JPH04148832A - Temperature measuring method and distribution-type optical-fiber temperature sensor - Google Patents

Temperature measuring method and distribution-type optical-fiber temperature sensor

Info

Publication number
JPH04148832A
JPH04148832A JP2270627A JP27062790A JPH04148832A JP H04148832 A JPH04148832 A JP H04148832A JP 2270627 A JP2270627 A JP 2270627A JP 27062790 A JP27062790 A JP 27062790A JP H04148832 A JPH04148832 A JP H04148832A
Authority
JP
Japan
Prior art keywords
light
optical fiber
temperature
measured
stokes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2270627A
Other languages
Japanese (ja)
Other versions
JP2897389B2 (en
Inventor
Takanori Onishi
孝宣 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2270627A priority Critical patent/JP2897389B2/en
Publication of JPH04148832A publication Critical patent/JPH04148832A/en
Application granted granted Critical
Publication of JP2897389B2 publication Critical patent/JP2897389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To realize highly accurate temperature measurement by measuring the distribution of the temperature in accordance with the specified expression. CONSTITUTION:The distribution of temperature is measured by the expression I: where T(L) is the temperature at a specified distance L from the pulse incident end of an optical fiber to be measured, IS(L) is the detected intensity of Stokes light, IA(L) is the detected intensity of anti-Stokes light, DELTAalpha is the difference between the attenuating rates of the Stokes light and the anti-Stokes light, (k) is Boltzmann's constant, (r) is Planck's constant, (c) is light speed and nu is a Raman Shift amount.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は分布型光ファイバー温度センザーに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distributed optical fiber temperature sensor.

[従来の技術] 第2図に従来技術の構成を示す。13はレーザ発光部、
14は光方向性結合器、15は被測定光ファイバー、1
6は分光部、17及び18は光電変換器、19及び20
は前置増幅器、21は平均化処理部、22は信号処理部
を表わす。
[Prior Art] FIG. 2 shows the configuration of the prior art. 13 is a laser emitting part;
14 is an optical directional coupler, 15 is an optical fiber to be measured, 1
6 is a spectroscopic unit, 17 and 18 are photoelectric converters, 19 and 20
21 represents a preamplifier, 21 represents an averaging processing section, and 22 represents a signal processing section.

光源部のレーザ発光部13から発振したレーザパルスは
、被測定用の光ファイバー15へ入射され、光フアイバ
ー15中で発生したラマン11々乱光が入射端へ戻って
くる。該ラマン散乱光は光方向性結合器14により測定
装置へ導光され、まず分光部16によりラマン散乱光中
のストークス光と反ストークス光が分離検出され、各々
光電変換器17.18でその強度に比例した電気信号に
変換される。該電気信号は各々前置増幅器19.2゜に
より増幅され、平均化処理部21にて所定回数平均化処
理がなされる。平均化処理された信号は信号処理部22
へ伝送され、スト−クス光と反ストークス光の信号の比
をとり、温度分布への換算等の処理がなされる。
Laser pulses oscillated from the laser emitting section 13 of the light source section are input to the optical fiber 15 to be measured, and the scattered light of the Raman 11 generated in the optical fiber 15 returns to the input end. The Raman scattered light is guided to the measuring device by the optical directional coupler 14, and first the Stokes light and anti-Stokes light in the Raman scattered light are separated and detected by the spectrometer 16, and their intensities are determined by photoelectric converters 17 and 18, respectively. is converted into an electrical signal proportional to . The electrical signals are each amplified by a preamplifier 19.2°, and averaged a predetermined number of times by an averaging processing section 21. The averaged signal is sent to the signal processing unit 22
The ratio of the Stokes light and anti-Stokes light signals is calculated, and processing such as conversion to temperature distribution is performed.

[発明の解決しようとする課題] 従来、上記のような構成の分布型光ファイバ?M度セン
ザーにおいては以下に示すような温度測定を行なってい
た。
[Problem to be solved by the invention] What is the conventional distributed optical fiber having the above configuration? The M degree sensor measures temperature as shown below.

