JPH05272920A - Optical-fiber displacement gage - Google Patents

Optical-fiber displacement gage

Info

Publication number
JPH05272920A
JPH05272920A JP9603492A JP9603492A JPH05272920A JP H05272920 A JPH05272920 A JP H05272920A JP 9603492 A JP9603492 A JP 9603492A JP 9603492 A JP9603492 A JP 9603492A JP H05272920 A JPH05272920 A JP H05272920A
Authority
JP
Japan
Prior art keywords
axis
measured
light
displacement
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9603492A
Other languages
Japanese (ja)
Inventor
Masayuki Nishimoto
征幸 西本
Yoshikazu Matsuda
美一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9603492A priority Critical patent/JPH05272920A/en
Publication of JPH05272920A publication Critical patent/JPH05272920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To make it possible to measure the accurate amount of displacement without the effects of the output fluctuation of a light source and the transmission loss of a lightguide caused by the temperature change of an environment and the like. CONSTITUTION:A detecting part 1, around which an optical fiber is wound, is deformed by the displacement of a body to be measured 2. The transmission loss at the time of the deformation is measured, and the amount of the displacement of the body to be measured is measured. The detecting part 1 or the detecting part 1 and optical transmission paths 3 and 4 are constituted of polarized-wave holding fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は物体(被測定体)の変位
量を計測するのに使用される光ファイバ変位計に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber displacement meter used for measuring the amount of displacement of an object (object to be measured).

【0002】[0002]

【従来の技術】光ファイバ変位計の一つとして従来は図
6に示すものがあった。これは、光源A、光量検出器
E、光源Aから検知部Bまで光を導く光ファイバ(光伝
送路)C、二枚の板状の被測定体Dの変位を検知する検
知部B、検知部Bから光量検出器Eまでの光を導く光フ
ァイバ(光伝送路)F、光量検出器Eより得られたデ−
タを処理するデ−タ処理装置Gとからなる。そして前記
検知部Bはゴムなどの弾性体Hの外周に光ファイバをコ
イル状に巻いて形成してある。
2. Description of the Related Art As one of optical fiber displacement gauges, there is a conventional one shown in FIG. This includes a light source A, a light amount detector E, an optical fiber (optical transmission line) C that guides light from the light source A to the detection unit B, a detection unit B that detects displacement of two plate-shaped DUTs, and a detection unit. An optical fiber (optical transmission line) F that guides light from the section B to the light amount detector E, and a data obtained from the light amount detector E.
And a data processing device G for processing the data. The detection unit B is formed by winding an optical fiber in a coil around the outer circumference of an elastic body H such as rubber.

【0003】この光ファイバ変位計では一対の被測定体
Dが検知部Bを押す方向に変位すると、検知部Bが図8
のように押し潰されるように変形してファイバコイルの
曲げ径が図7の場合に比べて小さくなり、同検知部Bの
伝送ロスが大きくなって光量検出器Eに到達する光量が
減少する。従って予め被測定体Dの変位量と光量変化と
の関係を求めておけば、光量検出器Eに到達する光量を
モニタすることにより変位量を測定することができる。
In this optical fiber displacement meter, when a pair of objects to be measured D are displaced in the direction of pushing the detecting portion B, the detecting portion B is moved to the position shown in FIG.
7, the bending diameter of the fiber coil becomes smaller than that in the case of FIG. 7, the transmission loss of the detection unit B increases, and the amount of light reaching the light amount detector E decreases. Therefore, if the relationship between the displacement amount of the measured object D and the change in the light amount is obtained in advance, the displacement amount can be measured by monitoring the light amount reaching the light amount detector E.

【0004】[0004]

【発明が解決しようとする課題】従来の光ファイバ変位
計では光源Aの出力変動がある場合や、環境の温度変化
により光伝送路C、Fの伝送ロスが変動した場合でも光
量検出器Eに到達する光量が変化するため、正確な変位
量の測定ができないという問題があった。
In the conventional optical fiber displacement meter, the light quantity detector E is used even when the output of the light source A fluctuates or the transmission loss of the optical transmission lines C and F fluctuates due to the temperature change of the environment. There is a problem that the amount of light reaching the device changes, so that the amount of displacement cannot be accurately measured.

