JPH0769222B2 - Temperature measurement method and distributed optical fiber temperature sensor - Google Patents

Temperature measurement method and distributed optical fiber temperature sensor

Info

Publication number
JPH0769222B2
JPH0769222B2 JP1143995A JP14399589A JPH0769222B2 JP H0769222 B2 JPH0769222 B2 JP H0769222B2 JP 1143995 A JP1143995 A JP 1143995A JP 14399589 A JP14399589 A JP 14399589A JP H0769222 B2 JPH0769222 B2 JP H0769222B2
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
light
stokes light
intensity ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1143995A
Other languages
Japanese (ja)
Other versions
JPH0310133A (en
Inventor
譲 田辺
耕司 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1143995A priority Critical patent/JPH0769222B2/en
Publication of JPH0310133A publication Critical patent/JPH0310133A/en
Publication of JPH0769222B2 publication Critical patent/JPH0769222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は分布型光ファイバー温度センサーおよび温度測
定方法に係り、特にストークス光と反ストークス光の比
をとる場合に問題となる被測定光ファイバー中での減衰
率差の影響を補正し、長距離の光ファイバーの温度分布
を高精度に測定可能とした分布型光ファイバー温度セン
サーおよび温度測定方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a distributed optical fiber temperature sensor and a temperature measuring method, and in particular, in an optical fiber to be measured which becomes a problem when the ratio of Stokes light to anti-Stokes light is taken. The present invention relates to a distributed optical fiber temperature sensor and a temperature measuring method capable of correcting the influence of the difference in the attenuation rate and accurately measuring the temperature distribution of a long-distance optical fiber.

[従来の技術] 従来の分布型光ファイバー温度センサーのブロック図を
第4図に示す。光源部のレーザーパルサー10から発振し
たレーザーパルスは、被測定用の光ファイバー12へ入射
され、光ファイバー12中で発生したラマン散乱光が入射
端へ戻ってくる。該ラアン散乱光は光方向性結合器11に
より測定装置へ導光され、まずフィルター13によりラマ
ン散乱光中のストークス光と反ストークス光が分離検出
され、各々光電変換部14,14′でその強度に比例した電
気信号に変換される。該電気信号は各々プリアンプ15,1
5′により増幅され、アベレージャー16にて所定回数平
均化処理がなされる。平均化処理された信号は信号処理
部17へ伝送され、ストークス光と反ストークス光の遅れ
時間、強度比を計算し、温度分布を出力する等の処理が
なされる。ストークス光と反ストークス光の強度比を計
算する場合、その絶対強度比を求めることが困難なため
相対強度比 を用いてDakin(Dakin,J.P,Pratt,D.J.,Bibby,G.W.,Ros
s,J.N.“Temperature distribution measurement using
Raman ratio thermometry",SPIE Vol 566 Fiber Optic
and Laser Sensors III 249(1985))による以下の式
から求められる。
[Prior Art] A block diagram of a conventional distributed optical fiber temperature sensor is shown in FIG. The laser pulse oscillated from the laser pulser 10 of the light source unit is incident on the optical fiber 12 to be measured, and the Raman scattered light generated in the optical fiber 12 returns to the incident end. The Raan scattered light is guided to the measuring device by the optical directional coupler 11, the Stokes light and the anti-Stokes light in the Raman scattered light are separated and detected by the filter 13, and their intensities are detected by the photoelectric conversion units 14 and 14 ', respectively. Is converted into an electric signal proportional to. The electric signals are preamplifiers 15 and 1, respectively.
The signal is amplified by 5 ', and averaged by the averager 16 a predetermined number of times. The averaged signal is transmitted to the signal processing unit 17, where the delay time and intensity ratio of the Stokes light and anti-Stokes light are calculated, and the temperature distribution is output. When calculating the intensity ratio of Stokes light and anti-Stokes light, it is difficult to find the absolute intensity ratio, so the relative intensity ratio is used to determine Dakin (Dakin, JP, Pratt, DJ, Bibby, GW, Ros
s, JN “Temperature distribution measurement using
Raman ratio thermometry ", SPIE Vol 566 Fiber Optic
and Laser Sensors III 249 (1985)).