入射レーザパルスによって被測定光ファイバー中で発生
した後方ラマン散乱光が伝搬するときのスト−クス光と
反ストークス光の減衰率差の影響を補正するため、 akjn の式 にスト−クス光と反スト−クス光の減衰率差αを導入し
た式 %式% を用いて温度分布を測定していた。ここで、Tは測定温
度、Oは基準温度、R’ (T)は被測定部の相対強度
比、R’(]は基準温度部の相対強度比、kはボルツマ
ン定数、1)はブランク定数、Cけ光速、1ノはラマン
トンシフト量、XはW11離である。このJ:うな測定
ノブ法によっても精度良く温度分布を測定できたが、こ
の方法では、基準温度eを設定するために被測定光ファ
イバ・−を敷設する47■に該光ファイバーの−・部も
しくは全部を精度の良い恒温槽に人第1、あらがじめ測
定する温度範囲のストークス光と反スト−クス光の減衰
率を測定しなければならず、また測定部分の減衰率を該
光フアイバー全体に定として適用させていた為、すでに
敷設しである光ファイバーや、極端に特性の異なる部分
を含んだ光ファイバーには適用できず、また光ファイバ
ーの特性の経時変化・敷設状態に起因する温度算出の誤
差を含んでいるという欠点を有していた。
In order to correct the influence of the difference in attenuation rate between Stokes light and anti-Stokes light when the backward Raman scattering light generated in the optical fiber under test by the incident laser pulse propagates, the formula of akjn is - Temperature distribution was measured using the formula % formula % which introduced the attenuation rate difference α of light. Here, T is the measurement temperature, O is the reference temperature, R' (T) is the relative intensity ratio of the measured part, R' ( ] is the relative intensity ratio of the reference temperature part, k is the Boltzmann constant, and 1) is the blank constant. , C is the speed of light, 1 is the Ramanton shift amount, and X is W11 distance. Although the temperature distribution could be measured with high accuracy using this J: Una measurement knob method, in this method, in order to set the reference temperature e, the optical fiber to be measured is laid. First, the attenuation rate of Stokes light and anti-Stokes light in the temperature range to be measured must be measured in advance, and the attenuation rate of the measurement part must be measured in advance by placing the entire body in a high-precision thermostatic chamber. Because it was applied as a general rule, it cannot be applied to optical fibers that have already been installed or to optical fibers that include parts with extremely different characteristics. It had the disadvantage of containing errors.

