JP2962452B2 - Cryogenic equipment abnormality detection method - Google Patents

Cryogenic equipment abnormality detection method

Info

Publication number
JP2962452B2
JP2962452B2 JP5202144A JP20214493A JP2962452B2 JP 2962452 B2 JP2962452 B2 JP 2962452B2 JP 5202144 A JP5202144 A JP 5202144A JP 20214493 A JP20214493 A JP 20214493A JP 2962452 B2 JP2962452 B2 JP 2962452B2
Authority
JP
Japan
Prior art keywords
temperature
optical fiber
low
abnormality
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5202144A
Other languages
Japanese (ja)
Other versions
JPH0755332A (en
Inventor
修 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5202144A priority Critical patent/JP2962452B2/en
Publication of JPH0755332A publication Critical patent/JPH0755332A/en
Application granted granted Critical
Publication of JP2962452B2 publication Critical patent/JP2962452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、低温設備の異常検出方
法、特に空気分離装置等の極低温物質を取り扱う設備に
発生する設備破損等の異常を検出する際に適用して好適
な低温設備の異常検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting an abnormality in a cryogenic facility, and more particularly to a cryogenic facility suitable for use in detecting an abnormality such as a breakage of a facility, such as an air separation device, which occurs in a facility handling cryogenic substances. And an abnormality detection method.

【0002】[0002]

【従来の技術】空気分離装置やアルゴン精製装置等の極
低温物質を取り扱うプラント(低温設備)では、該プラ
ントを構成する容器や配管類等の内部設備は全て断熱材
に覆われているため、これら容器や配管類に破損が生じ
た場合には、その破損個所を断熱材の外側から特定する
ことは非常に難しい。そこで、上記破損等の異常が生じ
た場合には、通常は断熱材を取り除き、内部設備自体を
見えるようにして破損個所の調査を行っている。
2. Description of the Related Art In a plant (cryogenic equipment) that handles cryogenic substances such as an air separation device and an argon purification device, all the internal equipment such as containers and piping constituting the plant is covered with a heat insulating material. When damage occurs to these containers and piping, it is very difficult to identify the damaged portion from outside the heat insulating material. Therefore, when an abnormality such as the above-mentioned damage occurs, the heat insulating material is usually removed, and the internal equipment itself is made visible to investigate the damaged part.

【0003】例えば、空気分離装置では、熱交換器や精
留塔等の主要装置や、それらを繋ぐ配管類等の内部設備
(低温物質収容部)が保冷槽と呼ばれる箱の中に収めら
れ、且つ該保冷槽の内壁と精留塔等の内部設備との間に
パーライト等の断熱材が密に充填されている。
[0003] For example, in an air separation apparatus, main equipment such as a heat exchanger and a rectification tower, and internal equipment (low temperature substance storage section) such as piping for connecting them are housed in a box called a cold storage tank. In addition, a heat insulating material such as perlite is densely filled between the inner wall of the cold storage tank and internal equipment such as a rectification tower.

【0004】従って、上記内部設備に破損等の異常が生
じた場合には、そこに収容されている酸素や窒素等の低
温ガスが保冷槽内に漏出することによって該保冷槽内の
圧力が上昇することから破損等の異常が発生したという
事実は検知可能である。
[0004] Therefore, when an abnormality such as breakage occurs in the internal equipment, low-temperature gas such as oxygen or nitrogen contained therein leaks into the cold storage tank, so that the pressure in the cold storage tank increases. Therefore, the fact that an abnormality such as breakage has occurred can be detected.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ように保冷槽内の圧力上昇のみによっては、異常発生個
所を特定することができないため、保冷槽内の内部に充
填してあるパーライト等の断熱材を取り除かなければ上
記異常発生個所を特定することができないという問題が
あった。
However, as described above, it is not possible to identify a location where an abnormality has occurred only by an increase in the pressure in the cold storage tank. Therefore, heat insulation such as perlite filled inside the cold storage tank is not possible. Unless the material is removed, there is a problem that the location where the above-mentioned abnormality occurs cannot be specified.

【0006】本発明は、前記従来の問題点を解決するべ
くなされたもので、低温物質を取り扱う設備に破損等の
異常が発生した場合に、その発生個所を容易に特定する
ことができる低温設備の異常検出方法を提供することを
課題とする。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned conventional problems, and is capable of easily specifying a location where an abnormality such as breakage has occurred in a facility handling low-temperature substances when the facility handles the substance. It is an object of the present invention to provide a method for detecting an abnormality.

【0007】[0007]

【課題を解決するための手段】本発明は、低温設備の低
温物質収容部の外側の所定位置に配設された金属製のガ
イドパイプの中に、極低温に晒される環境においても劣
化しないファイバ母材とシース材で製作された光ファイ
バを設し、上記光ファイバを温度センサとする温度分
布測定装置により該光ファイバに沿った位置の温度を測
定し、温度変化が検出された位置の近傍に異常が発生し
たと判定することにより、前記課題を解決したものであ
る。
SUMMARY OF THE INVENTION The present invention is directed to a metal gauze disposed at a predetermined position outside a low temperature substance storage section of a low temperature facility.
In pipes, even in environments exposed to cryogenic temperatures
And laying set the optical fiber fabricated by the reduction was not fiber preform and the sheath material, the optical fiber the temperature of the position along the optical fiber was measured by the temperature distribution measurement apparatus according to the temperature sensor, the temperature change is detected This problem has been solved by determining that an abnormality has occurred in the vicinity of the position.

【0008】[0008]

【作用】本発明においては、低温設備における低温物質
収容部の外側に配設された金属製のガイドパイプの中
に、極低温においても劣化しない光ファイバを配設する
と共に、該光ファイバを温度センサとする温度分布測定
装置により該光ファイバに沿った位置の温度を測定する
ことにより、温度変化が検出された場合にはその測定位
置の近傍に異常が発生したと判定するようにしたので、
断熱材を取り除くことなく、低温物質収容部のどの位置
に破損等の異常が発生したことを正確に検出することが
可能となる。
According to the present invention, in a metal guide pipe disposed outside a low-temperature substance storage section in a low-temperature facility.
In addition, an optical fiber that does not deteriorate even at extremely low temperatures is provided, and a temperature change is detected by measuring a temperature at a position along the optical fiber with a temperature distribution measuring device using the optical fiber as a temperature sensor. In such a case, it was determined that an abnormality occurred near the measurement position.
Without removing the heat insulating material, it is possible to accurately detect at which position in the low-temperature substance storage unit an abnormality such as breakage has occurred.

【0009】従って、例えば、空気分離装置等のように
極低温物質を取り扱うプラントにおいて設備破損が発生
した場合には、破損個所から漏れ出る液体窒素や液体酸
素等の極低温物質による破損個所近傍の温度変化を検知
することにより、上記破損個所を特定することが可能と
なる。
Therefore, for example, when equipment breakage occurs in a plant that handles cryogenic substances such as an air separation device or the like, the vicinity of the damaged area due to the cryogenic substance such as liquid nitrogen or liquid oxygen leaking from the damaged area. By detecting the temperature change, it is possible to identify the above-mentioned damaged portion.

【0010】上記温度分布測定装置としては、光ファイ
バに光を入射した際に入射側に戻ってくるラマン散乱光
を時分割で検出し、各時間毎に検出されたラマン散乱光
に含まれるストークス光/アンチストークス光の強度比
から散乱点の温度を求めると共に、上記ラマン散乱光の
戻り時間から上記散乱点の位置を特定することにより、
上記光ファイバに沿った任意の位置の温度を測定する機
能を備えているものを使用できる。
The temperature distribution measuring device detects Raman scattered light returning to the incident side when light is incident on an optical fiber in a time-division manner, and detects the Stokes contained in the Raman scattered light detected at each time. By determining the temperature of the scattering point from the intensity ratio of light / anti-Stokes light and specifying the position of the scattering point from the return time of the Raman scattered light,
One having a function of measuring the temperature at an arbitrary position along the optical fiber can be used.

【0011】又、上記温度分布測定装置としては、本出
願人が既に特開平5−1314で提案している、光ファ
イバの両端のいずれからでも光を入射できるようにした
光ファイバ式温度分布測定装置を使用することもでき
る。
The above-mentioned temperature distribution measuring device is an optical fiber type temperature distribution device which has already been proposed by the present applicant in Japanese Patent Application Laid-Open No. Hei 5-1314 and which allows light to enter from both ends of an optical fiber. A measuring device can also be used.

【0012】[0012]

【実施例】以下、図面を参照して、本発明の実施例を詳
細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0013】図1は、本発明に係る第1実施例を適用す
る空気分離装置(低温設備)と光ファイバ式温度分布測
定装置とを概念的に示す説明図であり、図2は、上記光
ファイバ式温度分布測定装置の概略構成図である。
FIG. 1 is an explanatory view conceptually showing an air separation apparatus (low temperature equipment) and an optical fiber type temperature distribution measuring apparatus to which the first embodiment according to the present invention is applied, and FIG. It is a schematic structure figure of a fiber type temperature distribution measuring device.

【0014】本実施例方法が適用される空気分離装置1
0は、保冷槽12と該保冷槽12の内部に設置された精
留塔14や該精留塔14に連結された配管16とを備え
ている。
Air separation apparatus 1 to which the method of the present embodiment is applied
Numeral 0 is provided with a cooling tank 12, a rectification tower 14 installed inside the cooling tank 12, and a pipe 16 connected to the rectification tower 14.

【0015】上記空気分離装置10では、光ファイバ式
温度分布測定装置(以下、単に測定装置ともいう)を構
成する測定装置本体18と、センサ部である光ファイバ
20が、精留塔14や配管16等の低温物質収容部の外
側に配設されている。
In the above-mentioned air separation device 10, a measuring device main body 18 constituting an optical fiber type temperature distribution measuring device (hereinafter, also simply referred to as a measuring device) and an optical fiber 20 serving as a sensor are connected to a rectification tower 14 and a pipe. It is disposed outside the low-temperature substance storage section such as the sixteen.

【0016】初めに、上記光ファイバ式温度分布測定装
置について詳述する。この測定装置は、測定対象に沿っ
て敷設した測温用光ファイバ20の一端を測定装置本体
18に接続することにより、該光ファイバ20に沿った
温度分布を測定する機能を有している。
First, the optical fiber type temperature distribution measuring device will be described in detail. This measuring device has a function of measuring the temperature distribution along the optical fiber 20 by connecting one end of the temperature measuring optical fiber 20 laid along the object to be measured to the measuring device main body 18.

【0017】上記測定装置本体18は、図2に示すよう
に、センサ部である光ファイバ20と、光発振器である
レーザダイオードLD及び光検出器である第1及び第2
のアバランシェフォトダイオードAPD1、APD2を
有する測定部22とを備えている。
As shown in FIG. 2, the measuring device main body 18 includes an optical fiber 20 as a sensor unit, a laser diode LD as an optical oscillator, and first and second optical detectors as photodetectors.
And a measurement unit 22 having the avalanche photodiodes APD1 and APD2.

【0018】この測定装置では、上記レーザダイオード
LD、ホトダイオードAPD1、APD2が、上記光フ
ァイバ20と光学的に接続されており、パルス駆動回路
24からのパルス信号により上記レーザダイオードLD
からレーザ光がパルス発振されると、該レーザ光は光フ
ァイバ20にその一端から入射されるようになってい
る。
In this measuring device, the laser diode LD and the photodiodes APD1, APD2 are optically connected to the optical fiber 20, and the laser diode LD is driven by a pulse signal from a pulse drive circuit 24.
When the laser light is pulse-oscillated, the laser light enters the optical fiber 20 from one end thereof.

【0019】上記光ファイバ20にレーザ光が入射され
ると、該レーザ光が入射された上記一端に散乱光等が戻
ってくるが、この散乱光は光分波器26に含まれる第1
及び第2干渉フィルタ28A、28Bを経て上記ホトダ
イオードAPD1、APD2によって検出される。
When a laser beam is incident on the optical fiber 20, scattered light or the like returns to the one end where the laser beam has been incident.
And through the second interference filters 28A and 28B, are detected by the photodiodes APD1 and APD2.

【0020】上記ホトダイオードAPD1、APD2で
検出された光は、電気信号として高速平均化処理装置3
0へ入力され、所定の処理が行われた後、更にデータ処
理装置32を経て温度分布ディスプレイ34に上記光フ
ァイバに沿った位置の温度分布が表示されるようになっ
ている。
The light detected by the photodiodes APD1 and APD2 is converted into an electric signal by a high-speed averaging processor 3.
After the data is input to 0 and a predetermined process is performed, a temperature distribution at a position along the optical fiber is displayed on a temperature distribution display 34 via a data processing device 32.

【0021】この装置の測定原理を次に説明する。The measuring principle of this device will be described below.

【0022】上記光ファイバ20に対し、定期的に又は
適宜、レーザ光をパルス状に入射し、その際に該光ファ
イバ20の長さ方向の各ポイントから散乱されて戻って
くるラマン散乱光を時分割で検出する。
A laser beam is periodically or appropriately incident on the optical fiber 20 in a pulsed manner. At that time, Raman scattered light which is scattered and returned from each point in the length direction of the optical fiber 20 is returned. Detect by time division.

【0023】上記のように光ファイバ20にパルス光を
入射すると、その光は光ファイバ内部を伝搬すると共
に、該光ファイバ20の各ポイントは、その温度に応じ
て、散乱光を発生させ、その散乱光の一部が後方散乱光
として入射側に戻ってくる。この散乱光が戻ってくるま
でに要した時間により、後方散乱光の発生位置を特定す
ることができる。
When the pulse light is incident on the optical fiber 20 as described above, the light propagates inside the optical fiber, and each point of the optical fiber 20 generates scattered light in accordance with the temperature thereof. Part of the scattered light returns to the incident side as backscattered light. The position where the backscattered light is generated can be specified by the time required until the scattered light returns.

【0024】又、後方散乱光の中には、光ファイバを構
成しているガラスの格子振動により、弾性的に散乱され
て生じるレ−レ散乱光の他に、非弾性的に生じるラマン
散乱光が含まれている。このラマン散乱光は、ストーク
ス光とアンチストークス光からなり、この2つの光の強
度比は、入射光波長とガラスの組成が決まれば理論的に
温度のみに依存している。
In the backscattered light, in addition to the Rayleigh scattered light generated by being elastically scattered by the lattice vibration of the glass constituting the optical fiber, the Raman scattered light generated by inelasticity is also included. It is included. The Raman scattered light is composed of Stokes light and anti-Stokes light, and the intensity ratio of the two lights theoretically depends only on the temperature if the wavelength of the incident light and the composition of the glass are determined.

【0025】従って、上記の如く、レーザ光を入射した
後に戻ってくるラマン散乱光に含まれるストークス光及
びアンチストークス光をそれぞれ第1及び第2ホトダイ
オードAPD1、APD2で時分割で検出し、時間毎に
前記高速平均化処理装置30で算出されるストークス光
/アンチストークス光の強度比から温度を、又戻ってく
るまでに要した時間から光ファイバ20の長さ方向の位
置を、例えば1m 間隔で特定できる。
Accordingly, as described above, the Stokes light and the anti-Stokes light included in the Raman scattered light returning after the laser light is incident are detected by the first and second photodiodes APD1 and APD2 in a time-division manner, and The temperature is determined from the intensity ratio of the Stokes light / anti-Stokes light calculated by the high-speed averaging device 30, and the position in the length direction of the optical fiber 20 is determined at intervals of, for example, 1 m from the time required to return. Can be identified.

【0026】又、測定に使用する光ファイバ20の長さ
は、2km程度まで延ばすことができるため、総延長2km
の間の1m 毎の温度分布を1本の光ファイバで測定でき
ることになる。
The length of the optical fiber 20 used for measurement can be extended to about 2 km, so that the total length is 2 km.
The temperature distribution for every 1 m during the measurement can be measured with one optical fiber.

【0027】本実施例では、上記光ファイバ20は、低
温物質収容部の中でも破損の可能性の高い部位を中心に
敷設される。その際、光ファイバ20は、配管等の低温
物質収容部に直接接触させると、該収容部に破損が生じ
た場合の温度変化が少なく、測定し難いため、該収容部
から数十センチ程度離して敷設することが好ましい。
In the present embodiment, the optical fiber 20 is laid around a portion of the low-temperature substance storage section that is likely to be damaged. At this time, if the optical fiber 20 is brought into direct contact with a low-temperature substance storage unit such as a pipe, the temperature change when the storage unit is damaged is small, and it is difficult to measure. It is preferable to lay it.

【0028】又、図3に示すように、予めステンレス又
はアルミニウム等からなるガイドパイプ32を所定位置
に施工しておき、その中に光ファイバ20を敷設するこ
とが好ましい。又、使用する光ファイバ20としては、
−190℃前後の極低温に晒されるため、このような環
境においても劣化しないファイバ母材とシース材で製作
したものが用いられる。
As shown in FIG. 3, it is preferable that a guide pipe 32 made of stainless steel, aluminum or the like is previously installed at a predetermined position, and the optical fiber 20 is laid therein. Also, as the optical fiber 20 to be used,
Since it is exposed to an extremely low temperature of about -190 ° C., a fiber made of a fiber preform and a sheath that does not deteriorate even in such an environment is used.

【0029】本実施例においては、センサ部である光フ
ァイバ20を、精留塔14や配管16等の低温物質収容
部の外側に配設し、該光ファイバ20に沿った位置にお
ける温度分布を測定できるようにしたことから、経時的
に温度分布を測定し、異常な温度変化が検出されたとき
には、その検出位置の近傍に異常が発生したことを検知
することができる。
In this embodiment, the optical fiber 20 serving as the sensor is disposed outside the low-temperature substance storage section such as the rectification tower 14 and the pipe 16, and the temperature distribution at a position along the optical fiber 20 is measured. Since the measurement can be performed, the temperature distribution is measured over time, and when an abnormal temperature change is detected, it can be detected that an abnormality has occurred near the detected position.

【0030】これを具体的に説明すると、極低温物質を
取り扱うプラントである空気分離装置では、容器(精留
塔14)にひび割れや、配管16に破れなどの設備破損
が生じた場合、設備内部に収容されている極低温のガス
や液体が断熱材中に流出することになるため、破損個所
近傍の温度が低下する。従って、破損等が生じる可能性
が高い部位、例えば配管16であれば、前記図3に示し
たように蛇腹状伸縮部の連結部分近傍の温度を測定する
ようにすれば、その温度変化(急激な温度低下)から破
損等により低温物質のリークが発生したことを検知する
ことができる。
More specifically, in an air separation apparatus that is a plant that handles cryogenic substances, if equipment such as a crack in the vessel (rectification tower 14) or a break in the pipe 16 occurs, the inside of the equipment is damaged. Since the extremely low temperature gas or liquid contained in the gas flows out into the heat insulating material, the temperature in the vicinity of the damaged portion decreases. Accordingly, in the case of a portion where breakage or the like is highly likely to occur, for example, in the case of the pipe 16, if the temperature in the vicinity of the connecting portion of the bellows-shaped expansion and contraction portion is measured as shown in FIG. It is possible to detect that a leak of a low-temperature substance has occurred due to breakage or the like due to a large temperature drop.

【0031】このように、本実施例によれば、破損の可
能性のある部位の近傍に沿うように光ファイバ20を敷
設しておくだけで、対象となる設備の広い範囲に亘って
破損等の異常の発生を検出することが可能となる。
As described above, according to the present embodiment, only by laying the optical fiber 20 along the vicinity of the site where there is a possibility of breakage, breakage etc. can be performed over a wide range of the target equipment. Can be detected.

【0032】従って、上述した異常検出を、測定装置に
より連続的に又は周期的に温度分布を測定し、定常状態
における温度が低温側に大きく変化した場合に、例えば
アラームを発し、温度が変化した位置とその温度をプラ
ントの運転者に対して知らせることにより、適切な対応
を迅速に取ることが可能となる。
Therefore, in the above-described abnormality detection, the temperature distribution is continuously or periodically measured by a measuring device, and when the temperature in the steady state largely changes to the low temperature side, for example, an alarm is issued to change the temperature. By informing the plant operator of the location and its temperature, it is possible to quickly take appropriate measures.

【0033】なお、上述した異常検出を、従来のように
センサとして熱電対や測温抵抗体等を用いて行う場合
は、極めて狭い設備範囲の温度しか測定できないため、
設備全体の破損検知を行おうとすると膨大の数のセンサ
が必要となる。
When the above-described abnormality detection is performed by using a thermocouple, a resistance temperature detector, or the like as a sensor as in the related art, the temperature can be measured only in an extremely narrow facility range.
In order to detect damage to the entire equipment, an enormous number of sensors are required.

【0034】以上詳述した如く、本実施例によれば、空
気分離装置において、設備破損等の異常が発生した場合
に、その発生を迅速に検知できると共に、その発生個所
を正確に知ることができる。その結果、破損等の異常状
態の修復が容易となり、且つ修復に要する時間を短縮す
ることができる。
As described in detail above, according to this embodiment, when an abnormality such as equipment breakage occurs in the air separation device, the occurrence can be quickly detected and the location of the occurrence can be accurately known. it can. As a result, it is easy to repair an abnormal state such as breakage, and the time required for the repair can be reduced.

【0035】図4は、本発明に係る第2実施例の異常検
出方法に適用される光ファイバ式温度分布測定装置の要
部の概略構成を示す説明図である。
FIG. 4 is an explanatory view showing a schematic configuration of a main part of an optical fiber type temperature distribution measuring apparatus applied to the abnormality detecting method according to the second embodiment of the present invention.

【0036】本実施例に用いられる測定装置は、複数、
例えば40本の光ファイバ20でセンサ部が構成され、
この複数の光ファイバ20が光スイッチ38を介して単
芯の接続用光ファイバ20Aと接続され、該接続用光フ
ァイバ20Aが測定装置本体18と接続されている。
There are a plurality of measuring devices used in this embodiment.
For example, a sensor unit is configured by 40 optical fibers 20,
The plurality of optical fibers 20 are connected to a single-core connection optical fiber 20A via an optical switch 38, and the connection optical fiber 20A is connected to the measurement device main body 18.

【0037】又、上記装置本体18は、CRTからなる
ディスプレイ34と一体となっているデータ処理装置3
2を備え、このデータ処理装置32から制御信号が上記
光スイッチ38に出力され、該光スイッチ38により測
定を行う光ファイバ20が適宜切り換えられるようにな
っている。
The apparatus main body 18 is a data processing apparatus 3 integrated with a display 34 comprising a CRT.
2, a control signal is output from the data processing device 32 to the optical switch 38, and the optical fiber 20 to be measured by the optical switch 38 is appropriately switched.

【0038】以上の特徴部分を除き、本実施例に用いら
れる光ファイバ式温度分布測定装置は、前記第1実施例
で用いたものと実質的に同一である。
Except for the features described above, the optical fiber type temperature distribution measuring apparatus used in this embodiment is substantially the same as that used in the first embodiment.

【0039】本実施例によれば、複数の敷設ルートに複
数の光ファイバ20をそれぞれ敷設し、光スイッチ38
によりルートを順次切り換えて各ルートの温度分布を測
定することができる。
According to the present embodiment, a plurality of optical fibers 20 are respectively laid on a plurality of laying routes, and an optical switch 38 is provided.
, The temperature distribution of each route can be measured by sequentially switching the routes.

【0040】従って、敷設ルートが非常に複雑であるた
め、該ルートに曲りが多くなる場合のように、1本の光
ファイバ20で全ての範囲をカバーすることができない
場合等でも、正確な温度分布を測定することが可能とな
るため、容易且つ正確に異常発生位置の検出を行うこと
が可能となる。
Therefore, even if the entire route cannot be covered by one optical fiber 20 as in the case where the installation route is very complicated and the route has many bends, the accurate temperature can be obtained. Since the distribution can be measured, it is possible to easily and accurately detect an abnormality occurrence position.

【0041】以上、本発明について具体的に説明した
が、本発明は、前記実施例に示したものに限られるもの
でなく、その要旨を逸脱しない範囲で種々変更可能であ
る。
Although the present invention has been described in detail, the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist thereof.

【0042】例えば、本発明方法が適用可能な低温設備
としては、前記空気分離装置に限られるものでなく、同
様に極低温物質を取り扱うアルゴンやヘリュウム等の精
製装置を初めとして、比較的低温の物質を保冷しながら
取り扱う設備装置であれば任意のものに適用可能であ
る。
For example, the low-temperature equipment to which the method of the present invention can be applied is not limited to the above-mentioned air separation device, but also includes a relatively low-temperature equipment such as a purifier for argon or helium which handles cryogenic substances. Any equipment can be applied as long as it handles equipment while keeping the material cool.

【0043】[0043]

【発明の効果】以上説明したとおり、本発明によれば、
低温物質を取り扱う設備に破損等の異常が発生した場合
に、その発生個所を容易に特定することができる。
As described above, according to the present invention,
When an abnormality such as breakage occurs in equipment handling low-temperature substances, the location of the abnormality can be easily specified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を適用する空気分離装置の
概略構成を示す説明図
FIG. 1 is an explanatory diagram showing a schematic configuration of an air separation device to which a first embodiment of the present invention is applied;

【図2】本実施例方法に適用される光ファイバ式温度分
布測定装置の概略構成図
FIG. 2 is a schematic configuration diagram of an optical fiber type temperature distribution measuring device applied to the method of the present embodiment.

【図3】光ファイバの敷設方法の一例を示す説明図FIG. 3 is an explanatory diagram showing an example of an optical fiber laying method.

【図4】本発明の第2実施例に適用される温度分布測定
装置の要部構成を示す説明図
FIG. 4 is an explanatory diagram showing a main configuration of a temperature distribution measuring device applied to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…空気分離装置 12…保冷槽 14…精留塔 16…配管 18…測定装置本体 20…光ファイバ 22…測定部 DESCRIPTION OF SYMBOLS 10 ... Air separation apparatus 12 ... Cold storage tank 14 ... Rectification tower 16 ... Piping 18 ... Measuring apparatus main body 20 ... Optical fiber 22 ... Measurement part

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】低温設備の低温物質収容部の外側の所定位
置に配設された金属製のガイドパイプの中に、極低温に
晒される環境においても劣化しないファイバ母材とシー
ス材で製作された光ファイバを設し、 上記光ファイバを温度センサとする温度分布測定装置に
より該光ファイバに沿った位置の温度を測定し、 温度変化が検出された位置の近傍に異常が発生したと判
定することを特徴とする低温設備の異常検出方法。
1. A predetermined position outside a low-temperature substance storage section of a low-temperature facility.
Cryogenic temperature inside a metal guide pipe
Fiber preform and sheath that do not degrade in exposed environments
An optical fiber fabricated by the scan material laid to set, the optical fiber the temperature of the position along the optical fiber was measured by the temperature distribution measurement apparatus according to the temperature sensor, abnormality in the vicinity of a position where the temperature change is detected A method for detecting an abnormality in a low-temperature facility, wherein it is determined that an error has occurred.
【請求項2】(2) 請求項1において、In claim 1, 温度センサとする上記光ファイバが複数本敷設され、各A plurality of optical fibers as the temperature sensor are laid,
光ファイバが、装置本体に接続されている単芯の接続用Optical fiber for single core connection connected to the main unit
光ファイバに、光スイッチを介して接続され、該光スイThe optical switch is connected to an optical fiber through an optical switch.
ッチにより上記複数の光ファイバを切り換えて温度を測Switch to switch between the multiple optical fibers and measure the temperature.
定することを特徴とする低温設備の異常検出方法。A method for detecting abnormalities in low-temperature equipment.
JP5202144A 1993-08-16 1993-08-16 Cryogenic equipment abnormality detection method Expired - Lifetime JP2962452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5202144A JP2962452B2 (en) 1993-08-16 1993-08-16 Cryogenic equipment abnormality detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5202144A JP2962452B2 (en) 1993-08-16 1993-08-16 Cryogenic equipment abnormality detection method

Publications (2)

Publication Number Publication Date
JPH0755332A JPH0755332A (en) 1995-03-03
JP2962452B2 true JP2962452B2 (en) 1999-10-12

Family

ID=16452695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5202144A Expired - Lifetime JP2962452B2 (en) 1993-08-16 1993-08-16 Cryogenic equipment abnormality detection method

Country Status (1)

Country Link
JP (1) JP2962452B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064845A1 (en) * 2012-10-26 2014-05-01 富士通株式会社 Temperature measuring system and abnormality detecting method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899430B2 (en) * 2005-11-11 2012-03-21 東洋インキScホールディングス株式会社 Active energy ray curable inkjet ink
JP2010276258A (en) * 2009-05-28 2010-12-09 Jfe Steel Corp Failure detection method within heat insulating tank
JP5867618B2 (en) * 2012-10-23 2016-02-24 富士通株式会社 Anomaly detection system and anomaly detection method
EP2913647B1 (en) * 2012-10-23 2017-05-03 Fujitsu Limited Abnormality detecting system and abnormality detecting method
MY195581A (en) * 2017-06-07 2023-02-02 Jgc Corp Operation Management Method for Hydrocarbon Treatment Device
JP7006773B2 (en) 2018-03-27 2022-01-24 日本電気株式会社 Fiber optic sensor and analysis method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064845A1 (en) * 2012-10-26 2014-05-01 富士通株式会社 Temperature measuring system and abnormality detecting method
CN104755892A (en) * 2012-10-26 2015-07-01 富士通株式会社 Temperature measuring system and abnormality detecting method
US20150233771A1 (en) * 2012-10-26 2015-08-20 Fujitsu Limited Temperature measurement system and abnormality detection method
AU2012393096B2 (en) * 2012-10-26 2016-07-07 Fujitsu Limited Temperature measuring system and abnormality detecting method
JPWO2014064845A1 (en) * 2012-10-26 2016-09-05 富士通株式会社 Temperature measurement system and abnormality detection method
US9816878B2 (en) 2012-10-26 2017-11-14 Fujitsu Limited Temperature measurement system and abnormality detection method

Also Published As

Publication number Publication date
JPH0755332A (en) 1995-03-03

Similar Documents

Publication Publication Date Title
KR960013996B1 (en) Temperature abnormality detecting structure for fluid pipe
US5356220A (en) Method and apparatus for monitoring temperature of blast furnace and temperature control system using temperature monitoring apparatus
US9528860B2 (en) Abnormality detection system and abnormality detection method
JP2962452B2 (en) Cryogenic equipment abnormality detection method
JP5867618B2 (en) Anomaly detection system and anomaly detection method
EP3172545B1 (en) Temperature sensor
US4749855A (en) Method of detecting liquid leakage
CN1137678A (en) Method and device for detecting and monitoring perforation of vessel bottom head of nuclear reactor
JPH0326952A (en) Apparatus for detecting damage of heat supply pipe
JP2018036222A (en) Leakage detection system, leakage detection method, and superconductive cable
JPH04168335A (en) Liquid leak monitor apparatus
CN110455435A (en) It is a kind of based on seamless steel pipe composite fiber coal gasifier outer wall temp measuring method
JP2688792B2 (en) Temperature abnormality detection structure in fluid flow line
JPH03107735A (en) Maximum temperature evaluating device for power cable buried underground
JP3780476B2 (en) Optical fiber temperature measurement device and heat medium leak detection device
CN112831623A (en) Method for preventing blast furnace hearth from burning through
JP2631329B2 (en) Temperature abnormality detection structure in fluid flow line
JPH10148655A (en) Compressed gas-insulated transmission line, and its fault point-locating system and method therefor
JPH0368824A (en) Measuring apparatus for surface temperature of piping and the like
JPH0626980A (en) Method for detecting temperature abnormal position
JPH10206240A (en) Apparatus for monitoring leak of lng
JPH05223656A (en) Temperature abnormality detecting structure in fluid pipeline
JPH05296856A (en) Cable for measuring temperature and radiation dose distributions
CN115638926A (en) FBG (fiber Bragg Grating) monitoring system and method for leakage of pipeline valve of nuclear power station
GB2530812A (en) Temperature measurement with optical fibre