JP2897389B2 - Temperature measuring method and distributed optical fiber temperature sensor - Google Patents

Temperature measuring method and distributed optical fiber temperature sensor

Info

Publication number
JP2897389B2
JP2897389B2 JP2270627A JP27062790A JP2897389B2 JP 2897389 B2 JP2897389 B2 JP 2897389B2 JP 2270627 A JP2270627 A JP 2270627A JP 27062790 A JP27062790 A JP 27062790A JP 2897389 B2 JP2897389 B2 JP 2897389B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
stokes light
temperature
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2270627A
Other languages
Japanese (ja)
Other versions
JPH04148832A (en
Inventor
孝宣 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2270627A priority Critical patent/JP2897389B2/en
Publication of JPH04148832A publication Critical patent/JPH04148832A/en
Application granted granted Critical
Publication of JP2897389B2 publication Critical patent/JP2897389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は温度測定方法及び分布型光ファイバー温度セ
ンサーに関するものである。
Description: TECHNICAL FIELD The present invention relates to a temperature measuring method and a distributed optical fiber temperature sensor.

[従来の技術] 第2図に従来技術の構成を示す。13はレーザ発光部、
14は光方向性結合器、15は被測定光ファイバー、16は分
光部、17及び18は光電変換器、19及び20は前置増幅器、
21は平均化処理部、22は信号処理部を表わす。
[Prior Art] FIG. 2 shows a configuration of a conventional technique. 13 is a laser emitting unit,
14 is an optical directional coupler, 15 is an optical fiber to be measured, 16 is a spectral unit, 17 and 18 are photoelectric converters, 19 and 20 are preamplifiers,
Reference numeral 21 denotes an averaging processing unit, and 22 denotes a signal processing unit.

光源部のレーザ発光部13から発振したレーザパルス
は、被測定用の光ファイバー15へ入射され、光ファイバ
ー15中で発生したラマン散乱光が入射端へ戻ってくる。
該ラマン散乱光は光方向性結合器14により測定装置へ導
光され、まず分光部16によりラマン散乱光中のストーク
ス光と反ストークス光が分離検出され、各々光電変換器
17、18でその強度に比例した電気信号に変換される。該
電気信号は各々前置増幅器19、20により増幅され、平均
化処理部21にて所定回数平均化処理がなされる。平均化
処理された信号は信号処理部22へ伝送され、ストークス
光と反ストークス光の信号の比をとり、温度分布への換
算等の処理がなされる。
The laser pulse oscillated from the laser light emitting unit 13 of the light source unit is incident on the optical fiber 15 to be measured, and the Raman scattered light generated in the optical fiber 15 returns to the incident end.
The Raman scattered light is guided to the measurement device by the optical directional coupler 14, and first, the Stokes light and the anti-Stokes light in the Raman scattered light are separated and detected by the spectroscopic unit 16, and the respective photoelectric converters
At 17 and 18, it is converted into an electric signal proportional to the intensity. The electric signals are amplified by the preamplifiers 19 and 20, respectively, and are averaged a predetermined number of times by the averaging unit 21. The signal subjected to the averaging process is transmitted to the signal processing unit 22, where the ratio of the signal of the Stokes light to the signal of the anti-Stokes light is calculated, and processing such as conversion into a temperature distribution is performed.

[発明が解決しようとする課題] 従来、上記のような構成の分布型光ファイバー温度セ
ンサーにおいては以下に示すような温度測定を行なって
いた。
[Problems to be Solved by the Invention] Conventionally, in the distributed optical fiber temperature sensor having the above-described configuration, the following temperature measurement has been performed.