[課題を解決する為の手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、光源より被測定用の光フアイバーへレーザパルスを
入射し、該光ファイバーからの後方ラマン散乱光中に含
まれるス[・−ラス光ど反スト−クス光の強度比と遅れ
時間がら該光ファイバーの距離に関する温度分布を測定
する温度測定方法において、1゛(1、)を距離りにお
ける測定温度、Ig(L、)を距離L、におりるスト−
クス光の検出強度、IA(L)を距離1.における反ス
ト−クス光の検出強度、△αをスト−クス光ど反スト−
クス光の減衰率差、kをボルツマン定数、1〕をブラン
ク定数、Cを光速、っノをラマンシフト量としたとき、
予め測定した光ファイバーのL = Oの温度から逐次
的に以下の式1式%(1) により温度分布を測定することを特徴とした温度測定方
法、及び被測定用の光フアイバーへレーザパルスを入射
する光源と、該光ファイバーからの後方ラマン散乱光を
検出器へ導光する光方向性結合器と、該後方ラマン散乱
光中に含まれるストークス光と反ストークス光を検出し
それらの強度比と遅れ時間から該光ファイバーの距離に
関する温度分布を算出する仏号処理部とを備えた分布型
光フアイバー温度センサーにおいて、該信号処理部はT
(L)を距離■−における測定温度、1.(L)を距離
■、におけるストークス光の検出強度、IA(L、)を
距離■−における反スト−クス光の検出強度、Δαをス
トークス光と反ストークス光の減衰率差、kをボルツマ
ン定数、11をブランク定数、Cを光速、νをラマンシ
フト量としたとき、予め測定した光ファイバーの1.、
、、 = Oの温度から逐次的に以下の式1式%() により温度分布を測定することを特徴とした分布型光フ
アイバー温度センサーを提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and involves injecting a laser pulse from a light source into an optical fiber to be measured, and detecting backward Raman scattered light from the optical fiber. In a temperature measurement method that measures the temperature distribution with respect to the distance of the optical fiber from the intensity ratio and delay time of the Stokes light and the Stokes light contained in the optical fiber, 1゛(1,) is the measured temperature at a distance. , Ig(L,) at distance L,
The detected intensity of light, IA(L), is set at a distance of 1. The detected intensity of the anti-Stokes light, △α, is the anti-Stokes light
where k is the Boltzmann constant, 1 is the blank constant, C is the speed of light, and k is the Raman shift amount,
A temperature measurement method characterized by sequentially measuring the temperature distribution from the pre-measured temperature of the optical fiber at L = O using the following equation 1, % (1), and injecting a laser pulse into the optical fiber to be measured. a light source that guides the backward Raman scattered light from the optical fiber to a detector, a light directional coupler that detects Stokes light and anti-Stokes light contained in the backward Raman scattered light, and detects their intensity ratio and delay. In the distributed optical fiber temperature sensor, the signal processing section includes a Buddhist name processing section that calculates the temperature distribution with respect to the distance of the optical fiber from time.
(L) is the measured temperature at distance ■-, 1. (L) is the detected intensity of Stokes light at distance ■, IA(L,) is the detected intensity of anti-Stokes light at distance ■-, Δα is the difference in attenuation rate between Stokes light and anti-Stokes light, and k is Boltzmann's constant. , 11 is a blank constant, C is the speed of light, and ν is the amount of Raman shift, 1. of the optical fiber measured in advance. ,
The present invention provides a distributed optical fiber temperature sensor that measures the temperature distribution sequentially from the temperature of .

[作用] 検出されるレイリー散乱光及びスト−クス光、反スト−
クス光の強度をそれぞれIR(l、)及びI、(1,、
)、IA(+−)とすると次式で与えられる。
[Effect] Detected Rayleigh scattered light, Stokes light, anti-Stokes light
The intensity of the light is expressed as IR(l,) and I,(1,,
), IA(+-), it is given by the following equation.

I 、(L)= ■1lo(L)*exp[−Σa−(
T(x)l  ]T s(1,)= I 5o(L) 
 *  ex、p  [−Σa、(T(x)l  ]I
 A(1,、)= ここでIRo(+−)及びI 、、、(L) 、  I
 Aa(L、■(L))はそれぞれレイリー散乱光及び
スト−クス光、反スト−クス光の被測定光ファイバーの
レーザ光入射端からの距離りにおける発光強度を、α、
及びαll、flAはそれぞれレイリー散乱光及びスト
−クス光、反ストークス光の被測定光ファイバーにおけ
る減衰率を示す。なお、Lは被測定光ファイバーにレー
ザパルスか入射してからそれぞれの散乱光が検出される
までの時間から算出できる。また、絶対温度Tの関数に
なっているものはlR度依存かあることを、Σ は距離
0から1.−1までのデータを加算することを意味する
I, (L) = ■1lo(L)*exp[-Σa-(
T(x)l ]T s(1,)=I 5o(L)
* ex, p [-Σa, (T(x)l ]I
A(1,,)= where IRo(+-) and I , , (L) , I
Aa (L, ■ (L)) is the emission intensity of Rayleigh scattered light, Stokes light, and anti-Stokes light at a distance from the laser light input end of the optical fiber to be measured, respectively, α,
and αll and flA respectively represent the attenuation rates of Rayleigh scattered light, Stokes light, and anti-Stokes light in the optical fiber to be measured. Note that L can be calculated from the time from when a laser pulse enters the optical fiber to be measured until each scattered light is detected. Also, what is a function of absolute temperature T is lR degree dependent, and Σ is a distance from 0 to 1. This means adding data up to -1.

