を計測する計測手段と、 を具備したことを特徴とする温度分布計測装置。
An optical fiber sensor in which one optical fiber is formed in a plurality of loops and attached to a support member, and the optical fiber sensor is provided on an object to be measured, and backscattered light of the optical fiber is measured. A temperature distribution measuring device for measuring a temperature distribution with respect to the position of the measurement target.
【請求項2】前記光ファイバセンサは、前記光ファイバ
を所定径にて所定回数巻いた輪状のものを前記支持部材
の長手方向に沿い所定間隔をもって貼り付けたことを特
徴とする請求項1に記載の温度分布計測装置。
2. The optical fiber sensor according to claim 1, wherein the optical fiber sensor is formed by attaching a ring-shaped optical fiber wound a predetermined number of times with a predetermined diameter along the longitudinal direction of the support member at a predetermined interval. The described temperature distribution measuring device.
JP10039000A 1998-02-20 1998-02-20 Temperature distribution measuring apparatus Pending JPH11237287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10039000A JPH11237287A (en) 1998-02-20 1998-02-20 Temperature distribution measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10039000A JPH11237287A (en) 1998-02-20 1998-02-20 Temperature distribution measuring apparatus

Publications (1)

Publication Number Publication Date
JPH11237287A true JPH11237287A (en) 1999-08-31

Family

ID=12540867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10039000A Pending JPH11237287A (en) 1998-02-20 1998-02-20 Temperature distribution measuring apparatus

Country Status (1)

Country Link
JP (1) JPH11237287A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2408329A (en) * 2002-12-17 2005-05-25 Sensor Highway Ltd Flow visualization in wellbores using fibre optic sensing
JP2007178349A (en) * 2005-12-28 2007-07-12 Hitachi Cable Ltd Optical sensor, optical temperature measuring device and measuring device using the sensor
GB2515415A (en) * 2009-05-27 2014-12-24 Silixa Ltd Method and apparatus for optical sensing
JP2018105188A (en) * 2016-12-26 2018-07-05 三菱重工業株式会社 Exhaust emission control device for engine
CN113447159A (en) * 2021-08-30 2021-09-28 中国空气动力研究与发展中心设备设计与测试技术研究所 Wind tunnel cold leakage monitoring method based on global normal distribution and local outlier factor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334420A (en) * 1995-04-07 1996-12-17 Nippon Steel Corp Structure and method for detecting surface temperature distribution
JPH09101210A (en) * 1995-10-03 1997-04-15 Ishikawajima Harima Heavy Ind Co Ltd Optical fiber sensor for temperature measurement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334420A (en) * 1995-04-07 1996-12-17 Nippon Steel Corp Structure and method for detecting surface temperature distribution
JPH09101210A (en) * 1995-10-03 1997-04-15 Ishikawajima Harima Heavy Ind Co Ltd Optical fiber sensor for temperature measurement

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2408329A (en) * 2002-12-17 2005-05-25 Sensor Highway Ltd Flow visualization in wellbores using fibre optic sensing
GB2408329B (en) * 2002-12-17 2005-09-21 Sensor Highway Ltd Use of fiber optics in deviated flows
JP2007178349A (en) * 2005-12-28 2007-07-12 Hitachi Cable Ltd Optical sensor, optical temperature measuring device and measuring device using the sensor
JP4706475B2 (en) * 2005-12-28 2011-06-22 日立電線株式会社 Measuring method using optical sensor
GB2515415B (en) * 2009-05-27 2015-04-22 Silixa Ltd Fibre arrangements for optical sensing.
GB2518767A (en) * 2009-05-27 2015-04-01 Silixa Ltd Method and apparatus for optical sensing
GB2515415A (en) * 2009-05-27 2014-12-24 Silixa Ltd Method and apparatus for optical sensing
GB2518767B (en) * 2009-05-27 2015-06-24 Silixa Ltd Fibre arrangements for optical sensing
US9140582B2 (en) 2009-05-27 2015-09-22 Silixa Limited Optical sensor and method of use
US9541426B2 (en) 2009-05-27 2017-01-10 Silica Limited Optical sensor and method of use
US9541425B2 (en) 2009-05-27 2017-01-10 Silixa Limited Method and apparatus for optical sensing
US11079269B2 (en) 2009-05-27 2021-08-03 Silixa Limited Method and apparatus for optical sensing
US11802789B2 (en) 2009-05-27 2023-10-31 Silixa Ltd. Method and apparatus for optical sensing
JP2018105188A (en) * 2016-12-26 2018-07-05 三菱重工業株式会社 Exhaust emission control device for engine
CN113447159A (en) * 2021-08-30 2021-09-28 中国空气动力研究与发展中心设备设计与测试技术研究所 Wind tunnel cold leakage monitoring method based on global normal distribution and local outlier factor

Similar Documents

Publication Publication Date Title
JP3792256B2 (en) A device for monitoring radial clearance in turbines.
JPH0579919A (en) Improved temperature sensor
JP2009281789A (en) Temperature measuring instrument and method for fitting the same
JPH03206927A (en) High temperature sensor
JPH11237287A (en) Temperature distribution measuring apparatus
JPH11344390A (en) Device for detecting damaged position of pipe or container
JP3063063B2 (en) Optical fiber temperature distribution measurement system
JPH07280664A (en) Temperature measurement method
JP2008107327A (en) Device and method for measuring pipe wall thickness
JPS59203929A (en) Detection of temperature abnormality
KR100467985B1 (en) Ultrasonic Temperature Sensor to Measure Very High Temperature in Ultra-High Temperature
JP2001201406A (en) Measurement method for refracory furnace temperature and device thereof using optical fiber
JPH07270254A (en) Optical fiber type device for measuring temperature
JPS6166133A (en) Temperature sensor using optical fiber
JP2781269B2 (en) Optical fiber sensor
JP2008101933A (en) Surface temperature measuring method for steel structure
JP3304499B2 (en) Hot stove iron shell temperature measurement method
JP2005195502A (en) Optical fiber type temperature measuring apparatus and temperature measuring method
JP2645173B2 (en) Temperature distribution measurement type optical fiber sensor
JPS6269131A (en) Optical fiber temperature sensor
KR101934839B1 (en) Flow Reactor temperature measurement system using Quartz material
JP5544249B2 (en) Inspection device
JPH0368824A (en) Measuring apparatus for surface temperature of piping and the like
JPH04318432A (en) Distribution temperature measuring method by optical fiber sensor
JPH0368825A (en) Distribution type strain sensor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030527