上式において、Tは測定温度、Θは基準温度、R′
(T)は被測定部の相対強度比、R′(Θ)は基準温度
部の相対強度比、kはボルツマン定数、hはプランク定
数、Cは高速、νはラマンシフト量である。
In the above equation, T is the measured temperature, Θ is the reference temperature, and R '
(T) is the relative intensity ratio of the measured part, R '(?) Is the relative intensity ratio of the reference temperature part, k is Boltzmann's constant, h is Planck's constant, C is high speed, and v is Raman shift amount.

[発明の解決しようとする課題] LD等の光源部より発振した入射レーザーパルスは被測定
光ファイバー中を伝搬することによって、当然のことな
がら減衰する。しかし、この減衰の影響に関してはスト
ークス光と反ストークス光の比をとることによって回避
できるが、入射波によってラマン散乱が発生し後方に散
乱光が伝搬するときのストークス光と反ストークス光の
減衰率差の影響は比をとるだけでは回避できない。その
ため、前記減衰率差による影響を考慮した補正を行なう
必要があり、この補正を行なわないと均一な温度分布を
測定しても第3図に示すような大きく傾いた温度分布が
出力される。また、減衰率差自体が温度依存性を有して
おり、長距離の測定になるとその影響が大きくなり、精
度の良い測定を困難なものとしていた。
[Problems to be Solved by the Invention] An incident laser pulse oscillated from a light source such as an LD is naturally attenuated by propagating in an optical fiber to be measured. However, the effect of this attenuation can be avoided by taking the ratio of Stokes light to anti-Stokes light, but the attenuation rate of Stokes light and anti-Stokes light when Raman scattering is generated by the incident wave and the scattered light propagates backward The effect of the difference cannot be avoided only by taking the ratio. Therefore, it is necessary to make a correction in consideration of the influence of the difference in the attenuation rate. If this correction is not made, even if a uniform temperature distribution is measured, a greatly inclined temperature distribution as shown in FIG. 3 is output. Further, the attenuation rate difference itself has temperature dependence, and the influence thereof becomes large when measuring a long distance, which makes accurate measurement difficult.

[課題を解決するための手段] 本発明は前述の問題点を解決すべくなされたものであ
り、被測定用の光ファイバーへレーザパルスを入射し、
該光ファイバーからの戻り光に含まれるストークス光と
反ストークス光の強度比と遅れ時間から光ファイバーの
温度分布を測定する温度測定方法において、Tを測定温
度、Θを基準温度、R′(T)を被測定部の相対強度
比、R′(Θ)を基準温度部の相対強度比、kをボルツ
マン定数、hをブランク定数、Cを光速、νをラマンシ
フト量、αをストークス光と反ストークス光の光ファイ
バー中での減衰率差、xを距離としたとき、前記減衰率
差αと距離xとの積を指数部とする指数関数の補正項を
導入した式 により温度分布を測定することを特徴とする温度測定方
法、および被測定用の光ファイバーへレーザーパルスを
入射する光源部と、該光ファイバーからの戻り光を信号
処理装置へ導光する光方向性結合器と、該戻り光に含ま
れるストークス光と反ストークス光を検出しそれらの強
度比と遅れ時間から光ファイバーの温度分布を測定する
信号処理装置とからなる分布型光ファイバー温度センサ
ーにおいて、前記信号処理装置はTを測定温度、Θを基
準温度、R′(T)を被測定部の相対強度比、R′
(Θ)を基準温度部の相対強度比、kをボルツマン定
数、hをブランク定数、Cを光速、νをラマンシフト
量、αをストークス光と反ストークス光の光ファイバー
中での減衰率差、xを距離としたとき、前記減衰率差α
と距離xとの積を指数部とする指数関数の補正項を導入
した式 により温度分布を測定することを特徴とする分布型光フ
ァイバー温度センサーを提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and makes a laser pulse incident on an optical fiber to be measured,
In the temperature measuring method for measuring the temperature distribution of the optical fiber from the intensity ratio of the Stokes light and anti-Stokes light contained in the return light from the optical fiber and the delay time, T is the measurement temperature, Θ is the reference temperature, and R ′ (T) is R '(Θ) is the relative intensity ratio of the reference temperature part, k is the Boltzmann constant, h is the blank constant, C is the speed of light, ν is the Raman shift amount, α is the Stokes light and anti-Stokes light. The expression introducing a correction term of an exponential function whose exponent part is the product of the above-mentioned attenuation rate difference α and the distance x, where x is the distance, and x is the distance in the optical fiber. And a light source section for injecting a laser pulse into an optical fiber to be measured, and an optical directional coupler for guiding return light from the optical fiber to a signal processing device. And a signal processor for detecting the Stokes light and anti-Stokes light contained in the return light and measuring the temperature distribution of the optical fiber from the intensity ratio and delay time thereof, in the distributed optical fiber temperature sensor, T is the measurement temperature, Θ is the reference temperature, R '(T) is the relative intensity ratio of the measured part, R'
(Θ) is the relative intensity ratio of the reference temperature part, k is the Boltzmann constant, h is the blank constant, C is the speed of light, ν is the Raman shift amount, α is the difference in attenuation rate between the Stokes light and the anti-Stokes light in the optical fiber, x Is the distance α
An expression that introduces a correction term for the exponential function whose exponent is the product of x and distance x The present invention provides a distributed optical fiber temperature sensor characterized by measuring a temperature distribution according to.

上記減衰率差α(m-1)は、ストークス光の減衰係数を 反ストークス光の減衰率係数を としたとき、α=α−αASで表わされる。The above attenuation rate difference α (m -1 ) is the attenuation coefficient of Stokes light. Anti-Stokes light attenuation coefficient Then, α = α S −α AS .

補正項を決めるに当たって大きな問題となるのは、この
減衰率差α自体が厳密にいうと温度特性を持っている点
である。そのため減衰率差αの温度変化量の少ない条件
を選択する必要がある。そのため、本発明者らは鋭意研
究した結果、減衰率差αを本センサーが応用される温度
領域(約0℃〜約80℃)において略一定とする条件とし
て、被測定用の光ファイバーを心線状態とすることを見
出した。心線状態とは以下に示すような状態である。
A major problem in determining the correction term is that the attenuation rate difference α itself has a temperature characteristic in a strict sense. Therefore, it is necessary to select a condition in which the amount of change in the attenuation rate difference α is small. Therefore, as a result of intensive studies by the present inventors, as a condition that the attenuation rate difference α is substantially constant in the temperature range (about 0 ° C. to about 80 ° C.) to which the present sensor is applied, the optical fiber to be measured is made a core wire. It was found that the state. The core state is a state as shown below.

通常光ファイバーは、石英やシリカなどの材料よりなる
コア、クラッドと、コア、クラッドの外に被覆されるナ
イロンあるいはフッ素樹脂等からなる第1の被覆材と、
更に第1の被覆材の外に被覆される合成樹脂等の最外被
覆材とからなり、第1の被覆材までの部分を心線と呼
び、最外被覆材までをコードと呼ぶ。
Usually, an optical fiber has a core and a clad made of a material such as quartz or silica, and a first coating material made of nylon or fluororesin which is coated on the outside of the core and the clad,
Further, the outermost coating material such as a synthetic resin coated on the outside of the first coating material is referred to as a core wire up to the first coating material, and the cord up to the outermost coating material.

更に詳細な例で説明すると、コア(石英)の直径100μ
m、クラッド(石英)140μm,心線状態の直径0.9mm、コ
ード状態の直径2.9mmであり、心線状態で1次被覆とし
て薄い半固体状のシリコン樹脂、2次被覆としてナイロ
ンが被覆されており、コード状態で心線の外にケプラー
(炭素繊維)更に外側にPVC樹脂が被覆されるというの
が一般的である。
Explaining in more detail, the diameter of the core (quartz) is 100μ.
m, clad (quartz) 140 μm, core diameter 0.9 mm, cord diameter 2.9 mm. In the core state, thin semi-solid silicon resin is used as the primary coating and nylon is used as the secondary coating. In general, in a cord state, the outside of the core wire is covered with a Kepler (carbon fiber) and the outside is covered with PVC resin.

本発明でいうところの心線状態とは上記の第1の被覆材
までを有する状態であり、被覆材としてはナイロンが好
ましい。
The core state as referred to in the present invention is a state including the above-mentioned first covering material, and nylon is preferable as the covering material.

[作用] 本発明において、光ファイバーの温度分布測定に用いら
れるDakinの式にストークス光と反ストークス光の減衰
率差αの補正項を導入し、該減衰率差αの温度依存性を
解消する目的として心線状態の光ファイバーを用いるこ
とにより、長距離の光ファイバーの温度分布を測定して
も、温度分布の曲線が距離に従って大きく傾くという問
題点が解消され、また高精度の測定が可能となるもので
ある。
[Operation] In the present invention, the purpose of eliminating the temperature dependence of the attenuation rate difference α by introducing a correction term for the attenuation rate difference α of the Stokes light and the anti-Stokes light into the Dakin's equation used for measuring the temperature distribution of the optical fiber. As a result of using the optical fiber in the state of a core wire, even if the temperature distribution of a long-distance optical fiber is measured, the problem that the curve of the temperature distribution greatly inclines with distance is solved, and high-precision measurement becomes possible. Is.

[実施例] 第1図、第2図に本発明の実施例を示す、第1図は、光
ファイバーの温度分布測定に先立ち、減衰率差αの温度
依存性を測定した結果を示すグラフである。αの温度変
動を最小とする条件、即ち心線状態の光ファイバーと
し、被覆材にナイロンを用いた場合の温度変化量を示
す。この条件では0〜60℃の範囲で0.26dBの変化であ
り、これによる温度測定確度の劣化は1kmの位置で最大
4.3℃となる。この値は、コード化された光ファイバー
による測定結果と比較すると、半分程度に改善されてい
る。この値は0〜60℃の範囲で0.3dB以下の値であれば
十分精度良い測定が可能である。
Example An example of the present invention is shown in FIGS. 1 and 2. FIG. 1 is a graph showing the results of measuring the temperature dependence of the attenuation factor difference α before measuring the temperature distribution of the optical fiber. . The amount of temperature change when α is the minimum optical fiber temperature change, that is, when the optical fiber is in the form of a core and nylon is used as the coating material is shown. Under this condition, the change is 0.26 dB in the range of 0 to 60 ° C, and the deterioration of the temperature measurement accuracy due to this is the maximum at the position of 1 km.
It will be 4.3 ℃. This value is improved by about half when compared with the measurement result by the coded optical fiber. If this value is 0.3 dB or less in the range of 0 to 60 ° C, sufficiently accurate measurement can be performed.

第2図は上記の如き心線状態の光ファイバーを用い、信
号処理装置において減衰率差αと距離xとの積を指数部
とする指数関数の補正項を導入した処理を行なった結果
を示すグラフである。
FIG. 2 is a graph showing the results of processing using an optical fiber in the above-described core wire state and introducing a correction term of an exponential function whose exponent part is the product of the attenuation rate difference α and the distance x in the signal processing device. Is.

ここで、本発明のセンサー装置とは、第4図の従来装置
において被測定用の光ファイバー12を心線状態とし、信
号処理装置、即ちフィルター13、光電変換部14,14′、
プリアンプ15,15′、アベレージャー16、信号処理部17
を総称した装置により上述の補正項を導入した処理を行
なうものであるが、更に具体的には上述の補正項を導入
した処理は、信号処理部17あるいは信号処理部17に接続
されるマイクロコンピュータ等によって行なわれる。
Here, the sensor device of the present invention means that in the conventional device of FIG. 4, the optical fiber 12 to be measured is in the core state, and the signal processing device, that is, the filter 13, the photoelectric conversion units 14, 14 ',
Preamplifiers 15 and 15 ', averager 16, signal processor 17
Is a device for collectively introducing the above-mentioned correction term, but more specifically, the process in which the above-mentioned correction term is introduced is a signal processing unit 17 or a microcomputer connected to the signal processing unit 17. Etc.

第2図の結果は、αを9.3×10-5(m-1),Θを25
(℃),R′(T)とR′(Θ)は実験値を用い、ν=44
0(cm-1)として測定したものであり、第3図の従来例
と比較して温度分布の曲線全体が傾くこともなく遠距離
部における温度測定確度が向上した。
The results in Fig. 2 show that α is 9.3 × 10 -5 (m -1 ), and Θ is 25.
(℃), R '(T) and R' (Θ) are experimental values, ν = 44
It was measured as 0 (cm −1 ), and the temperature measurement accuracy in the long distance portion was improved without inclination of the entire temperature distribution curve as compared with the conventional example of FIG.

なお、νについては変動した値を示すこともあり実験的
に求めた実効値を用いることもある。
Note that ν may show a changed value, and an effective value obtained experimentally may be used.

また、本発明センサーシステムにおける各装置間での光
学的結合に起因するような、ストークス光と反ストーク
ス光の相対強度比への悪影響を、下式に示すような新た
な補正項δを用いて測定前に信号処理装置をオフセット
調整し補正することもある。
Further, by using a new correction term δ as shown in the following equation, the adverse effect on the relative intensity ratio of the Stokes light and the anti-Stokes light, which is caused by the optical coupling between the respective devices in the sensor system of the present invention, is used. In some cases, the signal processing device may be offset and corrected before measurement.

[発明の効果] 本発明は、従来用いられてきたDakinの式に補正項を導
入した式に基づいた処理を行ない、更に補正行中の減衰
率差αの温度変動を最小にする条件を選択にすることに
より、温度分布の曲線全体が距離に従って大きく傾くと
いう問題点を解消し、かつ遠距離の温度測定確度が向上
するという優れた効果を有する。
[Effects of the Invention] The present invention performs processing based on an expression in which a correction term is introduced to the conventionally used Dakin's expression, and further selects a condition for minimizing the temperature fluctuation of the attenuation rate difference α during the correction operation. By this, there is an excellent effect that the problem that the entire curve of the temperature distribution inclines greatly according to the distance is solved and that the temperature measurement accuracy at a long distance is improved.

【図面の簡単な説明】 第1図と第2図は本発明の実施例を示し、第1図は減衰
率差αの温度依存性を示すグラフであり、第2図は本発
明方法およびセンサーを用いて得られた測定結果のグラ
フであり、第3図は従来の測定結果のグラフであり、第
4図は従来のセンサーのブロック図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 show an embodiment of the present invention, FIG. 1 is a graph showing the temperature dependence of the damping ratio difference α, and FIG. 2 is the method and sensor of the present invention. FIG. 3 is a graph of measurement results obtained by using, FIG. 3 is a graph of conventional measurement results, and FIG. 4 is a block diagram of a conventional sensor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被測定用の光ファイバーへレーザーパルス
を入射し、該光ファイバーからの戻り光に含まれるスト
ークス光と反ストークス光の強度比と遅れ時間から光フ
ァイバーの温度分布を測定する温度測定方法において、
Tを測定温度、Θを基準温度、R′(T)を被測定部の
相対強度比、R′(Θ)を基準温度部の相対強度比、k
をボルツマン定数、hをプランク定数、Cを光速、νを
ラマンシフト量、αをストークス光と反ストークス光の
光ファイバー中での減衰率差、xを距離としたとき、前
記減衰率差αと距離xとの積を指数部とする指数関数の
補正項を導入した式 により温度分布を測定することを特徴とする温度測定方
法。
1. A temperature measuring method in which a laser pulse is incident on an optical fiber to be measured, and a temperature distribution of the optical fiber is measured from an intensity ratio and a delay time of Stokes light and anti-Stokes light included in return light from the optical fiber. ,
T is the measurement temperature, Θ is the reference temperature, R '(T) is the relative intensity ratio of the measured portion, R' (Θ) is the relative intensity ratio of the reference temperature portion, k
Where B is the Boltzmann constant, h is Planck's constant, C is the speed of light, ν is the Raman shift amount, α is the attenuation rate difference between the Stokes light and anti-Stokes light in the optical fiber, and x is the distance, the attenuation rate difference α and the distance. An expression that introduces a correction term for the exponential function whose exponent is the product of x A temperature measuring method characterized by measuring a temperature distribution by means of.
【請求項2】被測定用の光ファイバーへレーザーパルス
を入射する光源部と、該光ファイバーからの戻り光を信
号処理装置へ導光する光方向性結合器と、該戻り光に含
まれるストークス光と反ストークス光を検出しそれらの
強度比と遅れ時間から光ファイバーの温度分布を測定す
る信号処理装置とからなる分布型光ファイバー温度セン
サーにおいて、前記信号処理装置はTを測定温度、Θを
基準温度、R′(T)を被測定部の相対強度比、R′
(Θ)を基準温度部の相対強度比、kをボルツマン定
数、hをプランク定数、Cを光速、νをラマンシフト
量、αをストークス光と反ストークス光の光ファイバー
中での減衰率差、xを距離としたとき、前記減衰率差α
と距離xとの積を指数部とする指数関数の補正項を導入
した式 により温度分布を測定することを特徴とする分布型光フ
ァイバー温度センサー。
2. A light source section for injecting a laser pulse into an optical fiber to be measured, an optical directional coupler for guiding return light from the optical fiber to a signal processing device, and Stokes light included in the return light. In a distributed optical fiber temperature sensor comprising a signal processing device for detecting anti-Stokes light and measuring the temperature distribution of the optical fiber from their intensity ratio and delay time, said signal processing device comprises T as a measurement temperature, Θ as a reference temperature and R ′ (T) is the relative intensity ratio of the measured part, R ′
(Θ) is the relative intensity ratio of the reference temperature part, k is the Boltzmann constant, h is the Planck's constant, C is the speed of light, ν is the Raman shift amount, α is the difference in attenuation rate between the Stokes light and the anti-Stokes light in the optical fiber, x Is the distance α
An expression that introduces a correction term for the exponential function whose exponent is the product of x and distance x A distributed optical fiber temperature sensor characterized by measuring the temperature distribution by means of.
JP1143995A 1989-06-08 1989-06-08 Temperature measurement method and distributed optical fiber temperature sensor Expired - Lifetime JPH0769222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1143995A JPH0769222B2 (en) 1989-06-08 1989-06-08 Temperature measurement method and distributed optical fiber temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143995A JPH0769222B2 (en) 1989-06-08 1989-06-08 Temperature measurement method and distributed optical fiber temperature sensor

Publications (2)

Publication Number Publication Date
JPH0310133A JPH0310133A (en) 1991-01-17
JPH0769222B2 true JPH0769222B2 (en) 1995-07-26

Family

ID=15351864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143995A Expired - Lifetime JPH0769222B2 (en) 1989-06-08 1989-06-08 Temperature measurement method and distributed optical fiber temperature sensor

Country Status (1)

Country Link
JP (1) JPH0769222B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023260A (en) * 2004-07-09 2006-01-26 J-Power Systems Corp Method and instrument for measuring temperature distribution in optical fiber
JP6418028B2 (en) * 2015-03-26 2018-11-07 住友電気工業株式会社 Optical fiber temperature distribution measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270632A (en) * 1985-05-25 1986-11-29 Hitachi Cable Ltd Optical fiber type measuring instrument for temperature distribution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270632A (en) * 1985-05-25 1986-11-29 Hitachi Cable Ltd Optical fiber type measuring instrument for temperature distribution

Also Published As

Publication number Publication date
JPH0310133A (en) 1991-01-17

Similar Documents

Publication Publication Date Title
US5054935A (en) Temperature-measuring method and distributed optical fiber temperature sensor
US5765948A (en) Light-temperature distribution sensor using back scattering light produced by incident light pulse and temperature distribution measuring method
EP0300529B1 (en) Temperature measurement
EP2167928B1 (en) Dual source auto-correction in distributed temperature systems
JPH0364812B2 (en)
JPH07324982A (en) Consumption-type optical fiber thermometer
CN210981350U (en) Distributed optical fiber humidity and temperature simultaneous detection device
JP2008145315A (en) Method and device of measuring temperature/distortion of optical fiber
JPH0769222B2 (en) Temperature measurement method and distributed optical fiber temperature sensor
JP3063063B2 (en) Optical fiber temperature distribution measurement system
JPH04332835A (en) Corrective processing method of distributed temperature data
JP2897389B2 (en) Temperature measuring method and distributed optical fiber temperature sensor
JP3388496B2 (en) Characteristic evaluation method of single mode optical fiber
JP2516613B2 (en) Optical fiber temperature measurement method
JPH04248426A (en) Apparatus for measuring strain distribution of optical fiber
JP2539051B2 (en) Distributed optical fiber sensor
JPH02201233A (en) Distribution type optical fiber temperature sensor and its method of temperature measurement
JP2606638B2 (en) Detection method of physical quantity distribution along optical fiber
JPH05272920A (en) Optical-fiber displacement gage
JPH07270254A (en) Optical fiber type device for measuring temperature
Namkung et al. Fiber optic distributed temperature sensor using Raman backscattering
JPH02306131A (en) Measuring method for temperature distribution of optical fiber
JPH03135743A (en) Distribution type optical fiber sensor
Yanukovich Numerical model of three-wave Brillouin scattering in an optical fiber
JPH0321837A (en) Distributed optical fiber temperature sensor and temperature measuring method