入射レーザパルスによって被測定光ファイバー中で発
生した後方ラマン散乱光が伝搬するときのストークス光
と反ストークス光の減衰率差の影響を補正するため、Da
kinの式 にストークス光と反ストークス光の減衰率差Δαを導入
した式 を用いて温度分布を測定していた。後方ラマン散乱を考
えている以上、減衰率差は往復の減衰率差を与えてい
る。ここで、Tは測定温度、Θは基準温度、R′(T)
は被測定部の相対強度比、R′(Θ)は基準温度部の相
対強度比、kはボルツマン定数、hはプランク定数、c
は光速、νはラマンシフト量、xは距離である。このよ
うな測定方法によっても精度良く温度分布を測定できた
が、この方法では、基準温度Θを設定するために被測定
光ファイバーを敷設する前に該光ファイバーの一部もし
くは全部を精度の良い恒温槽に入れ、あらかじめ測定す
る温度範囲のストークス光と反ストークス光の減衰率を
測定しなければならず、また測定部分の減衰率を該光フ
ァイバー全体に一定として適用させていた為、すでに敷
設してある光ファイバーや、極端に特性の異なる部分を
含んだ光ファイバーには適用できず、また光ファイバー
の特性の経時変化・敷設状態に起因する温度算出の誤差
を含んでいるという欠点を有していた。
In order to correct the effect of the difference in attenuation between Stokes light and anti-Stokes light when the backward Raman scattered light generated in the optical fiber to be measured by the incident laser pulse propagates,
kin expression Formula that introduces the difference in attenuation rate between Stokes light and anti-Stokes light Δα Was used to measure the temperature distribution. Since the backward Raman scattering is considered, the difference in the attenuation rate gives the difference in the round trip attenuation rate. Here, T is the measured temperature, Θ is the reference temperature, and R ′ (T)
Is the relative intensity ratio of the measured portion, R '(Θ) is the relative intensity ratio of the reference temperature portion, k is Boltzmann's constant, h is Planck's constant, c
Is the speed of light, ν is the amount of Raman shift, and x is the distance. Although the temperature distribution could be measured accurately by such a measuring method, in this method, a part or all of the optical fiber to be measured was placed in a high-precision thermostat before the optical fiber to be measured was laid in order to set the reference temperature Θ. , The attenuation rate of Stokes light and anti-Stokes light in the temperature range to be measured must be measured in advance, and the attenuation rate of the measurement part has been applied to the entire optical fiber as a constant. It cannot be applied to an optical fiber or an optical fiber containing a part having extremely different characteristics, and has a drawback that it includes an error in temperature calculation due to a change over time in the characteristics of the optical fiber and a laid state.

[課題を解決する為の手段] 本発明は、前述の問題点を解決すべくなされたもので
あり、光源より被測定用の光ファイバーへレーザパルス
を入射し、該光ファイバーからの後方ラマン散乱光中に
含まれるストークス光と反ストークス光の強度比と遅れ
時間から該光ファイバーの距離に関する温度分布を測定
する温度測定方法において、T(L)を距離Lにおける
測定温度、IS(L)を距離Lにおけるストークス光の検
出強度、IA(L)を距離Lにおける反ストークス光の検
出強度、Δαをストークス光と反ストークス光の往復の
減衰率差、kをボルツマン定数、hをプランク定数、c
を光速、νをラマンシフト量としたとき、予め測定した
光ファイバーのL=0の温度から逐次的に以下の式 により温度分布を測定することを特徴とした温度測定方
法、及び被測定用の光ファイバーへレーザパルスを入射
する光源と、該光ファイバーからの後方ラマン散乱光を
検出器へ導光する光方向性結合器と、該後方ラマン散乱
光中に含まれるストークス光と反ストークス光を検出し
それらの強度比と遅れ時間から該光ファイバーの距離に
関する温度分布を算出する信号処理部とを備えた分布型
光ファイバー温度センサーにおいて、該信号処理部はT
(L)を距離Lにおける測定温度、IS(L)を距離Lに
おけるストークス光の検出強度、IA(L)を距離Lにお
ける反ストークス光の検出強度、Δαをストークス光と
反ストークス光の往復の減衰率差、kをボルツマン定
数、hをプランク定数、cを光速、νをラマンシフト量
としたとき、予め測定した光ファイバーのL=0の温度
から逐次的に以下の式 により温度分布を測定することを特徴とした分布型光フ
ァイバー温度センサーを提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-described problems, and a laser pulse is incident on an optical fiber to be measured from a light source, and a laser pulse is emitted from the rear Raman scattered light from the optical fiber. In the temperature measurement method for measuring the temperature distribution with respect to the distance of the optical fiber from the intensity ratio of the Stokes light and the anti-Stokes light and the delay time, T (L) is the measured temperature at the distance L, and I S (L) is the distance L , The detection intensity of the Stokes light at distance L, I A (L) is the detection intensity of the anti-Stokes light at the distance L, Δα is the difference between the reciprocal attenuation rates of the Stokes light and the anti-Stokes light, k is the Boltzmann constant, h is the Planck constant, c
Is the speed of light, and ν is the amount of Raman shift. From the previously measured temperature of L = 0 of the optical fiber, the following equation is sequentially obtained. Temperature measuring method characterized by measuring a temperature distribution by using a light source for injecting a laser pulse into an optical fiber to be measured, and a light directional coupler for guiding backward Raman scattered light from the optical fiber to a detector And a signal processing unit for detecting Stokes light and anti-Stokes light contained in the backward Raman scattered light and calculating a temperature distribution related to the distance of the optical fiber from their intensity ratio and delay time. In, the signal processing unit is T
Measuring temperature (L) at the distance L, the detected intensity of the Stokes light I S (L) at the distance L, the detected intensity of anti-Stokes light I A (L) at the distance L, [Delta] [alpha] the Stokes light and anti-Stokes light When the difference between the reciprocating attenuation factors, k is Boltzmann's constant, h is Planck's constant, c is the speed of light, and ν is the amount of Raman shift, the following equation is sequentially obtained from the previously measured temperature of L = 0 of the optical fiber. The present invention provides a distributed optical fiber temperature sensor characterized in that a temperature distribution is measured by the method.

[作用] 検出されるレイリー散乱光及びストークス光、反スト
ークス光の強度をそれぞれIR(L)及びIS(L)、I
A(L)とするとそれらは次式で与えられる。以下、乗
算の意味で*を使用することがある。
[Operation] The detected Rayleigh scattered light, Stokes light, and anti-Stokes light intensity are expressed as I R (L), I S (L), and I S (L), respectively.
If A (L), they are given by the following equations. Hereinafter, * may be used in the meaning of multiplication.

ここでIRO(L)及びISO(L)、IAO(L,T(L))は
それぞれレイリー散乱光及びストークス光、反ストーク
ス光の被測定光ファイバーのレーザ光入射端からの距離
Lにおける発光強度を示し、α及びα、αはそれ
ぞれレイリー散乱光及びストークス光、反ストークス光
の被測定光ファイバーにおける減衰率を示す。なお、L
は被測定光ファイバーにレーザパルスが入射してからそ
れぞれの散乱光が検出されるまでの時間から算出でき
る。また、絶対温度Tの関数になっているものは温度依
存があることを、 は距離0からL−1までのデータを加算することを意味
する。
Here, I RO (L), I SO (L), and I AO (L, T (L)) are the Rayleigh scattered light, Stokes light, and anti-Stokes light at the distance L from the laser light incident end of the measured optical fiber. Α R, α S , and α A indicate the attenuation rates of Rayleigh scattered light, Stokes light, and anti-Stokes light in the measured optical fiber, respectively. Note that L
Can be calculated from the time from when the laser pulse enters the optical fiber to be measured until each scattered light is detected. Also, the fact that the function of the absolute temperature T depends on the temperature, Means that data from distance 0 to L-1 is added.

次に、レイリー散乱光とストークス光には温度依存が
ないので IR(L+1)=IR(L)*exp[−2*α{T(L)}] ‥‥(6) IS(L+1)=IS(L)*exp[−2*α{T(L)}] ‥‥(7) であるから(式中、α{T(L)}及びα{T
(L)}の係数2は往復を表わす)、 2*[α{T(L)}−α{T(L)}] =1n(IR(L)/IR(L+1)*IS(L+1)/IS(L)) ‥‥(8) となり、被測定光ファイバーの任意の点におけるレイリ
ー散乱光とストークス光の減衰率差が求められる。更
に、レイリー散乱光及びストークス光、反ストークス光
の波長は数10nmしか離れていないのでこの波長領域にお
ける減衰率の変化は線形だと考えられるので、被測定光
ファイバーの任意の点におけるストークス光と反ストー
クス光の減衰率差が求められることとなる。
Next, since the Rayleigh scattered light and the Stokes light have no temperature dependence, I R (L + 1) = I R (L) * exp [−2 * α R {T (L)}]] (6) I S ( L + 1) = I S (L) * exp [−2 * α S {T (L)}] ‥‥ (7) (where α R {T (L)} and α S {T
Factor 2 (L)} represents the round trip), 2 * [α R { T (L)} - α S {T (L)}] = 1n (I R (L) / I R (L + 1) * I S (L + 1) / I S (L)) ‥‥ (8) , and the attenuation index difference of the Rayleigh scattered light and the Stokes light at any point of the measured optical fiber is obtained. Furthermore, since the wavelengths of Rayleigh scattered light, Stokes light, and anti-Stokes light are only a few tens of nm apart, the change in the attenuation rate in this wavelength region is considered to be linear. The difference in the attenuation rate of the Stokes light is determined.

このようにして求められたストークス光と反ストーク
ス光の減衰率差Δα{T(L)}=2×[α{T
(L)}−α{T(L)}]を用いて次式に従ってT
(0)が既知であればL=0から逐次的に温度分布が得
られることとなる。
The attenuation rate difference Δα {T (L) 反 = 2 × [α S {T of the Stokes light and the anti-Stokes light obtained in this manner.
(L) {− α A {T (L)}] according to the following equation:
If (0) is known, a temperature distribution is obtained sequentially from L = 0.

1/T(L+1)=1/T(L) −C*[1n{IS(L)/IS(L+1)*IA(L+1)/I
A(L)} −Δα{T(L)}] ‥‥(9) ここで、Cは被測定光ファイバーの材質とレーザの波
長によって決まる定数である。
1 / T (L + 1) = 1 / T (L) -C * [1n {I S (L) / I S (L + 1) * I A (L + 1) / I
A (L)} − Δα {T (L)}] ‥‥ (9) where C is a constant determined by the material of the optical fiber to be measured and the wavelength of the laser.

即ち、距離Lにおける温度はDakinの式より であり、同様に距離L+1では であり、これらの両辺を各々引いてk/hcν=Cとおく
と、 が得られる。このように、基準温度Θを設定する必要が
なくなる。
That is, the temperature at the distance L is calculated from Dakin's equation. And similarly at distance L + 1 Then, by subtracting these two sides and setting k / hcν = C, Is obtained. Thus, it is not necessary to set the reference temperature Θ.

[実施例] 本発明の実施例を説明する。第1図は本発明のブロッ
ク図である。1は半導体レーザ等のレーザ発光部、2は
光ファイバーカプラや音響光学素子等の光方向性結合
器、3は被測定光ファイバー、4は分光フィルター等の
分光部、5及び6、7はレイリー散乱光、ストークス
光、反ストークス光各々の光電変換器、8及び9、10は
前置増幅器、11は平均化処理部、12は信号処理部を示し
ている。
[Example] An example of the present invention will be described. FIG. 1 is a block diagram of the present invention. 1 is a laser light emitting portion such as a semiconductor laser, 2 is an optical directional coupler such as an optical fiber coupler or an acousto-optic device, 3 is an optical fiber to be measured, 4 is a spectral portion such as a spectral filter, and 5, 6 and 7 are Rayleigh scattered lights. , Stokes light, anti-Stokes light, photoelectric converters 8, 9, and 10 are preamplifiers, 11 is an averaging processor, and 12 is a signal processor.

この測定システムを用いて、以下の処理を行う。 The following processing is performed using this measurement system.

被測定光ファイバー3のレーザパルス入射端から50m
の部分をL=0の点とし、その部分の温度T(0)を2
5.0℃に保ちストークス光強度IS(0)、レイリー散乱
光強度IR(0)、反ストークス光強度IA(0)を測定
し、それらをIS(0)=1、IR(0)=1、IA(0)=
1とし規格化した。L=1ではIS(1)=0.998900、IR
(1)=0.998973、IA(1)=0.998811であった。これ
らの値から(8)式を用いてストークス光と反ストーク
ス光の減衰率差Δα{T(0)}を外挿して求め、Δα
{T(0)}=7.3078×10-5となった。従って、(9)
式を用いてT(1)=25.3℃が求められた。以上の操作
を繰り返して、被測定光ファイバー全体の2kmにわたっ
て1m間隔で温度分布を測定することが可能となり、光フ
ァイバー個々の特性や経時変化による特性の変化を考慮
してストークス光と反ストークス光との減衰率差を前も
って光ファイバー全体にわたって測定しておくという操
作を省くことができ、測定時間の大幅な短縮が可能とな
った。
50 m from the laser pulse incident end of the optical fiber 3 to be measured
Is a point of L = 0, and the temperature T (0) of that part is 2
While maintaining the temperature at 5.0 ° C., the Stokes light intensity I S (0), the Rayleigh scattered light intensity I R (0), and the anti-Stokes light intensity I A (0) were measured, and they were determined as I S (0) = 1 and I R (0). ) = 1, I A (0) =
1 and standardized. At L = 1, I S (1) = 0.998900, I R
(1) = 0.998973 and I A (1) = 0.998811. From these values, the attenuation factor difference Δα {T (0)} between the Stokes light and the anti-Stokes light is extrapolated using equation (8) to obtain Δα
{T (0)} = 7.3078 × 10 −5 Therefore, (9)
T (1) = 25.3 ° C. was determined using the equation. By repeating the above operation, it is possible to measure the temperature distribution at 1 m intervals over 2 km of the entire optical fiber to be measured, and the Stokes light and anti-Stokes light are The operation of previously measuring the difference in attenuation factor over the entire optical fiber can be omitted, and the measurement time can be significantly reduced.

[発明の効果] 本発明の効果は次のとおりである。[Effects of the Invention] The effects of the present invention are as follows.

(1)被測定光ファイバーを敷設する前に該光ファイバ
ーの一部もしくは全部を精度の良い恒温槽に入れ、測定
する温度範囲のストークス光と反ストークス光の減衰率
を測定する必要がなくなった。
(1) Before or after laying the optical fiber to be measured, part or all of the optical fiber is placed in a high-precision thermostat, and it is no longer necessary to measure the attenuation ratio of Stokes light and anti-Stokes light in the temperature range to be measured.

(2)すでに敷設してある光ファイバーや、極端に特性
の異なる部分を含んだ光ファイバーを被測定光ファイバ
ーとして使用することが可能となった。
(2) It is possible to use an optical fiber that has already been laid or an optical fiber that includes portions having extremely different characteristics as an optical fiber to be measured.

(3)光ファイバーの特性の経時変化・敷設状態に起因
する温度算出の誤差を相殺して精度の良い温度測定が可
能となった。
(3) An error in the temperature calculation caused by a change over time in the characteristics of the optical fiber and a laid state is canceled out, so that accurate temperature measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明センサーのブロック図であり、第2図は
従来センサーのブロック図である。 1はレーザ発光部、2は光方向性結合器、3は被測定光
ファイバー、4は分光部、5及び6、7は光電変換器、
8及び9、10は前置増幅器、11は平均化処理部、12は信
号処理部を示している。
FIG. 1 is a block diagram of the sensor of the present invention, and FIG. 2 is a block diagram of a conventional sensor. 1 is a laser emitting unit, 2 is an optical directional coupler, 3 is an optical fiber to be measured, 4 is a spectral unit, 5, 6 and 7 are photoelectric converters,
8, 9 and 10 are preamplifiers, 11 is an averaging processing unit, and 12 is a signal processing unit.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源より被測定用の光ファイバーへレーザ
パルスを入射し、該光ファイバーからの後方ラマン散乱
光中に含まれるストークス光と反ストークス光の強度比
と遅れ時間から該光ファイバーの距離に関する温度分布
を測定する温度測定方法において、T(L)を距離Lに
おける測定温度、IS(L)を距離Lにおけるストークス
光の検出強度、IA(L)を距離Lにおける反ストークス
光の検出強度、Δαをストークス光と反ストークス光の
往復の減衰率差、kをボルツマン定数、hをプランク定
数、cを光速、νをラマンシフト量としたとき、予め測
定した光ファイバーのL=0の温度から逐次的に以下の
により温度分布を測定することを特徴とした温度測定方
法。
A laser pulse is incident on an optical fiber to be measured from a light source, and a temperature related to a distance of the optical fiber is determined from an intensity ratio and a delay time of Stokes light and anti-Stokes light contained in backward Raman scattering light from the optical fiber. In the temperature measuring method for measuring the distribution, T (L) is the measured temperature at the distance L, I S (L) is the detected intensity of Stokes light at the distance L, and I A (L) is the detected intensity of anti-Stokes light at the distance L. , Δα is the difference between the attenuation of the reciprocation of the Stokes light and the anti-Stokes light, k is the Boltzmann constant, h is the Planck constant, c is the speed of light, and ν is the amount of Raman shift. The following equation A temperature measuring method characterized in that a temperature distribution is measured by a method.
【請求項2】被測定用の光ファイバーへレーザパルスを
入射する光源と、該光ファイバーからの後方ラマン散乱
光を検出器へ導光する光方向性結合器と、該後方ラマン
散乱光中に含まれるストークス光と反ストークス光を検
出しそれらの強度比と遅れ時間から該光ファイバーの距
離に関する温度分布を算出する信号処理部とを備えた分
布型光ファイバー温度センサーにおいて、該信号処理部
はT(L)を距離Lにおける測定温度、IS(L)を距離
Lにおけるストークス光の検出強度、IA(L)を距離L
における反ストークス光の検出強度、Δαをストークス
光と反ストークス光の往復の減衰率差、kをボルツマン
定数、hをプランク定数、cを光速、νをラマンシフト
量としたとき、予め測定した光ファイバーのL=0の温
度から逐次的に以下の式 により温度分布を測定することを特徴とした分布型光フ
ァイバー温度センサー。
2. A light source for injecting a laser pulse into an optical fiber to be measured, a light directional coupler for guiding backward Raman scattered light from the optical fiber to a detector, and a light directional coupler included in the backward Raman scattered light. A distributed optical fiber temperature sensor having a signal processing unit for detecting Stokes light and anti-Stokes light and calculating a temperature distribution related to the distance of the optical fiber from their intensity ratio and delay time, wherein the signal processing unit is T (L) Is the measured temperature at the distance L, I S (L) is the Stokes light detection intensity at the distance L, and I A (L) is the distance L
Where α is the detection intensity of anti-Stokes light, Δα is the difference between the attenuation of reciprocation between Stokes light and anti-Stokes light, k is Boltzmann's constant, h is Planck's constant, c is the speed of light, and ν is the amount of Raman shift. From the temperature of L = 0 of the following equation A distributed optical fiber temperature sensor characterized by measuring the temperature distribution by using.
JP2270627A 1990-10-11 1990-10-11 Temperature measuring method and distributed optical fiber temperature sensor Expired - Fee Related JP2897389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2270627A JP2897389B2 (en) 1990-10-11 1990-10-11 Temperature measuring method and distributed optical fiber temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2270627A JP2897389B2 (en) 1990-10-11 1990-10-11 Temperature measuring method and distributed optical fiber temperature sensor

Publications (2)

Publication Number Publication Date
JPH04148832A JPH04148832A (en) 1992-05-21
JP2897389B2 true JP2897389B2 (en) 1999-05-31

Family

ID=17488725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2270627A Expired - Fee Related JP2897389B2 (en) 1990-10-11 1990-10-11 Temperature measuring method and distributed optical fiber temperature sensor

Country Status (1)

Country Link
JP (1) JP2897389B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654683B (en) * 2021-08-16 2023-12-05 许昌许继软件技术有限公司 Calibration method and device for distributed optical fiber temperature measurement system
CN114046900A (en) * 2021-11-11 2022-02-15 许继电气股份有限公司 Self-adaptive filtering method and device for distributed optical fiber temperature measurement system

Also Published As

Publication number Publication date
JPH04148832A (en) 1992-05-21

Similar Documents

Publication Publication Date Title
JPH0769223B2 (en) Temperature measurement method and distributed optical fiber temperature sensor
EP0225023B1 (en) Temperature measurement
EP0300529B1 (en) Temperature measurement
US6285446B1 (en) Distributed sensing system
JPH0364812B2 (en)
CN111896137B (en) Centimeter-level spatial resolution distributed optical fiber Raman sensing device and method
CN112378430B (en) Distributed optical fiber Raman sensing device and method based on chaotic laser
CN113654683B (en) Calibration method and device for distributed optical fiber temperature measurement system
JP2897389B2 (en) Temperature measuring method and distributed optical fiber temperature sensor
CN105352626B (en) A kind of demodulation method and device of Concatenate optical fiber Raman temperature system
JPH04332835A (en) Corrective processing method of distributed temperature data
CN112697303B (en) Distributed optical fiber sensing system and detection method for smart grid
JPH02201129A (en) Optical fiber system distribution type temperature sensor
JP2977373B2 (en) Optical fiber temperature distribution sensor
JP2905269B2 (en) Temperature measurement method using optical fiber
JP2002116087A (en) Wavelength-measuring apparatus
JPH0769222B2 (en) Temperature measurement method and distributed optical fiber temperature sensor
JP2927061B2 (en) Measurement method of physical quantity distribution using optical fiber
JPH02306131A (en) Measuring method for temperature distribution of optical fiber
JPH0321837A (en) Distributed optical fiber temperature sensor and temperature measuring method
JP7238541B2 (en) Spectroscopic measurement device and spectroscopic measurement method
JPS63205531A (en) Measuring method for temperature by optical fiber
JP2951740B2 (en) Optical fiber type temperature distribution measuring device
JPS6147534A (en) Method and apparatus for measuring light loss characteristic of optical fiber
JP3856303B2 (en) Optical fiber characteristic evaluation method and apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees