JP2001201406A - Measurement method for refracory furnace temperature and device thereof using optical fiber - Google Patents

Measurement method for refracory furnace temperature and device thereof using optical fiber

Info

Publication number
JP2001201406A
JP2001201406A JP2000010967A JP2000010967A JP2001201406A JP 2001201406 A JP2001201406 A JP 2001201406A JP 2000010967 A JP2000010967 A JP 2000010967A JP 2000010967 A JP2000010967 A JP 2000010967A JP 2001201406 A JP2001201406 A JP 2001201406A
Authority
JP
Japan
Prior art keywords
fiber
optical fiber
temperature
fixed point
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000010967A
Other languages
Japanese (ja)
Inventor
Akira Noma
野間  彰
Shizuo Yasuda
静生 保田
Susumu Nishikawa
進 西川
Michio Abe
道雄 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000010967A priority Critical patent/JP2001201406A/en
Publication of JP2001201406A publication Critical patent/JP2001201406A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an effective refractory temperature measurement device by using a Raman scattering type temperature meter, which utilizes an optical fiber as a temperature sensor for constituting a temperature measurement device of a refractory furnace and reducing the distance resolution to be less than ±50 cm. SOLUTION: In a device for measuring temperature distribution in the refractory furnace at each position of fiber 1 extension, by analyzing a time from incidence of laser pulse into the fiber 1 to returning as back scattering light 3 in a state such that the fiber 1 is wound around the furnace wall, wavelength and light intensity, positional accuracy of each measuring point 1A is compensated, based on the emission time of the scattered light at a fixed point by thermally contacting a fixed low-temperature point 1A consisting of a water tube and the like 11 on the way of the fiber 1. The optical fiber, wound around the furnace wall, may be a plural number and the fixed low-temperature point 1A may have a known distance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光ファイバ温度セン
サを用いた耐火炉温度計測方法とその装置に係り、特に
灰溶融炉やごみ焼却炉の温度計測方法とその装置に関す
る。
The present invention relates to a method and an apparatus for measuring the temperature of a refractory furnace using an optical fiber temperature sensor, and more particularly to a method and an apparatus for measuring the temperature of an ash melting furnace or a refuse incinerator.

【0002】[0002]

【従来の技術】従来より光ファイバそのものを温度セン
サとする温度計測装置は公知であり、一般にラマン散乱
式温度計と呼ばれている。その原理図を図5に基づいて
説明するに、光ファイバ1にレーザパルス光を入射する
と、その光は光ファイバ1の各通過位置で散乱光を発生
する。この散乱光には図6に示すように、入射光と同じ
波長のレイリー散乱光と、入射光と異なるラマン散乱光
があり、後者は更に入射光より長い波長のストークス光
と、短い波長のアンチストークス光に分けられる。この
ストークス光とアンチストークス光の強度比は、散乱光
を発生した場所の光ファイバ1の温度と一定の関係があ
ることが確かめられている。
2. Description of the Related Art Conventionally, a temperature measuring device using an optical fiber itself as a temperature sensor is known, and is generally called a Raman scattering thermometer. The principle diagram will be described with reference to FIG. 5. When laser pulse light is incident on the optical fiber 1, the light generates scattered light at each passing position of the optical fiber 1. As shown in FIG. 6, the scattered light includes Rayleigh scattered light having the same wavelength as the incident light and Raman scattered light different from the incident light. It is divided into Stokes light. It has been confirmed that the intensity ratio between the Stokes light and the anti-Stokes light has a certain relationship with the temperature of the optical fiber 1 where the scattered light is generated.

【0003】一方、光ファイバ1の各部で発生した散乱
光の一部は後方散乱光3として再び入射位置に戻ってく
る。従って入射パルス光を入射してから後方散乱光3と
して戻ってくる時間を測定すれば、散乱光が発生した位
置が分かる。次に図6に示すように、次々に入射位置に
戻ってくる後方散乱光3の波長と光強度を分析すること
により各位置(測定距離:最大30km〜最小:通常1
m、測定精度:最高±0.5℃)の温度が分かる。
On the other hand, a part of the scattered light generated in each part of the optical fiber 1 returns to the incident position again as the back scattered light 3. Therefore, the position where the scattered light is generated can be determined by measuring the time when the light is returned as the backscattered light 3 after the incidence of the incident pulse light. Next, as shown in FIG. 6, by analyzing the wavelength and light intensity of the backscattered light 3 returning to the incident position one after another, each position (measurement distance: maximum 30 km to minimum: usually 1)
m, measurement accuracy: a temperature of up to ± 0.5 ° C.).

【0004】[0004]

【発明が解決しようとする課題】一方灰溶融炉やごみ焼
却炉の耐火物内の温度を計測する際には、従来シース付
熱電対を埋め込んでいたが、前記焼却炉内の各位置の温
度を測定するために、多数の熱電対が必要であり、又こ
れらのセンサが曝される灰溶融炉や焼却炉内には塩素ガ
ス、アンモニアガス等の腐食ガスが存在するために、こ
れらの腐食性ガスによって、灰溶融炉で数週間、ごみ焼
却炉で1年程度の寿命しかなかった。
On the other hand, when measuring the temperature in a refractory of an ash melting furnace or a refuse incinerator, a thermocouple with a sheath is conventionally embedded, but the temperature of each position in the incinerator is measured. Many thermocouples are required to measure the temperature of ash melting furnaces and incinerators to which these sensors are exposed. Depending on the type of gas, the service life was only several weeks in the ash melting furnace and about one year in the refuse incinerator.