次に、レイリー散乱光とスト−クス光にζJ、温度依存
がないので I 1l(Ll1)= I l+(1、)*  exp
 [−2*a ++(T([、))]I g(Ll1)
= I 5(Ll * exp [2*a 5fT(L
)l ]・ ・・ (7) であるから(式中−α、 (T (1,) )の係数2
は往復の減衰を表わす)、 2*[α、 (T (L) l −α、(T(L)l 
1 =1r+(I R(L)/ I p(L÷1) *
 I 、、(Ll1.)/ I s(1、))となり、
被測定光ファイバーの任意の点におけるレイリー散乱光
とストークス光の減衰率差が求められる。更に、レイリ
ー散乱光及びスト−クス光、反スト−クス光の波長は数
10nmLか離れていないのでこの波長領域における減
衰率の変化は線型だと考えられるので、被測定光ファイ
バーの任意の点におけるストークス光と反ストークス光
の減衰率差が求められることとなる。
Next, since Rayleigh scattered light and Stokes light have no ζJ and temperature dependence, I 1l (Ll1) = I l + (1, ) * exp
[-2*a ++(T([,))]I g(Ll1)
= I 5(Ll * exp [2*a 5fT(L
)l]... (7) Since (in the formula -α, the coefficient 2 of (T (1,))
represents the round-trip attenuation), 2*[α, (T (L) l −α, (T(L) l
1 = 1r + (I R (L) / I p (L÷1) *
I,,(Ll1.)/Is(1,)),
The difference in attenuation rate between Rayleigh scattered light and Stokes light at any point on the optical fiber to be measured is determined. Furthermore, since the wavelengths of Rayleigh scattered light, Stokes light, and anti-Stokes light are separated by several tens of nanometers, the change in attenuation rate in this wavelength range is considered to be linear. The difference in attenuation rate between Stokes light and anti-Stokes light is determined.

このようにして求められたストークス光と反ストークス
光の減衰率差△αfT(L))= 2 x[α、+T(
L))−〇、(T(1、))]を用いて次式に従ってT
(0)が既知であればL=Oから逐次的に温度分布が得
られることとなる。
Difference in attenuation rate between Stokes light and anti-Stokes light obtained in this way △αfT(L)) = 2 x[α, +T(
L))−〇, (T(1,))], T according to the following formula
If (0) is known, the temperature distribution can be obtained sequentially from L=O.

1/T(L+1)= 1/T(L) −C*  [In  (I  −(L)/  I  l
l(L+1)*  I  A(L+1)/IA(L)1
−Δα(T(L)ll   ・ (9)ここで、Cは被
測定光ファイバーの材質とレーザの波長によって決まる
定数である。
1/T(L+1)=1/T(L)-C* [In(I-(L)/I l
l(L+1)* I A(L+1)/IA(L)1
−Δα(T(L)ll) (9) Here, C is a constant determined by the material of the optical fiber to be measured and the wavelength of the laser.

即ち、距離りにおける温度はDakinO式よりであり
、 同様に距離L+1では であり、 これらの両辺を各々引いてに/hc1/=Cとおくど、
が得られる。このように、基準温度θを設定する必要が
な(なる。
That is, the temperature at a distance is according to the DakinO formula, and similarly at a distance L+1, subtracting both sides of these and setting /hc1/=C,
is obtained. In this way, there is no need to set the reference temperature θ.