【0005】本発明の目的は、光源の出力変動や、環境
の温度変化などによる導光路の伝送ロス変動等の影響を
受けることなく、正確な変位量測定が可能な光ファイバ
変位計を提供することにある。
An object of the present invention is to provide an optical fiber displacement meter capable of accurate displacement amount measurement without being affected by fluctuations in output of a light source and fluctuations in transmission loss of a light guide path due to environmental temperature changes. Especially.

【0006】[0006]

【課題を解決するための手段】本発明の光ファイバ変位
計は図1に示すように、光ファイバをコイル状に巻いた
検知部1を被測定体2の変位により変形させ、その変形
時の光ファイバの伝送ロス変化を測定して被測定体2の
変位量を計測するようにした光ファイバ変位計におい
て、検知部1又は検知部1とその前後の光伝送路3、4
を図2に示すような偏波保持ファイバで構成したもので
ある。
As shown in FIG. 1, an optical fiber displacement meter according to the present invention deforms a detection unit 1 in which an optical fiber is wound in a coil shape by the displacement of an object 2 to be measured, and In an optical fiber displacement meter for measuring the amount of displacement of the object to be measured 2 by measuring the change in transmission loss of the optical fiber, the detection unit 1 or the detection unit 1 and the optical transmission lines 3, 4 before and after the detection unit 1 are used.
Is composed of a polarization maintaining fiber as shown in FIG.

【0007】具体的には光源6、被測定体の変位量を検
知する検知部1、光源6から検知部1まで光を導く光伝
送路3、検知部1からX軸出射光及びY軸出射光を分離
するためのビ−ムスプリッタ11まで光を導く光伝送路
4、ビ−ムスプリッタ11からのX軸出射光及びY軸出
射光の光量を検出する光量検出器12、13、デ−タ処
理装置14から構成される。そして本発明では前記検知
部1又は検知部1及び光伝送路3、4に応力付与型の偏
波保持ファイバを使用し、検知部1は同偏波保持ファイ
バをコイル状に巻いてある。
Specifically, the light source 6, the detection unit 1 for detecting the amount of displacement of the object to be measured, the optical transmission line 3 for guiding light from the light source 6 to the detection unit 1, the X-axis emission light and the Y-axis emission from the detection unit 1. An optical transmission line 4 for guiding light to a beam splitter 11 for separating the emitted light, light quantity detectors 12, 13 for detecting the light quantity of the X-axis emission light and the Y-axis emission light from the beam splitter 11, and a data The data processing device 14 is included. In the present invention, a stress imparting polarization maintaining fiber is used for the detector 1 or the detector 1 and the optical transmission lines 3 and 4, and the detector 1 has the same polarization maintaining fiber wound in a coil shape.

【0008】本発明で使用される偏波保持ファイバとし
ては応力付与型の偏波保持ファイバがある。これは図2
に示すようにコア15の両側にクラッド16より大きな
熱膨張係数を有するガラス製の応力付与部材17、18
を二本一対として配置したものが良く知られている。こ
の様な応力付与型の偏波保持ファイバでは線引き時の急
冷過程において熱膨張係数差に起因する残留応力がコア
15に与えられて複屈折が生ずる。複屈折とは二本の応
力付与部材17、18の配置方向(X軸)と、それと直
角方向(Y軸)とでコアとクラッドの屈折率差に違いが
生ずることである。この複屈折によりX軸とY軸とで光
の伝搬定数が異なり、偏波保持特性が生ずる。この偏波
保持特性に付随してX軸とY軸とで曲げに対するロス特
性が異なる。仮にX軸に比べてY軸の屈折率差が高くな
るように作成された偏波保持ファイバでは、X軸の曲げ
に対するロス増はY軸のそれに比べて大きくなる。
As the polarization maintaining fiber used in the present invention, there is a stress imparting polarization maintaining fiber. This is Figure 2
As shown in FIG. 3, the stress applying members 17, 18 made of glass having a coefficient of thermal expansion larger than that of the cladding 16 on both sides of the core 15.
It is well known that two pairs are arranged. In such a stress imparting type polarization-maintaining fiber, residual stress due to the difference in thermal expansion coefficient is applied to the core 15 in the quenching process during drawing, and birefringence occurs. The birefringence means that a difference in refractive index between the core and the clad occurs between the arrangement direction (X axis) of the two stress applying members 17 and 18 and the direction (Y axis) perpendicular thereto. Due to this birefringence, the propagation constant of light is different between the X axis and the Y axis, and the polarization maintaining characteristic is generated. Along with this polarization maintaining characteristic, the loss characteristics for bending are different between the X axis and the Y axis. If the polarization-maintaining fiber is made so that the difference in refractive index in the Y axis is higher than that in the X axis, the increase in loss due to bending in the X axis is larger than that in the Y axis.

【0009】このような偏波保持ファイバをコイル状に
巻き付けた場合の巻き径とX軸とY軸の伝送ロスの関係
を定性的に図3に示す。図3から明らかなように偏波保
持ファイバのコア15に光を入射した状態で偏波保持フ
ァイバによる検知部1の巻き径をX軸、Y軸の夫々の方
向に大から小に変化させると、伝送ロスはX軸、Y軸共
に不感帯域を経た後、比例域で巻き径とある関係を持っ
て増加する。この場合、X軸はY軸に比して不感帯域が
小さく、比例域の傾きも大きい。この偏波保持ファイバ
のコイルの巻き径をX軸の比例域、Y軸の不感帯域の範
囲内で変化させると、Y軸に入射した光は変化せず、X
軸に入射した光のみが変化する。
FIG. 3 qualitatively shows the relationship between the winding diameter and the transmission loss on the X-axis and the Y-axis when such a polarization-maintaining fiber is wound in a coil shape. As is apparent from FIG. 3, when the winding diameter of the detection unit 1 made of the polarization maintaining fiber is changed from large to small in each of the X axis and the Y axis while light is incident on the core 15 of the polarization maintaining fiber. The transmission loss goes through a dead zone on both the X-axis and the Y-axis, and then increases in a proportional range with the winding diameter. In this case, the X-axis has a smaller dead band and the proportional region has a larger slope than the Y-axis. When the winding diameter of the coil of the polarization maintaining fiber is changed within the proportional range of the X axis and the dead zone of the Y axis, the light incident on the Y axis does not change and X
Only the light incident on the axis changes.

【0010】[0010]

【作用】応力付与型の偏波保持ファイバは前記のような
伝送ロス特性を有するので、同偏波保持ファイバを用い
た本発明の光ファイバ変位計において、X軸の比例域、
Y軸の不感帯域の範囲内で検知部1の巻き径を被測定体
2により変位させれば、その変位によりX軸入射光は変
化するがY軸入射光は変化しない。このためY軸入射光
を参照光としてX軸入射光をモニタすることにより光伝
送路3、4の損失変化や光源6の出力変動の影響をキャ
ンセルすることができる。具体的には図1のデ−タ処理
装置14内に演算回路を付加して、Y軸出射の光量を検
出する光量検出器の出力強度からX軸出射の光量を検出
する光量検出器の出力強度を差し引いたものをモニタす
ればよい。
Since the stress imparting type polarization maintaining fiber has the transmission loss characteristics as described above, in the optical fiber displacement meter of the present invention using the same polarization maintaining fiber, the proportional region of the X axis,
If the winding diameter of the detection unit 1 is displaced by the device under test 2 within the dead zone of the Y axis, the displacement changes the X-axis incident light but does not change the Y-axis incident light. Therefore, by monitoring the X-axis incident light using the Y-axis incident light as the reference light, it is possible to cancel the influence of the loss change of the optical transmission lines 3 and 4 and the output fluctuation of the light source 6. Specifically, an arithmetic circuit is added in the data processing device 14 of FIG. 1 to output the light intensity detector which detects the light intensity of the X axis emission from the output intensity of the light intensity detector which detects the light intensity of the Y axis emission. What is subtracted from the intensity should be monitored.

【0011】なお、本発明では、応力付与型の偏波保持
ファイバの一例として図2のような構造のものを用いた
が、図6に示すような構造のもののほか、どのような構
造の応力付与型の偏波保持型ファイバを用いることもで
きる。同様に検知部1からX軸出射光及びY軸出射光を
分離する方法として、ビームスプリッタを用いて説明し
たが、プリズム等の他の方法も用いることができる。
In the present invention, the stress imparting type polarization maintaining fiber having the structure as shown in FIG. 2 is used. However, in addition to the structure as shown in FIG. It is also possible to use an imparting polarization maintaining fiber. Similarly, the beam splitter was used as a method for separating the X-axis emission light and the Y-axis emission light from the detection unit 1, but other methods such as a prism can also be used.

【0012】[0012]

【実施例】実施例として図1に示す光ファイバ変位計に
おいて、光源6に波長0.85μmのレ−ザ−ダイオ−
ド(LD)を用い、光伝送路3、4に表1に示すファイ
バ1をそれぞれ500m用い、検知部1のファイバコイ
ルに表1に示すファイバaを外径50mmφのゴム型円
筒に10タ−ン巻き付けたものを使用した。この実施例
を温度−30℃、25℃、60℃の環境で、対向する二
つの被測定体2の間隔を50〜20mmの間で変化させ
た場合の光量検出器12、13の出力値の差分をデ−タ
処理装置の電気出力として取り出した。その電気出力を
図4に示す。25℃で被測定体2の間隔が50mmの時
の出力値と、被測定体2の間隔を広めた時の出力値の変
化を示した。−30℃〜60℃温度変化に対してデ−タ
処理装置14の電気出力の誤差は±2dB以下と少なか
った。
EXAMPLE As an example, in the optical fiber displacement meter shown in FIG. 1, a laser diode with a wavelength of 0.85 μm was used as a light source 6.
A fiber (LD) is used for each of the optical transmission lines 3 and 4, 500 m of the fiber 1 shown in Table 1 is used, and the fiber a shown in Table 1 is used for the fiber coil of the detection unit 1 in a rubber type cylinder having an outer diameter of 50 mm. It was wound around. In this embodiment, the output values of the light amount detectors 12 and 13 when the distance between the two measured objects 2 facing each other was changed within the range of 50 to 20 mm in the environment of temperature of -30 ° C, 25 ° C and 60 ° C. The difference was taken out as the electric output of the data processing device. The electric output is shown in FIG. The change in the output value when the distance between the measured objects 2 is 50 mm at 25 ° C. and the change in the output value when the distance between the measured objects 2 is widened are shown. The error in the electrical output of the data processing device 14 was as small as ± 2 dB or less with respect to the temperature change of -30 ° C to 60 ° C.

【0013】[0013]

【比較例】比較例として図1に示す光ファイバ変位計に
おいて、光源6に波長0.85μmのLDを用い、光伝
送路3、4に表1に示すファイバbをそれぞれ500m
用い、検知部1のファイバコイルにも表1に示すファイ
バbを外径50mmφゴム製円筒に10タ−ン巻きつけ
たものを使用した。そして、温度−30℃、25℃、6
0℃の環境で、対向する二つの被測定体2の間隔を50
〜20mmの間で変化させた場合の25℃での光量検出
器12、13の電気出力の強度変化を図5に示す。被測
定体2の間隔が50mmの時の出力を基準とし、被測定
体の間隔を狭めたときの出力の変化を示した。−30℃
〜60℃温度変化に対して電気出力の誤差は±10dB
と大きかった。
[Comparative Example] As a comparative example, in the optical fiber displacement meter shown in FIG. 1, an LD having a wavelength of 0.85 μm is used as a light source 6, and a fiber b shown in Table 1 is provided for each of the optical transmission lines 3 and 500 to 500 m.
The fiber coil shown in Table 1 was also used as the fiber coil of the detection unit 1 in which a rubber cylinder having an outer diameter of 50 mm was wound around 10 turns. And temperature -30 degreeC, 25 degreeC, 6
In the environment of 0 ° C, the distance between the two DUTs 2 facing each other is 50
FIG. 5 shows the intensity change of the electric output of the light amount detectors 12 and 13 at 25 ° C. when changed within a range of up to 20 mm. With reference to the output when the distance between the measured objects 2 was 50 mm, the change in the output when the distance between the measured objects was narrowed was shown. -30 ° C
The error of the electric output is ± 10dB with respect to the temperature change of -60 ℃.
It was great.

【0014】[0014]

【発明の効果】本発明の本発明の光ファイバ変位計は、
光源6の出力変動や、環境の温度変化などによる光伝送
路3、4の伝送ロス変動等の影響を受けることなく、正
確な変位量測定が可能となる。
The optical fiber displacement meter of the present invention,
Accurate displacement amount measurement is possible without being affected by fluctuations in the output of the light source 6 and fluctuations in the transmission loss of the optical transmission lines 3 and 4 due to environmental temperature changes.

【0015】[0015]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光ファイバ変位計の一例を示す説明
図。
FIG. 1 is an explanatory view showing an example of an optical fiber displacement meter of the present invention.

【図2】応力付与型偏波保持ファイバの断面図。FIG. 2 is a cross-sectional view of a stress imparting polarization maintaining fiber.

【図3】応力付与型偏波保持ファイバのX軸、Y軸伝搬
光の曲げロスの特性図。
FIG. 3 is a characteristic diagram of bending loss of X-axis and Y-axis propagating light of a stress-added polarization-maintaining fiber.

【図4】本発明の実施例における電気出力の説明図。FIG. 4 is an explanatory diagram of an electric output according to the embodiment of the present invention.

【図5】比較例におけるの電気出力の説明図。FIG. 5 is an explanatory diagram of electric output in a comparative example.

【図6】従来の光ファイバ変位計の説明図。FIG. 6 is an explanatory view of a conventional optical fiber displacement meter.

【図7】従来の光ファイバ変位計の被測定体の変位前の
説明図。
FIG. 7 is an explanatory diagram of a conventional optical fiber displacement meter before displacement of a measured object.

【図8】従来の光ファイバ変位計の被測定体の変位後の
説明図。
FIG. 8 is an explanatory diagram of the conventional optical fiber displacement meter after displacement of the measured object.

【符号の説明】 1 検知部 2 被測定体 3、4 光伝送路[Explanation of reference numerals] 1 detection unit 2 DUT 3 and 4 optical transmission line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバをコイル状に巻いた検知部1
を被測定体2の変位により変形させ、その変形時の光伝
送系の伝送ロス変化を測定して被測定体2の変位量を計
測するようにした光ファイバ変位計において、検知部1
又は検知部1とその前後の光伝送路3、4を偏波保持フ
ァイバで構成したことを特徴とする光ファイバ変位計。
1. A detection unit 1 in which an optical fiber is wound in a coil shape.
Is deformed by the displacement of the object 2 to be measured, and the change amount of the transmission loss of the optical transmission system at the time of the deformation is measured to measure the amount of displacement of the object 2 to be measured.
Alternatively, an optical fiber displacement meter characterized in that the detection unit 1 and the optical transmission lines 3 and 4 before and after the detection unit 1 are composed of polarization maintaining fibers.
JP9603492A 1992-03-24 1992-03-24 Optical-fiber displacement gage Pending JPH05272920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9603492A JPH05272920A (en) 1992-03-24 1992-03-24 Optical-fiber displacement gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9603492A JPH05272920A (en) 1992-03-24 1992-03-24 Optical-fiber displacement gage

Publications (1)

Publication Number Publication Date
JPH05272920A true JPH05272920A (en) 1993-10-22

Family

ID=14154163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9603492A Pending JPH05272920A (en) 1992-03-24 1992-03-24 Optical-fiber displacement gage

Country Status (1)

Country Link
JP (1) JPH05272920A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083746A (en) * 2001-09-12 2003-03-19 Pentax Precision Co Ltd Optical range finder
JP4580037B1 (en) * 2010-03-29 2010-11-10 エンパイア テクノロジー ディベロップメント エルエルシー Battery system and battery safety alarm system
JP4580038B1 (en) * 2010-04-27 2010-11-10 エンパイア テクノロジー ディベロップメント エルエルシー Battery system and battery safety alarm system
US8758916B2 (en) 2010-10-29 2014-06-24 Empire Technology Development Llc Energy storage apparatus
CN109870112A (en) * 2017-12-05 2019-06-11 中国电力科学研究院有限公司 A kind of battery deformation detecting device and application method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083746A (en) * 2001-09-12 2003-03-19 Pentax Precision Co Ltd Optical range finder
JP4580037B1 (en) * 2010-03-29 2010-11-10 エンパイア テクノロジー ディベロップメント エルエルシー Battery system and battery safety alarm system
JP2011210442A (en) * 2010-03-29 2011-10-20 Emprie Technology Development LLC Battery system, and safety alarm system of battery
US8808890B2 (en) 2010-03-29 2014-08-19 Empire Technology Development Llc Battery system and battery safety alarm system
JP4580038B1 (en) * 2010-04-27 2010-11-10 エンパイア テクノロジー ディベロップメント エルエルシー Battery system and battery safety alarm system
JP2011233343A (en) * 2010-04-27 2011-11-17 Emprie Technology Development LLC Cell system and safety alarm system for battery
US8097352B2 (en) 2010-04-27 2012-01-17 Empire Technology Development Llc Battery system and battery safety alarm system
US8758916B2 (en) 2010-10-29 2014-06-24 Empire Technology Development Llc Energy storage apparatus
CN109870112A (en) * 2017-12-05 2019-06-11 中国电力科学研究院有限公司 A kind of battery deformation detecting device and application method

Similar Documents

Publication Publication Date Title
JP4350380B2 (en) Optical fiber backscatter polarization analysis
CN105865752B (en) Method and device for comprehensively judging polarization maintaining optical fiber characteristics by adopting distributed polarization crosstalk analyzer
US6621947B1 (en) Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
US8547541B2 (en) Method for the characterization of optical properties of an optical fiber
JP2004525388A5 (en)
US10724922B1 (en) Complete characterization of polarization-maintaining fibers using distributed polarization analysis
Calvani et al. Polarization measurements on single-mode fibers
JP2009500606A (en) Fiber PMD evaluation method using composite POTDR trace
CN108957209B (en) Automatic broken line detection device for communication optical fiber cable production
US4866266A (en) Method of measuring polarization and birefringence in single-mode optical fibers
JPH05272920A (en) Optical-fiber displacement gage
JPH0357450B2 (en)
JPH02278135A (en) Light reflection method for measuring transmission loss of optical fiber light guide
Brininstool Measuring longitudinal strain in optical fibers
KR100832470B1 (en) Method and device of measuring double refraction of optical fiber, method of measuring polarization mode dispersion of optical fiber and optical fiber
CN105466409A (en) Method for measurement of reflected subwave optical path difference in photonic band gap fiber-optic gyroscope
JPH05264370A (en) System for measuring temperature distribution in optical fiber
Imai et al. Speckle-pattern contrast of semiconductor laser propagating in a multimode optical fiber
EP1459044B1 (en) On-line tension measurement in an optical fibre
JPH06213770A (en) Method and system for evaluating characteristics of single mode optical fiber
Baig et al. Distributed measurement of chromatic dispersion along an optical fiber transmission system
CN111366180B (en) External parameter measuring method based on optical fiber sensor
JP4028035B2 (en) Optical fiber measuring instrument
JPS6055305A (en) Twin core optical fiber
JP2511999B2 (en) Liquid detection optical fiber and liquid detection system using the same