【0005】従ってかかる焼却炉等の耐火物炉に光ファ
イバ1そのものを温度センサとするラマン散乱式温度計
を用いることにより、ファイバ1は石英で出来ている為
腐食ガス中に該センサを曝しても腐食しない。前記光フ
ァイバ1を炉壁内に巻回することにより、1本のファイ
バ1で、該ファイバ1上の全ての位置の炉内壁の温度分
布を計測できるために従来の熱電対のように多数の数の
センサが不要であり、産業上非常に有用であることが推
量される。
Accordingly, by using a Raman scattering thermometer using the optical fiber 1 itself as a temperature sensor in such a refractory furnace such as an incinerator, the sensor is exposed to a corrosive gas since the fiber 1 is made of quartz. Also does not corrode. By winding the optical fiber 1 inside the furnace wall, the temperature distribution of the furnace inner wall at all positions on the fiber 1 can be measured with one fiber 1, so that a large number of thermocouples like a conventional thermocouple are used. It is inferred that a number of sensors are not required and it is very useful in industry.

【0006】しかしながらかかるラマン散乱式温度計は
送電線やトンネル、ダム、海洋などの測定距離間隔が比
較的長距離な産業設備にはその実施例が多く報告されて
いるが、測定距離間隔が1m以内の焼却炉等の耐火物炉
に用いる場合には距離精度(位置精度)が十分でないこと
からその実施例も余り存在しない。又位置精度を稼ぐた
めに、前記光ファイバ1をループ状に形成して位置精度
を稼ぐ技術も開示されているが、尚距離分解能は±50
cm程度であり、それ以下の分解能を得ることは出来な
い。
However, many Raman scattering thermometers have been reported for industrial equipment having relatively long measuring distances, such as transmission lines, tunnels, dams, and oceans, but the measuring distances are 1 m. When used in refractory furnaces such as incinerators within the range, there are few examples because the distance accuracy (position accuracy) is not sufficient. Further, in order to increase the position accuracy, a technique of forming the optical fiber 1 in a loop shape to increase the position accuracy is disclosed, but the distance resolution is ± 50.
cm, and a resolution lower than that cannot be obtained.

【0007】本発明は、かかる光ファイバそのものを温
度センサとするラマン散乱式温度計を用いて耐火物炉の
温度計測装置を構成するも距離分解能は±50cmより更
に短くして耐火物温度計測装置として有効な発明を提供
することにある。
According to the present invention, a temperature measuring device for a refractory furnace is constructed by using a Raman scattering thermometer using such an optical fiber itself as a temperature sensor. The invention is to provide an effective invention.

【0008】[0008]

【課題を解決するための手段】本発明はかかる課題を解
決するために、光ファイバ1を炉壁に沿って巻回、囲撓
その他の手段により延設した状態で、該光ファイバ1に
レーザパルス光を入射してから後方散乱光3として戻っ
てくるまでの時間、及び波長と光強度を分析することに
よりファイバ1延設各位置における耐火炉温度分布を計
測する方法において、前記ファイバ1の途中における低
温定点1Aと熱接触させて、該定点1Aにおける散乱光
の出射時間に基づいて各測定点1Aの位置精度を補償す
ることを特徴とする耐火炉温度分布計測方法を提案す
る。尚、前記光ファイバ1の巻回位置が炉壁冷却用水管
11に沿う炉壁内である場合に、前記光ファイバ1を熱
接触させる低温定点1Aは、例えば前記水管11を用い
るのが好ましいが、これのみに限定されない。更に前記
ファイバ1の途中における低温定点1Aとの接触位置は
既知距離であっても良く、又請求項4に記載のように、
炉壁に沿って多重巻きした複数本の光ファイバ1夫々を
既知距離の途中位置に低温定点1Aと熱接触させて、該
定点1Aにおける夫々のファイバ1の散乱光の戻り時間
の平均値に基づいて各測定点1Aの位置精度を補償する
ようにしてもよい。
According to the present invention, in order to solve the above-mentioned problems, a laser is applied to the optical fiber 1 while the optical fiber 1 is wound along a furnace wall, extended by means of bending or other means. In the method for measuring the refractory furnace temperature distribution at each position where the fiber 1 is extended by analyzing the time from when the pulsed light is incident to when it returns as the backscattered light 3 and the wavelength and the light intensity, the fiber 1 A method for measuring the temperature distribution of a refractory furnace is proposed, wherein the method is brought into thermal contact with a low-temperature fixed point 1A on the way to compensate the positional accuracy of each measurement point 1A based on the emission time of scattered light at the fixed point 1A. When the winding position of the optical fiber 1 is inside the furnace wall along the water pipe 11 for cooling the furnace wall, it is preferable to use, for example, the water pipe 11 as the low-temperature fixed point 1A for bringing the optical fiber 1 into thermal contact. , But is not limited to this. Further, the contact position with the low-temperature fixed point 1A in the middle of the fiber 1 may be a known distance, and as described in claim 4,
Each of the plurality of optical fibers 1 wound multiple times along the furnace wall is brought into thermal contact with a low-temperature fixed point 1A at an intermediate position of a known distance, and based on the average value of the return time of the scattered light of each fiber 1 at the fixed point 1A. Thus, the position accuracy of each measurement point 1A may be compensated.

【0009】請求項5記載の発明は請求項1記載の発明
を効果的に実施する装置に関するもので、炉壁に沿って
巻回、囲撓その他の手段により延設した光ファイバ1
と、該光ファイバ1にレーザパルス光を入射する入射パ
ルス発振手段2と、該レーザパルスが後方散乱光3とし
て戻ってくるまでの時間、及び波長と光強度を分析する
分析手段と、からなるファイバ1延設各位置における耐
火炉温度分布計測装置において、前記ファイバ1の途中
位置で熱接触させる低温定点1Aを具え、前記分析手段
内で該定点1Aにおける散乱光の出射時間に基づいて各
測定点1Aの位置精度を補償する補償手段を設けたこと
を特徴とする。
A fifth aspect of the present invention relates to an apparatus for effectively implementing the first aspect of the present invention, wherein the optical fiber 1 is extended along a furnace wall by winding, surrounding, or other means.
And an incident pulse oscillating means 2 for injecting a laser pulse light into the optical fiber 1, and an analyzing means for analyzing a time until the laser pulse returns as backscattered light 3, and a wavelength and light intensity. In the refractory furnace temperature distribution measuring device at each position where the fiber 1 is extended, a low temperature fixed point 1A which is brought into thermal contact at an intermediate position of the fiber 1 is provided, and each measurement is performed in the analysis means based on the emission time of the scattered light at the fixed point 1A. It is characterized in that a compensating means for compensating the positional accuracy of the point 1A is provided.

【0010】請求項6記載の発明は、前記光ファイバ1
の巻回位置が炉壁冷却用水管に沿う炉壁内であり、且つ
前記光ファイバ1を熱接触させる低温定点1Aが、前記
水管であることを特徴とする。
According to a sixth aspect of the present invention, the optical fiber 1
Is located inside the furnace wall along the water pipe for cooling the furnace wall, and the low-temperature fixed point 1A at which the optical fiber 1 is brought into thermal contact is the water pipe.

【0011】請求項7記載の発明は、前記ファイバ1の
途中における熱接触位置が既知距離であるもので、又請
求項8記載の発明は前記光ファイバ1が複数本の光ファ
イバ1であり、該複数本の光ファイバ1を炉壁に沿って
多重巻きするとともに、各光ファイバ1夫々を既知距離
の途中位置に低温定点1Aと熱接触させて熱接触位置の
既知距離若しくは平均演算地値を基準距離として位置補
償することを特徴とする。
The invention according to claim 7 is that the thermal contact position in the middle of the fiber 1 is a known distance, and the invention according to claim 8 is that the optical fiber 1 is a plurality of optical fibers 1, The plurality of optical fibers 1 are wound multiple times along the furnace wall, and each of the optical fibers 1 is brought into thermal contact with a low-temperature fixed point 1A at an intermediate position of a known distance to obtain a known distance or an average calculated ground value of the thermal contact position. The position compensation is performed as a reference distance.

【0012】かかる発明によれば、光ファイバ1にレー
ザパルス光を入力すると、内部で後方散乱し、該後方散
乱光3が入射端に戻ってくるまでの時間から位置を求め
ることができるが、低温定点1Aまでの入射端よりの距
離が既知距離の場合に、該既知距離Nと後方散乱光3の
戻り時間より求めた演算距離nとの差(N−n)を既知距
離で割ったものが補正係数α:((N−n)/N)とな
り、前記次々に入射位置に戻ってくる散乱光の戻り時間
に基づいて設定される各位置の演算距離を前記補正係数
に基づいて補償することが出来、位置精度を向上でき
る。
According to this invention, when the laser pulse light is input to the optical fiber 1, it is backscattered inside, and the position can be obtained from the time until the backscattered light 3 returns to the incident end. When the distance from the incident end to the low-temperature fixed point 1A is a known distance, the difference (N-n) between the known distance N and the calculated distance n obtained from the return time of the backscattered light 3 is divided by the known distance. Is the correction coefficient α: ((N−n) / N), and the calculated distance of each position set based on the return time of the scattered light returning to the incident position one after another is compensated based on the correction coefficient. And the position accuracy can be improved.

【0013】更に前記光ファイバ1を多重巻きして各フ
ァイバ1毎に低温定点1Aに基づく補正係数α1、α
2、α3…を求め、その平均値でαv((α1+α2+α
3)/3)位置精度を補償することにより一層高い精度
の位置精度の向上が出来る。
Further, the optical fiber 1 is wound in multiple windings, and correction factors α1, α based on the low-temperature fixed point 1A are provided for each fiber 1.
2, α3... Are calculated, and the average value is αv ((α1 + α2 + α
3) / 3) By compensating the positional accuracy, it is possible to improve the positional accuracy with higher accuracy.

【0014】更に前記光ファイバ1を多重巻きして各フ
ァイバ1毎に低温定点1Aに基づく補正係数α1、α
2、α3…を求め、その平均値でαv((α1+α2+α
3)/3)位置精度を補償することにより一層高い精度
の位置精度の向上が出来る。又多重巻光ファイバ1の場
合、各ファイバ1の同一定点1A位置の演算距離の平均
値(n1…)を前記補正係数として補償することも可能で
あり、この場合でも位置精度を向上できる。
Further, the optical fiber 1 is wound in a multiplex manner, and correction factors α1, α based on the low-temperature fixed point 1A are provided for each fiber 1.
2, α3... Are calculated, and the average value is αv ((α1 + α2 + α
3) / 3) By compensating the positional accuracy, it is possible to improve the positional accuracy with higher accuracy. In the case of the multi-turn optical fiber 1, the average value (n1...) Of the calculated distances at the same fixed point 1A position of each fiber 1 can be compensated as the correction coefficient, and the position accuracy can be improved even in this case.

【0015】[0015]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、形状、その相対配置などは特に特定
的な記載がない限り、この発明の範囲をそれのみに限定
する趣旨ではなく単なる説明例に過ぎない。図1乃至図
3は本発明の第1実施形態に係る温度分布計測装置で、
図1はその基本構成図、図2は位置精度補償用の作用を
示す温度/ファイバ1距離の関係を示すグラフ図、図3
は該温度分布計測装置を灰溶融炉に取り付けた状態を示
す横断面図とA−A線断面図とB−B線断面図である。
図1及び図2において、3本の光ファイバ1a、1b、
1cを炉壁12冷却用水管11に沿う炉壁12内をスパ
イラル状に巻回して溶融炉10全体の温度分布が得られ
るように構成する。そして該3本の光ファイバ1の入射
端側には、夫々該光ファイバ1にレーザパルス光を入射
する入射パルス発振手段2と、該レーザパルスが後方散
乱光3として戻ってくるまでの時間、及び波長と光強度
を分析する温度分析計20とが配設されており、該光フ
ァイバ1にレーザパルス光を入射してから後方散乱光3
として戻ってくるまでの時間、及び波長と光強度を分析
することによりファイバ1延設各位置における灰溶融炉
10内の温度分布を計測する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, unless otherwise specified, dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the invention, but are merely illustrative examples. 1 to 3 show a temperature distribution measuring device according to a first embodiment of the present invention.
FIG. 1 is a basic configuration diagram, FIG. 2 is a graph showing a relationship between temperature and one fiber distance showing an operation for compensating positional accuracy, and FIG.
FIG. 3 is a cross-sectional view, a cross-sectional view along line AA, and a cross-sectional view along line BB showing a state where the temperature distribution measuring device is attached to an ash melting furnace.
1 and 2, three optical fibers 1a, 1b,
1c is spirally wound inside the furnace wall 12 along the water pipe 11 for cooling the furnace wall 12, so that the temperature distribution of the entire melting furnace 10 can be obtained. On the incident end side of the three optical fibers 1, an incident pulse oscillating means 2 for injecting laser pulse light into the optical fiber 1, respectively, a time until the laser pulse returns as backscattered light 3, And a temperature analyzer 20 for analyzing the wavelength and the light intensity.
The temperature distribution in the ash melting furnace 10 at each position where the fiber 1 is extended is measured by analyzing the time until returning, and the wavelength and light intensity.

【0016】又前記実施例には、前記ファイバ1の途中
における既知距離の距離位置で熱接触させる低温定点1
Aを具え、前記分析計20内で該定点1Aにおける散乱
光の出射時間に基づいて各測定点1Aの位置精度を補償
する補償手段21を温度分析計20の中に設けている。
前記光ファイバ1が水冷管11に沿って巻回されている
場合には、前記光ファイバ1を熱接触させる低温定点1
Aとして例えば前記水管11を用いている。
In the above-described embodiment, the low-temperature fixed point 1 which is brought into thermal contact with the fiber 1 at a known distance in the middle of the fiber 1 is provided.
A, and a compensating means 21 for compensating the positional accuracy of each measurement point 1A based on the emission time of the scattered light at the fixed point 1A in the analyzer 20 is provided in the temperature analyzer 20.
When the optical fiber 1 is wound along a water-cooled tube 11, a low-temperature fixed point 1 for bringing the optical fiber 1 into thermal contact is provided.
For example, the water pipe 11 is used as A.

【0017】かかる温度分布計測装置を灰溶融炉に取り
付けた状態を図3に基づいて具体的に示す。図3は円筒
形状の灰溶融炉10で、炉壁12内にスパイラル状に冷
却用水管11を巻回している。そして炉内10と水管1
1との間の炉壁内に3本の光ファイバ1が、炉壁と同心
状にスパイラル状に多重巻きした複数本の光ファイバ1
夫々を既知距離の途中位置に低温定点1Aとして水管周
面11と接触させている。尚、本実施例においては低温
定点1Aとして1周につき3カ所、具体的には120°
分割位置で接触させているが、これのみに限定されな
い。尚、前記ファイバ1a,1b、1cは耐火壁内に直
接埋設するのが困難であるために、2φ程度のステンレ
ス製保護管13内に挿設して巻回させるのがよい。
A state in which such a temperature distribution measuring device is attached to an ash melting furnace is specifically shown based on FIG. FIG. 3 shows a cylindrical ash melting furnace 10 in which a cooling water pipe 11 is spirally wound inside a furnace wall 12. And the furnace 10 and the water pipe 1
1. A plurality of optical fibers 1 in which a plurality of optical fibers 1 are spirally multiplex-wound concentrically with the furnace wall in the furnace wall between the two.
Each of them is brought into contact with the water pipe peripheral surface 11 as a low temperature fixed point 1A at an intermediate position of a known distance. In this embodiment, the low-temperature fixed point 1A is provided at three places per one round, specifically, 120 °.
The contact is made at the division position, but is not limited to this. Since it is difficult to bury the fibers 1a, 1b, and 1c directly in the fire-resistant wall, it is preferable to insert and wind the fibers in a stainless steel protection tube 13 of about 2φ.

【0018】かかる実施例によれば、前記光ファイバ1
a、1b、1c夫々に10μm以下のパルス幅のレーザ
パルス光を入力させると、ファイバ1a、1b、1c内
部で後方散乱し、該後方散乱光3が入射端に戻ってくる
までの時間を温度分析計(検出感度:50MHz以上)で
検出して温度検出位置を求めることができるが、図1及
び図2に示すように、水管11との接触により形成され
る低温定点1Aまでの入射端よりの距離Nが既知の場合
に、該既知距離Nと後方散乱光3の戻り時間より求めた
演算距離nとの差(N−n)を既知距離で割ったものが補
正係数α:((N−n)/N)となり、前記次々に入射位
置に戻ってくる散乱光の戻り時間に基づいて設定される
各測定位置の演算距離を前記補正係数に基づいて位置補
償手段21により位置補償することが出来、位置精度を
向上できる。
According to this embodiment, the optical fiber 1
When a laser pulse light having a pulse width of 10 μm or less is input to each of the fibers 1a, 1b, and 1c, the light is backscattered inside the fibers 1a, 1b, and 1c, and the time required for the backscattered light 3 to return to the incident end is determined by the temperature The temperature detection position can be obtained by detecting with an analyzer (detection sensitivity: 50 MHz or more). As shown in FIGS. 1 and 2, as shown in FIGS. Is known, the difference (N−n) between the known distance N and the calculated distance n calculated from the return time of the backscattered light 3 is divided by the known distance to obtain the correction coefficient α: ((N −n) / N), and the position compensation means 21 compensates the calculated distance of each measurement position set based on the return time of the scattered light that returns to the incident position one after another based on the correction coefficient. And the position accuracy can be improved.

【0019】更に図1に示すように、前記光ファイバ1
a、1b、1cを多重巻きして各ファイバ1a、1b、
1c毎に低温定点1Aに基づく補正係数α1、α2、α
3…を求め、その平均値αv((α1+α2+α3)/3)
で位置精度を補償することにより一層高い精度の位置精
度の向上が出来る。
Further, as shown in FIG.
a, 1b, and 1c, and each fiber 1a, 1b,
Correction coefficients α1, α2, α based on low-temperature fixed point 1A for each 1c
3 are calculated and the average value αv ((α1 + α2 + α3) / 3)
By compensating for the positional accuracy, the positional accuracy can be further improved.

【0020】かかる実施例によれば、位置精度の距離分
解能が1mであったのを数mおきに水冷定点1Aを設
け、さらに3周巻き一組とすることにより、精度±5c
m以下に向上させることが出来る。
According to this embodiment, the water-cooled fixed point 1A is provided every several meters instead of the distance resolution of the position accuracy of 1 m, and a set of three turns is used.
m or less.

【0021】光ファイバ1が多重巻光ファイバ1a、1
b、1cの場合、各ファイバ1a,1b、1cの同一定
点1A位置の演算距離の平均値(n1…)を前記補正係数
として補償することも可能であり、この場合でも位置精
度を向上できる。図4は図3の装置を用いて平均値によ
り補正するようにしたもので、光ファイバ1a、1b、
1cが多重巻光ファイバ1の場合、図のように定点Aを
原点とした場合に、次の定点Bではb、b’、更に次の
定点Cではc、c’と、1重巻部と2重巻部で各定点1
Aの演算位置(時間)が異なって計測される。この場合は 定点Bでは{(a−b)+(a−b’)}/2、 定点Cでは{(a−c)+(a−c’)}/2 のように各平均値が夫々の補正値となって温度分布の補
正が行われる。尚、3重巻でも同様である。
The optical fiber 1 is a multi-turn optical fiber 1a, 1
In the case of b and 1c, the average value (n1...) of the calculated distances at the same fixed point 1A position of each of the fibers 1a, 1b and 1c can be compensated as the correction coefficient, and the position accuracy can be improved even in this case. FIG. 4 shows an example in which the correction is made by the average value using the apparatus of FIG. 3, and the optical fibers 1a, 1b,
In the case where 1c is a multi-wound optical fiber 1, when the fixed point A is the origin as shown in the figure, b and b 'at the next fixed point B, c and c' at the next fixed point C, and a single-wound portion. Each fixed point 1 in double winding
The calculation position (time) of A is measured differently. In this case, at the fixed point B, the respective average values are {(ab) + (ab ')} / 2, and at the fixed point C, {(ac) + (ac')} / 2. And the temperature distribution is corrected. The same applies to triple winding.

【0022】[0022]

【発明の効果】以上記載のごとく本発明によれば、光フ
ァイバ1そのものを温度センサとするラマン散乱式温度
計を用いて耐火物炉の温度計測装置を構成するも距離分
解能は±50cmより更に短くして温度分布位置精度を向
上させ、耐火物温度計測装置として有効な発明を提供出
来る。
As described above, according to the present invention, a temperature measuring device for a refractory furnace is constructed by using a Raman scattering thermometer using the optical fiber 1 itself as a temperature sensor, but the distance resolution is more than ± 50 cm. It is possible to improve the accuracy of the temperature distribution position by shortening the length, and to provide an invention effective as a refractory temperature measuring device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態に係る温度分布計測装
置で、本図はその基本構成図である。
FIG. 1 is a diagram showing a basic configuration of a temperature distribution measuring apparatus according to a first embodiment of the present invention.

【図2】 図1の基本構成図に基づいて位置精度補償用
の作用を示す温度/ファイバ距離の関係を示すグラフ図
である。
FIG. 2 is a graph showing a temperature / fiber distance relationship showing an operation for position accuracy compensation based on the basic configuration diagram of FIG. 1;

【図3】 図1の基本構成図に基づいて製作された温度
分布計測装置を灰溶融炉に取り付けた状態を示す横断面
図とA−A線断面図とB−B線断面図である。
FIG. 3 is a cross-sectional view, an AA line cross-sectional view, and a BB line cross-sectional view showing a state in which the temperature distribution measuring device manufactured based on the basic configuration diagram of FIG. 1 is attached to an ash melting furnace.

【図4】 図3の装置を用いて各ファイバの同一定点位
置の演算距離の平均値(n1…)を前記補正係数として補
償するようにしたグラフ図である。
FIG. 4 is a graph showing that an average value (n1...) Of calculated distances at the same fixed point position of each fiber is compensated as the correction coefficient using the apparatus of FIG.

【図5】 光ファイバそのものを温度センサとするラマ
ン散乱式温度計の原理図である。
FIG. 5 is a principle diagram of a Raman scattering thermometer using an optical fiber itself as a temperature sensor.

【図6】 ラマン散乱光の測定例である。FIG. 6 is a measurement example of Raman scattered light.

【符号の説明】[Explanation of symbols]

1 光ファイバ 1a、1b、1c 多重巻光ファイバ 1A 低温定点 2 入射パルス発振手段 3 後方散乱光 10 灰溶融炉 11 水管 12 炉壁 20 温度分析計 21 位置補償手段 DESCRIPTION OF SYMBOLS 1 Optical fiber 1a, 1b, 1c Multiple winding optical fiber 1A Low temperature fixed point 2 Incident pulse oscillation means 3 Backscattered light 10 Ash melting furnace 11 Water pipe 12 Furnace wall 20 Temperature analyzer 21 Position compensation means

フロントページの続き (72)発明者 西川 進 横浜市金沢区幸浦一丁目8番地1 三菱重 工業株式会社横浜研究所内 (72)発明者 阿部 道雄 横浜市金沢区幸浦一丁目8番地1 三菱重 工業株式会社横浜研究所内 Fターム(参考) 2F056 CL13 VF02 VF11 VF17 2F103 BA37 BA43 BA47 CA07 EB02 EB16 EB35 EC09 ED01 ED06 ED14 FA02 FA15 3K062 AA24 AB01 AB03 AC01 AC03 BA02 CA01 CB03 Continued on the front page (72) Inventor Susumu Nishikawa 1-8-1 Koura, Kanazawa-ku, Yokohama-shi Mitsubishi Heavy Industries, Ltd. Inside Yokohama Research Laboratory (72) Michio Abe 1-8-1, Koura, Kanazawa-ku, Yokohama-shi Mitsubishi Heavy Industries, Ltd. 2F056 CL13 VF02 VF11 VF17 2F103 BA37 BA43 BA47 CA07 EB02 EB16 EB35 EC09 ED01 ED06 ED14 FA02 FA15 3K062 AA24 AB01 AB03 AC01 AC03 BA02 CA01 CB03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバを炉壁に沿って巻回、囲撓そ
の他の手段により延設した状態で、該光ファイバにレー
ザパルス光を入射してから後方散乱光として戻ってくる
までの時間、及び波長と光強度を分析することによりフ
ァイバ延設各位置における耐火炉温度分布を計測する方
法において、 前記ファイバの途中における低温定点と熱接触させて、
該定点における散乱光の出射時間に基づいて各測定点の
位置精度を補償することを特徴とする耐火炉温度分布計
測方法。
1. The time from when a laser pulse light is incident on the optical fiber to when it is returned as backscattered light while the optical fiber is extended along a furnace wall by winding, surrounding, or other means. In the method of measuring the refractory furnace temperature distribution at each position where the fiber is extended by analyzing the wavelength and the light intensity, and in thermal contact with a low-temperature fixed point in the middle of the fiber,
A method for measuring the temperature distribution of a refractory furnace, wherein the position accuracy of each measurement point is compensated based on the emission time of the scattered light at the fixed point.
【請求項2】 前記ファイバの途中における既知距離の
距離位置に低温定点と熱接触させて、該定点における散
乱光の出射時間に基づいて各測定点の位置精度を補償す
ることを特徴とする請求項1記載の耐火炉温度分布計測
方法。
2. The method according to claim 1, further comprising: bringing a low-temperature fixed point into thermal contact with a known position in the middle of the fiber to compensate for the positional accuracy of each measurement point based on the emission time of the scattered light at the fixed point. Item 4. The method for measuring a temperature distribution of a refractory furnace according to Item 1.
【請求項3】 前記光ファイバの巻回位置が炉壁冷却用
水管に沿う炉壁内である場合に、前記光ファイバを熱接
触させる低温定点が、前記水管であることを特徴とする
請求項1記載の耐火炉温度分布計測方法。
3. The low-temperature fixed point at which the optical fiber is brought into thermal contact when the winding position of the optical fiber is inside the furnace wall along the water tube for cooling the furnace wall is the water tube. 2. The method for measuring the temperature distribution of a refractory furnace according to 1.
【請求項4】 炉壁に沿って多重巻きした複数本の光フ
ァイバ夫々をその途中位置に低温定点と熱接触させて、
該定点における夫々のファイバの散乱光の戻り時間の平
均値に基づいて各測定点の位置精度を補償することを特
徴とする請求項1記載の耐火炉温度分布計測方法。
4. Each of a plurality of optical fibers wound multiple times along a furnace wall is brought into thermal contact with a low temperature fixed point at an intermediate position thereof.
2. The method according to claim 1, wherein the positional accuracy of each measurement point is compensated based on an average value of the return time of the scattered light of each fiber at the fixed point.
【請求項5】 炉壁に沿って巻回、囲撓その他の手段に
より延設した光ファイバと、該光ファイバにレーザパル
ス光を入射する入射パルス発振手段と、該レーザパルス
が後方散乱光として戻ってくるまでの時間、及び波長と
光強度を分析する分析手段と、からなるファイバ延設各
位置における耐火炉温度分布計測装置において、 前記ファイバの途中位置で熱接触させる低温定点を具
え、前記分析手段内で該定点における散乱光の出射時間
に基づいて各測定点の位置精度を補償する補償手段を設
けたことを特徴とする耐火炉温度分布計測装置。
5. An optical fiber extending along a furnace wall by winding, encircling or other means, an incident pulse oscillating means for injecting a laser pulse light into the optical fiber, and the laser pulse as backscattered light. Time until returning, and analysis means for analyzing the wavelength and light intensity, in a refractory furnace temperature distribution measuring device at each position of the fiber extension, comprising a low-temperature fixed point to make thermal contact at an intermediate position of the fiber, A refractory furnace temperature distribution measuring device, comprising a compensating means for compensating for positional accuracy of each measuring point based on an emission time of scattered light at the fixed point in the analyzing means.
【請求項6】 前記光ファイバの巻回位置が炉壁冷却用
水管に沿う炉壁内であり、且つ前記光ファイバを熱接触
させる低温定点が、前記水管であることを特徴とする請
求項5記載の耐火炉温度分布計測装置。
6. The optical fiber according to claim 5, wherein a winding position of the optical fiber is in a furnace wall along a water pipe for cooling the furnace wall, and a low-temperature fixed point for bringing the optical fiber into thermal contact is the water pipe. The refractory furnace temperature distribution measuring device described in the above.
【請求項7】 前記ファイバの途中における熱接触位置
が既知距離であることを特徴とする請求項5記載の耐火
炉温度分布計測装置。
7. The refractory furnace temperature distribution measuring apparatus according to claim 5, wherein a thermal contact position in the middle of the fiber is a known distance.
【請求項8】 前記光ファイバが複数本の光ファイバで
あり、該複数本の光ファイバを炉壁に沿って多重巻きす
るとともに、各光ファイバ夫々の途中位置に低温定点と
熱接触させて熱接触位置の既知距離若しくは平均演算地
値を基準距離として位置補償することを特徴とする請求
項4記載の耐火炉温度分布計測装置。
8. The optical fiber is a plurality of optical fibers, and the plurality of optical fibers are wrapped multiple times along a furnace wall, and each of the optical fibers is brought into thermal contact with a low-temperature fixed point at an intermediate position thereof. The refractory furnace temperature distribution measuring apparatus according to claim 4, wherein the position compensation is performed using a known distance or an average calculated ground value of the contact position as a reference distance.
JP2000010967A 2000-01-19 2000-01-19 Measurement method for refracory furnace temperature and device thereof using optical fiber Withdrawn JP2001201406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000010967A JP2001201406A (en) 2000-01-19 2000-01-19 Measurement method for refracory furnace temperature and device thereof using optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000010967A JP2001201406A (en) 2000-01-19 2000-01-19 Measurement method for refracory furnace temperature and device thereof using optical fiber

Publications (1)

Publication Number Publication Date
JP2001201406A true JP2001201406A (en) 2001-07-27

Family

ID=18538901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000010967A Withdrawn JP2001201406A (en) 2000-01-19 2000-01-19 Measurement method for refracory furnace temperature and device thereof using optical fiber

Country Status (1)

Country Link
JP (1) JP2001201406A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314920A2 (en) 2009-10-22 2011-04-27 Hitachi Ltd. Retrofit method for pulverized coal boiler
WO2013034640A1 (en) * 2011-09-09 2013-03-14 Agence Nationale Pour La Gestion Des Dechets Radioactifs Device for calibrating temperature, and methods for calibrating the temperature of and positioning a fiber-optic temperature sensor
US10323991B2 (en) 2014-12-08 2019-06-18 Electricite De France Device for local temperature measurement, associated cell and method for use
CN112731991A (en) * 2020-12-15 2021-04-30 南京熊猫电子股份有限公司 Power station water pipeline temperature control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314920A2 (en) 2009-10-22 2011-04-27 Hitachi Ltd. Retrofit method for pulverized coal boiler
US8393065B2 (en) 2009-10-22 2013-03-12 Hitachi, Ltd. Retrofit method for pulverized coal boiler
WO2013034640A1 (en) * 2011-09-09 2013-03-14 Agence Nationale Pour La Gestion Des Dechets Radioactifs Device for calibrating temperature, and methods for calibrating the temperature of and positioning a fiber-optic temperature sensor
FR2979990A1 (en) * 2011-09-09 2013-03-15 Andra TEMPERATURE CALIBRATION DEVICE AND METHODS FOR TEMPERATURE CALIBRATION AND POSITIONING OF OPTICAL FIBER TEMPERATURE SENSOR
CN103907002A (en) * 2011-09-09 2014-07-02 法国国家放射性废物管理局 Device for calibrating temperature, and methods for calibrating the temperature of and positioning fiber-optic temperature sensor
US9797786B2 (en) 2011-09-09 2017-10-24 Agence Nationale Pour La Gestion Des Dechets Radioactifs Device for calibrating temperature, and methods for calibrating the temperature of and positioning a fiber-optic temperature sensor
US10323991B2 (en) 2014-12-08 2019-06-18 Electricite De France Device for local temperature measurement, associated cell and method for use
CN112731991A (en) * 2020-12-15 2021-04-30 南京熊猫电子股份有限公司 Power station water pipeline temperature control method

Similar Documents

Publication Publication Date Title
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
US4576486A (en) Optical fiber thermometer
NZ272587A (en) System for measuring the temperature profile along an extension arm located near a bank of boiler tubes and thus determining deposit build-up on the tubes
EP0425229A1 (en) High temperature sensor
JP2009281789A (en) Temperature measuring instrument and method for fitting the same
JP2001201406A (en) Measurement method for refracory furnace temperature and device thereof using optical fiber
JPH0474813A (en) Method and instrument for measuring wall thickness in blast furnace
US5839830A (en) Passivated diamond film temperature sensing probe and measuring system employing same
JP3063063B2 (en) Optical fiber temperature distribution measurement system
JP2962452B2 (en) Cryogenic equipment abnormality detection method
JPH11237287A (en) Temperature distribution measuring apparatus
JPH07280664A (en) Temperature measurement method
JP2645173B2 (en) Temperature distribution measurement type optical fiber sensor
CN112831623A (en) Method for preventing blast furnace hearth from burning through
CN105181171B (en) A kind of warm-air pipe temperature checking method based on distribution type fiber-optic
JP3349212B2 (en) Temperature measuring method and apparatus using optical fiber
CN110455435A (en) It is a kind of based on seamless steel pipe composite fiber coal gasifier outer wall temp measuring method
JP2010271254A (en) Optical fiber temperature measuring instrument
JP2005195502A (en) Optical fiber type temperature measuring apparatus and temperature measuring method
JP2006029878A (en) Optical fiber for radiation sensor, and optical fiber type radiometer
CN215598566U (en) Protection device of optical fiber thermometer
CN102288303B (en) White-light interference high-temperature measuring sensor and application measuring device thereof
JPH06137509A (en) Method and apparatus for detecting temperatures of parts of boiler
JP2004239634A (en) Outlet temperature measurement system of cracking furnace for ethylene manufacturing device
JP2003171709A (en) Temperature measurement sensor for filled layer at high-temperature and highly corrosive atmosphere, and temperature measurement sensor installing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403