[実施例] 本発明の詳細な説明する。第1図は本発明のブロック図
である。1は半導体レーザ等のレーザ発光部、2は光フ
アイバーカブラや音響光学素子等の光方向性結合器、3
は被測定光ファイバー、4は分光フィルター等の分光部
、5及び6.7はレイリー散乱光、ストークス光、反ス
ト−クス光各々の光電変換器、8及び9.1゜は前置増
幅器、11は平均化処理、12は信号処理部を示してい
る。
[Example] The present invention will be explained in detail. FIG. 1 is a block diagram of the present invention. 1 is a laser emitting unit such as a semiconductor laser, 2 is an optical directional coupler such as an optical fiber coupler or an acousto-optic device, and 3 is a laser light emitting unit such as a semiconductor laser.
is an optical fiber to be measured; 4 is a spectroscopic unit such as a spectral filter; 5 and 6.7 are photoelectric converters for Rayleigh scattered light, Stokes light, and anti-Stokes light; 8 and 9.1° are preamplifiers; 11 12 indicates an averaging process, and 12 indicates a signal processing section.

この測定システムを用いて、以下の処理を行う。The following processing is performed using this measurement system.

被測定光ファイバー3のレーザパルス人別端から50m
の部分をL=Oの点とし、その部分の温度T(0)を2
5.0℃に保ちスト−クス光強度I。
50m from the laser pulse end of the optical fiber to be measured 3
Let the part be the point L=O, and let the temperature T(0) of that part be 2
Stokes light intensity I kept at 5.0°C.

(0)、レイリー散乱光強度IR(0)、反ストーク」
  l ス光強度■A(0)を測定し、それらを1.(0)=1
.1.(0)=1、I A(0)= 1とし規格化した
6L−1ではI ll(1,)= 0.998900、
IR(1,)=0.998973、I A(1)= 0
.99881.1であった。これらの値から(8)式を
用いてスト−クス光と反ストークス光の減衰率差△α(
T(0)lを外挿して求め、Δα(T(0) l = 
7.3078X 10−1′となった。従って、(9)
式を用いてT(1) = 25.3°Cが求められた。
(0), Rayleigh scattered light intensity IR (0), anti-Stokes”
l Measure the light intensity ■A(0) and compare them to 1. (0)=1
.. 1. In 6L-1, which is standardized with (0) = 1 and I A (0) = 1, I ll (1,) = 0.998900,
IR(1,)=0.998973, IA(1)=0
.. It was 99881.1. From these values, the attenuation rate difference △α(
Obtain by extrapolating T(0)l, Δα(T(0)l =
It became 7.3078X 10-1'. Therefore, (9)
T(1) = 25.3°C was determined using the formula.

以上の操作を繰り返して、被測定光ファイバー全体の2
kmにわたって1m間隔で温度分布を測定することが可
能となり、光ファイバー個々の特性や経時変化による特
性の変化を考慮してストークス光と反ストークス光減衰
率差を前もって光フアイバー全体にわたって測定してお
くという操作が省くことができ、測定時間の大幅な短縮
が可能となった。
Repeat the above operation to measure the entire optical fiber to be measured.
It is now possible to measure temperature distribution at 1 m intervals over a km distance, and the difference in attenuation rates of Stokes light and anti-Stokes light is measured over the entire optical fiber in advance, taking into account the characteristics of each optical fiber and changes in characteristics over time. The operation can be omitted and the measurement time can be significantly shortened.

発明の効果] 本発明の効果は次のとおりである。Effect of the invention] The effects of the present invention are as follows.

(1)被測定光ファイバーを敷設する前に該光ファイバ
ーの一部もしくは全部を精度の良い恒温槽に入れ、測定
する温度範囲のストークス光と反ストークス光の減衰率
を測定する必要がなくなった。
(1) It is no longer necessary to place part or all of the optical fiber to be measured in a highly accurate thermostatic oven before laying the optical fiber to measure the attenuation rate of Stokes light and anti-Stokes light in the temperature range to be measured.

(2)すでに敷設しである光ファイバーや、極端に特性
の異なる部分を含んだ光ファイバーを被測定光ファイバ
ーとして使用することが可能となった。
(2) It is now possible to use optical fibers that have already been installed or optical fibers that include parts with extremely different characteristics as optical fibers to be measured.

(3)光ファイバーの特性の経時変化・敷設状態に起因
する温度算出の誤差を相殺して精度の良い温度測定が可
能となった。
(3) Accurate temperature measurements are now possible by canceling out temperature calculation errors caused by changes in optical fiber characteristics over time and installation conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明センサーのブロック図であり、第2図は
従来センサーのブロック図である。 1はレーザ発光部、2は光方向性結合器、3は被測定光
ファイバー、4は分光部、5及び6.7は光電変換器、
8及び9.10は前置増幅器、11は平均化処理部、1
2は信号処理部を示している。
FIG. 1 is a block diagram of a sensor of the present invention, and FIG. 2 is a block diagram of a conventional sensor. 1 is a laser emitting unit, 2 is an optical directional coupler, 3 is an optical fiber to be measured, 4 is a spectroscopic unit, 5 and 6.7 are photoelectric converters,
8 and 9.10 are preamplifiers, 11 is an averaging processing section, 1
2 indicates a signal processing section.

Claims (2)

【特許請求の範囲】[Claims] (1)光源より被測定用の光ファイバーへレーザパルス
を入射し、該光ファイバーからの後方ラマン散乱光中に
含まれるストークス光と反ストークス光の強度比と遅れ
時間から該光ファイバーの距離に関する温度分布を測定
する温度測定方法において、T(L)を距離Lにおける
測定温度、I_S(L)を距離Lにおけるストークス光
の検出強度、I_A(L)を距離Lにおける反ストーク
ス光の検出強度、Δαをストークス光と反ストークス光
の減衰率差、kをボルツマン定数、hをブランク定数、
cを光速、νをラマンシフト量としたとき、予め測定し
た光ファイバーのL=0の温度から逐次的に以下の式 ▲数式、化学式、表等があります▼ により温度分布を測定することを特徴とした温度測定方
法。
(1) Inject a laser pulse from a light source into the optical fiber to be measured, and calculate the temperature distribution with respect to the distance of the optical fiber from the intensity ratio and delay time of Stokes light and anti-Stokes light contained in the backward Raman scattered light from the optical fiber. In the temperature measurement method, T(L) is the measured temperature at distance L, I_S(L) is the detected intensity of Stokes light at distance L, I_A(L) is the detected intensity of anti-Stokes light at distance L, and Δα is Stokes The attenuation rate difference between light and anti-Stokes light, k is Boltzmann constant, h is Blank constant,
When c is the speed of light and ν is the amount of Raman shift, the temperature distribution is measured sequentially from the pre-measured temperature of the optical fiber at L = 0 using the following formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ temperature measurement method.
(2)被測定用の光フアイバーへレーザパルスを入射す
る光源と、該光ファイバーからの後方ラマン散乱光を検
出器へ導光する光方向性結合器と、該後方ラマン散乱光
中に含まれるストークス光と反ストークス光を検出しそ
れらの強度比と遅れ時間から該光ファイバーの距離に関
する温度分布を算出する信号処理部とを備えた分布型光
ファイバー温度センサーにおいて、該信号処理部はT(
L)を距離Lにおける測定温度、I_S(L)を距離L
におけるストークス光の検出強度、I_A(L)を距離
Lにおける反ストークス光の検出強度、 Δαをストークス光と反ストークス光の減衰率差、kを
ボルツマン定数、hをブランク定数、cを光速、νをラ
マンシフト量としたとき、予め測定した光ファイバーの
L=0の温度から逐次的に以下の式 ▲数式、化学式、表等があります▼ により温度分布を測定することを特徴とした分布型光フ
ァイバー温度センサー。
(2) A light source that injects a laser pulse into the optical fiber to be measured, an optical directional coupler that guides the backward Raman scattered light from the optical fiber to the detector, and Stokes contained in the backward Raman scattered light. In a distributed optical fiber temperature sensor, the signal processing section includes a signal processing section that detects light and anti-Stokes light and calculates a temperature distribution with respect to the distance of the optical fiber from their intensity ratio and delay time.
L) is the measured temperature at distance L, I_S(L) is distance L
I_A(L) is the detected intensity of anti-Stokes light at distance L, Δα is the difference in attenuation rate between Stokes light and anti-Stokes light, k is Boltzmann's constant, h is Blank's constant, c is the speed of light, ν A distributed optical fiber temperature system that is characterized by measuring the temperature distribution sequentially from the pre-measured temperature of the optical fiber at L = 0 using the following formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ where is the Raman shift amount. sensor.
JP2270627A 1990-10-11 1990-10-11 Temperature measuring method and distributed optical fiber temperature sensor Expired - Fee Related JP2897389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2270627A JP2897389B2 (en) 1990-10-11 1990-10-11 Temperature measuring method and distributed optical fiber temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2270627A JP2897389B2 (en) 1990-10-11 1990-10-11 Temperature measuring method and distributed optical fiber temperature sensor

Publications (2)

Publication Number Publication Date
JPH04148832A true JPH04148832A (en) 1992-05-21
JP2897389B2 JP2897389B2 (en) 1999-05-31

Family

ID=17488725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2270627A Expired - Fee Related JP2897389B2 (en) 1990-10-11 1990-10-11 Temperature measuring method and distributed optical fiber temperature sensor

Country Status (1)

Country Link
JP (1) JP2897389B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654683A (en) * 2021-08-16 2021-11-16 许昌许继软件技术有限公司 Calibration method and device for distributed optical fiber temperature measurement system
CN114046900A (en) * 2021-11-11 2022-02-15 许继电气股份有限公司 Self-adaptive filtering method and device for distributed optical fiber temperature measurement system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654683A (en) * 2021-08-16 2021-11-16 许昌许继软件技术有限公司 Calibration method and device for distributed optical fiber temperature measurement system
CN113654683B (en) * 2021-08-16 2023-12-05 许昌许继软件技术有限公司 Calibration method and device for distributed optical fiber temperature measurement system
CN114046900A (en) * 2021-11-11 2022-02-15 许继电气股份有限公司 Self-adaptive filtering method and device for distributed optical fiber temperature measurement system

Also Published As

Publication number Publication date
JP2897389B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
US5054935A (en) Temperature-measuring method and distributed optical fiber temperature sensor
DE69831405T2 (en) DISTRIBUTED SENSOR SYSTEM
US4767219A (en) Light scattering temperature measurement
US9157811B2 (en) Dispersion and loss spectrum auto-correction distributed optical fiber raman temperature sensor
US8496376B2 (en) Dual source auto-correction in distributed temperature systems
EP2587238B1 (en) Optical fibre temperature distribution measurement apparatus
JPH0364812B2 (en)
Dakin et al. Distributed antistokes ratio thermometry
CN102095524A (en) Method for dynamically calibrating distributed optical fiber temperature sensor system
JP2996704B2 (en) Optical sensor with multimode interference
JPH04148832A (en) Temperature measuring method and distribution-type optical-fiber temperature sensor
CN105352626B (en) A kind of demodulation method and device of Concatenate optical fiber Raman temperature system
CN110887527A (en) Distributed optical fiber humidity and temperature simultaneous detection device and detection method
JPS6114529A (en) Measuring method of temperature using optical fiber
CN113091783B (en) High-sensitivity sensing device and method based on two-stage Brillouin scattering
JPH04332835A (en) Corrective processing method of distributed temperature data
GB2170594A (en) Measuring temperature
Namkung et al. Fiber optic distributed temperature sensor using Raman backscattering
JPH02306131A (en) Measuring method for temperature distribution of optical fiber
JPH02145933A (en) Optical fiber linear temperature distribution measuring system
Zhang et al. A distributed optical fiber temperature measuring system for oil Wells
JPH0769222B2 (en) Temperature measurement method and distributed optical fiber temperature sensor
JPH0321837A (en) Distributed optical fiber temperature sensor and temperature measuring method
KR0171312B1 (en) Optic system of light temperature sensor of distribution using light circulator
Gritsenko et al. Distributed Strain Sensor Based on Double-Wavelength phi-OTDR

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees