JPH05264370A - System for measuring temperature distribution in optical fiber - Google Patents

System for measuring temperature distribution in optical fiber

Info

Publication number
JPH05264370A
JPH05264370A JP4060435A JP6043592A JPH05264370A JP H05264370 A JPH05264370 A JP H05264370A JP 4060435 A JP4060435 A JP 4060435A JP 6043592 A JP6043592 A JP 6043592A JP H05264370 A JPH05264370 A JP H05264370A
Authority
JP
Japan
Prior art keywords
optical fiber
light
incident
measured
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4060435A
Other languages
Japanese (ja)
Other versions
JP3063063B2 (en
Inventor
Toshinori Wakami
俊則 若見
Junichi Ota
順一 太田
Kazuhiro Okamoto
和弘 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4060435A priority Critical patent/JP3063063B2/en
Publication of JPH05264370A publication Critical patent/JPH05264370A/en
Application granted granted Critical
Publication of JP3063063B2 publication Critical patent/JP3063063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To improve the measurement accuracy of a system for measuring temperature distribution in optical fibers. CONSTITUTION:In the title system which calculates the measuring point of an optical fiber 1 to be measured from the time difference between the incident timing of pulsed light and detecting timing of backward scattered light by making the pulsed light incident to the fiber 1 and, at the same time, calculates the measure of the fiber l from the detecting intensity ratio between Stokes' light and anti-Stokes' light of Raman scattered light contained in the backward scattered light, a bent section 11 is provided by bending the fiber 1 near the incident section of the pulse light. Of the propagation mode excited in the fiber 1, high-order mode light is forcibly discharged to the outside from the bent section 11. Therefore, the quantity of the high-order mode light which tends to leak out is reduced in the fiber 1 after the section 11 and distortion of the waveform is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ファイバの温度分布を
光学的に遠隔測定するための光ファイバの温度分布測定
システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber temperature distribution measuring system for optically remotely measuring the temperature distribution of an optical fiber.

【0002】[0002]

【従来の技術】このような従来技術として、OTDR
(Optical Time Domain Reflectometry)による距離測
定の原理と、ラマン散乱光の検出による温度測定の原理
と組み合わせた装置が知られ、例えば下記の文献 “Intern.Conf.on.Optical Fiber Sensor,SanDiego,PD3
-1〜3-4,(Feb.13 〜14,1985)” に開示されている。
2. Description of the Related Art As such conventional technology, OTDR
A device that combines the principle of distance measurement by (Optical Time Domain Reflectometry) and the principle of temperature measurement by detection of Raman scattered light is known. For example, the following document “Intern.Conf.on.
-1 to 3-4, (Feb. 13 to 14, 1985) ”.

【0003】これを原理的に説明すると、図7のように
なる。まず、被測定光ファイバ1にパルス光を入射する
と、伝播の過程で後方散乱光が現れ、入射端に戻ってく
る。ここで、ある散乱点までの距離をL、パルスの入射
時点から後方散乱光の検出時点までの時間をt、被測定
光ファイバ1の屈折率をn、被測定光ファイバ1中の光
速をCo 、被測定光ファイバ1中の光速をCとすると、 C=Co /n L=C・t/2 となる。したがって、散乱点の位置が定量的に求まる。
The principle of this will be described with reference to FIG. First, when pulsed light is incident on the optical fiber 1 to be measured, backscattered light appears in the course of propagation and returns to the incident end. Here, the distance to a certain scattering point is L, the time from the pulse incident time to the backscattered light detection time is t, the refractive index of the measured optical fiber 1 is n, and the speed of light in the measured optical fiber 1 is C. o and C is the speed of light in the optical fiber 1 to be measured, C = C o / n L = C · t / 2. Therefore, the position of the scattering point can be quantitatively obtained.

【0004】一方、後方散乱光にはレーリ光とストーク
ス光、反ストークス光が含まれ、入射パルス光の波長を
λO とするとレーリ光の波長はλO となり、ストークス
光の波長λS と反ストークス光の波長λASとは、 λS =λO +Δλ λAS=λO −Δλ となる(図7(b)参照)。そして、ストークス光強度
S と反ストークス光強度IASの比は、被測定光ファイ
バ1中の散乱点の絶対温度Tに依存し、IAS/IS がe
xp(−h・C・ν/kT)に比例する関係となる。こ
こで、hはプランク定数(J・S)、νはラマンシフト
量(m-1)、kはボルツマン定数(J/K)である。し
たがって、散乱点の温度が定量的に求められる。
On the other hand, Rayleigh light and Stokes light in the backscattered light, the anti-Stokes light is included, the wavelength of the Rayleigh light and the wavelength of incident pulse light and lambda O is lambda O, and the wavelength lambda S of Stokes light anti The wavelength of Stokes light λ AS is λ S = λ O + Δλ λ AS = λ O −Δλ (see FIG. 7B). The ratio of the Stokes light intensity I S to the anti-Stokes light intensity I AS depends on the absolute temperature T of the scattering point in the optical fiber 1 to be measured, and I AS / I S is e
The relationship is proportional to xp (−h · C · ν / kT). Here, h is Planck's constant (J · S), ν is Raman shift amount (m −1 ), and k is Boltzmann's constant (J / K). Therefore, the temperature of the scattering point is quantitatively obtained.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の原理を
用いてグレーデットインデックス型の光ファイバの温度
分布を測定すると、波形歪みにより測定結果が不正確と
なる欠点があった。すなわち、パルス光の入射条件によ
って光ファイバ中で高次の伝播モードが励起され、これ
が被測定光ファイバ1から漏れ出して入射パルスの波形
を歪ませる。特に、この歪みは被測定光ファイバ1への
入射部、あるいは入射用ファイバと被測定光ファイバ1
の接続部近傍に多く生じる。
However, when the temperature distribution of the graded index type optical fiber is measured using the above principle, there is a drawback that the measurement result becomes inaccurate due to the waveform distortion. That is, a higher-order propagation mode is excited in the optical fiber depending on the incident condition of the pulsed light, which leaks from the optical fiber 1 to be measured and distorts the waveform of the incident pulse. In particular, this distortion is caused by the incident portion on the optical fiber 1 to be measured, or the incident fiber and the optical fiber 1 to be measured.
It often occurs near the connection part of.

【0006】そこで本発明は、被測定光ファイバの温度
分布を正確に測定することのできる光ファイバの温度分
布測定システムを提供することを目的とする。
Therefore, an object of the present invention is to provide an optical fiber temperature distribution measuring system capable of accurately measuring the temperature distribution of an optical fiber to be measured.

【0007】[0007]

【課題を解決するための手段】本発明は、被測定光ファ
イバにパルス光を入射し、パルス光の入射タイミングと
後方散乱光の検出タイミングとの時間差から被測定光フ
ァイバの温定点を算出すると共に、後方散乱光に含まれ
るラマン散乱光のうちストークス光と反ストークス光と
の検出強度比から被測定光ファイバの温度を算出する光
ファイバの温度分布測定システムにおいて、被測定ファ
イバへのパルス光の入射部近傍の光ファイバ部分に、当
該光ファイバを屈曲させた屈曲部を設けたことを特徴と
する。
According to the present invention, pulsed light is incident on an optical fiber to be measured, and a temperature fixed point of the optical fiber to be measured is calculated from a time difference between an incident timing of the pulsed light and a detection timing of backscattered light. Along with the Raman scattered light included in the backscattered light, in the optical fiber temperature distribution measurement system that calculates the temperature of the measured optical fiber from the detected intensity ratio of the Stokes light and the anti-Stokes light, pulsed light to the measured fiber A bent portion obtained by bending the optical fiber is provided in the optical fiber portion in the vicinity of the incident portion.

【0008】また、一端がパルス光の光源に光結合さ
れ、他端が被測定光ファイバに接続された入射用光ファ
イバを有し、屈曲部は入射用光ファイバを屈曲させて形
成させるようにし、あるいは、入射用光ファイバとの接
続部近傍の被測定光ファイバが屈曲されることにより、
さらに曲部が形成されるようにしてもよい。
Further, one end is provided with an incident optical fiber which is optically coupled to the pulsed light source and the other end is connected to the optical fiber to be measured, and the bent portion is formed by bending the incident optical fiber. Or, by bending the measured optical fiber near the connection with the incident optical fiber,
Further, a curved portion may be formed.

【0009】[0009]

【作用】本発明によれば、入射条件によって被測定用光
ファイバ中に励起された伝播モードのうち、高次のモー
ド光が屈曲部で外部に強制的に排出される。このため、
屈曲部以降の光ファイバ中では外部に漏出しやすい高次
のモード光が少なくなり、波形の歪みが減少される。
According to the present invention, among the propagation modes excited in the optical fiber for measurement under the incident conditions, the higher order mode light is forcibly discharged to the outside at the bent portion. For this reason,
In the optical fiber after the bent portion, the high-order mode light that easily leaks to the outside is reduced, and the distortion of the waveform is reduced.

【0010】[0010]

【実施例】以下、添付図面により、本発明のいくつかの
実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Several embodiments of the present invention will be described below with reference to the accompanying drawings.

【0011】図1は第1実施例に係る光ファイバの温度
分布測定システムの構成図である。図示の通り、被測定
光ファイバ1と、これに光結合された測定装置2と、そ
の出力を演算表示する演算表示装置3とを備え、被測定
光ファイバ1の入力部にはマルチモード光ファイバをコ
イル状に巻回した屈曲部11が設けられている。
FIG. 1 is a block diagram of an optical fiber temperature distribution measuring system according to the first embodiment. As shown, an optical fiber 1 to be measured, a measuring device 2 optically coupled to the optical fiber 1, and an arithmetic display device 3 for arithmetically displaying the output thereof are provided, and a multimode optical fiber is provided at an input portion of the optical fiber 1 to be measured. A bent portion 11 is provided by winding the coil in a coil shape.

【0012】測定装置2は半導体レーザ21を有し、こ
の出力光はビームスプリッタ22を透過して被測定光フ
ァイバ1に入射される。被測定光ファイバ1からの後方
散乱光はビームスプリッタ22で光路変換され、波長分
離部23で波長λS のストークス光と波長λASの反スト
ークス光に分離され、それぞれ光検出器24S ,24AS
に入射される。そして、これらの検出出力は、測定装置
2における信号処理部25を構成する時間差測定部26
と強度比測定部27に入力される。
The measuring device 2 has a semiconductor laser 21, and this output light is transmitted through a beam splitter 22 and is incident on the optical fiber 1 to be measured. The backscattered light from the optical fiber 1 to be measured is subjected to optical path conversion by the beam splitter 22, separated into the Stokes light of the wavelength λ S and the anti-Stokes light of the wavelength λ AS by the wavelength demultiplexing unit 23, and the photodetectors 24 S , 24 respectively. AS
Is incident on. Then, the detected outputs are the time difference measuring unit 26 that constitutes the signal processing unit 25 in the measuring device 2.
Is input to the intensity ratio measuring unit 27.

【0013】時間差測定部26はLD光源駆動部28か
らのタイミング信号(半導体レーザ21による入射パル
ス光のタイミング信号)と、後方散乱光の検出タイミン
グ信号の時間差を求める。これにより、前述したOTD
Rの原理にもとづき、測定点までの距離を求めることが
できる。
The time difference measuring unit 26 obtains the time difference between the timing signal (timing signal of the incident pulsed light from the semiconductor laser 21) from the LD light source driving unit 28 and the detection timing signal of the back scattered light. As a result, the OTD
Based on the R principle, the distance to the measurement point can be calculated.

【0014】一方、強度比測定部27はストークス光と
反ストークス光の強度比を、光検出器24S ,24AS
出力から求める。これにより、前述した測温原理によ
り、被測定光ファイバ1の温度が求まる。
On the other hand, the intensity ratio measuring section 27 obtains the intensity ratio of the Stokes light and the anti-Stokes light from the outputs of the photodetectors 24 S and 24 AS . As a result, the temperature of the optical fiber 1 to be measured can be obtained according to the temperature measurement principle described above.

【0015】上記の実施例において、被測定光ファイバ
1へのパルス光の入射部には屈曲部11が設けられてい
るので、高次の伝播モードの光が矢印Pのように光ファ
イバ外に漏れ出る。この高次モードの光は、屈曲されて
いない光ファイバにおいても漏れ出しやすく、その距離
は数kmに達する。このため、この数kmの範囲にわた
って入射パルス光の波形が歪んでいたが、本実施例では
屈曲部であらかじめ除去される。このため、屈曲部の後
方の被測定光ファイバ1における光波形の歪みを、高次
モード光の除去により低減させた結果として、測温の精
度が高まる。
In the above-mentioned embodiment, since the bent portion 11 is provided at the incident portion of the pulsed light to the optical fiber 1 to be measured, the light of the higher-order propagation mode goes out of the optical fiber as shown by the arrow P. Leaks. This higher-order mode light easily leaks even in an unbent optical fiber, and its distance reaches several kilometers. Therefore, the waveform of the incident pulsed light was distorted over the range of several km, but in the present embodiment, it is removed in advance at the bent portion. Therefore, as a result of reducing the distortion of the optical waveform in the measured optical fiber 1 behind the bent portion by removing the higher-order mode light, the temperature measurement accuracy increases.

【0016】本発明は図1の実施例に限定されず、図2
あるいは図3のようになっていてもよい。図2の実施例
では、ビームスプリッタ22に入射用光ファイバ12が
光結合され、入射用光ファイバ12には被測定光ファイ
バ1がコネクタ13によって接続されている。ここで、
入射用光ファイバ12には屈曲部が設けられているの
で、ビームプリッタ22から入射用光ファイバ12への
パルス光の入射条件により生じる高次モード光は、屈曲
部11で強制的に外部に排出される。
The present invention is not limited to the embodiment of FIG.
Alternatively, it may be as shown in FIG. In the embodiment of FIG. 2, the incident optical fiber 12 is optically coupled to the beam splitter 22, and the measured optical fiber 1 is connected to the incident optical fiber 12 by the connector 13. here,
Since the incident optical fiber 12 is provided with the bent portion, the higher-order mode light generated by the incident condition of the pulsed light from the beam splitter 22 to the incident optical fiber 12 is forcibly discharged to the outside at the bent portion 11. It

【0017】また、図3の実施例では、被測定光ファイ
バ1にコネクタ13を介して屈曲部11Bを有する入射
用光ファイバ12が接続され、かつ被測定光ファイバ1
の入射側にも別の屈曲部11Aが設けられている。この
場合には、コネクタ13を介してなされる入射用光ファ
イバ12から被測定光ファイバ1へのパルス光の入射条
件により生起される高次モード光についても、外部に漏
出させることが可能になる。
In the embodiment of FIG. 3, the optical fiber 1 for measurement is connected with the optical fiber 12 for incidence having the bent portion 11B through the connector 13 and the optical fiber 1 for measurement is also provided.
Another bent portion 11A is also provided on the incident side of. In this case, the higher-order mode light generated by the incident condition of the pulsed light from the incident optical fiber 12 to the measured optical fiber 1 through the connector 13 can also be leaked to the outside. ..

【0018】このように、上記のいずれによっても、波
形歪みの原因となる高次モード光を光ファイバから強制
的に排出できる。この場合、屈曲部11が被測定光ファ
イバ1への入射パルス光の入射部側に設けられている点
に特徴があり、その数などは特に問題とならない。
As described above, by any of the above, higher-order mode light which causes waveform distortion can be forcibly discharged from the optical fiber. In this case, the bent portion 11 is characterized in that it is provided on the incident portion side of the incident pulsed light to the optical fiber 1 to be measured, and the number thereof does not matter.

【0019】屈曲部11は、例えば図4のように構成さ
れる。図4(a)では、光ファイバ14が1本の芯棒1
5に複数回巻かれて、高次モード光排出用の屈曲部11
が形成されている。同図(b)では、2本の芯棒15に
光ファイバ14が『8』の字状に巻回され、屈曲部11
が構成されている。この場合、巻回が小径であるほど効
果が高く、巻回数が多いほど効果が高い。但し、光ファ
イバ14が折れない程度の径であことは当然である。
The bent portion 11 is constructed, for example, as shown in FIG. In FIG. 4A, the optical fiber 14 has one core rod 1.
5. A bent portion 11 for winding higher-order mode light, which is wound multiple times around 5.
Are formed. In FIG. 1B, the optical fiber 14 is wound around the two core rods 15 in the shape of “8”, and the bent portion 11
Is configured. In this case, the smaller the winding diameter, the higher the effect, and the larger the number of windings, the higher the effect. However, it goes without saying that the diameter is such that the optical fiber 14 is not broken.

【0020】次に、具体的な測定例について説明する。
図5は、その構成図である。ラマンOTDR装置51に
はコア径が50μmで外径が125μmのクレーデット
インデックス型マルチモード光ファイバ52aが接続さ
れ、これには光コネクタ53によって同構造のマルチモ
ード光ファイバ52bが接続されている。ここで、マル
チモード光ファイバ52aは長さ10kmであり、マル
チモード光ファイバ52bは長さ5kmである。
Next, a specific measurement example will be described.
FIG. 5 is a configuration diagram thereof. The Raman OTDR device 51 is connected to a credet index type multimode optical fiber 52a having a core diameter of 50 μm and an outer diameter of 125 μm, to which a multimode optical fiber 52b of the same structure is connected by an optical connector 53. Here, the multimode optical fiber 52a has a length of 10 km, and the multimode optical fiber 52b has a length of 5 km.

【0021】マルチモード光ファイバ52aのラマンO
TDR装置51側と、マルチモード光ファイバ52bの
光コネクタ53側には、小径のコイル部が設けられてい
る。すなわち、直径が8mmのガラス棒54a、54b
のそれぞれに、マルチモード光ファイバ52a、54b
のそれぞれが40回づつ巻かれている。これによりラマ
ンOTDR装置51からマルチモード光ファイバ52a
への入射条件と、光コネクタ53からマルチモード光フ
ァイバ52bへの入射条件とで、光ファイバ中の高次モ
ードが外部に強制的に漏出されている。
Raman O of multimode optical fiber 52a
A small-diameter coil portion is provided on the TDR device 51 side and on the optical connector 53 side of the multimode optical fiber 52b. That is, the glass rods 54a and 54b having a diameter of 8 mm
To each of the multimode optical fibers 52a, 54b
Each is wrapped 40 times. This allows the Raman OTDR device 51 to move from the multimode optical fiber 52a.
The high-order mode in the optical fiber is forcibly leaked to the outside depending on the incident condition on the optical fiber and the incident condition on the multimode optical fiber 52b from the optical connector 53.

【0022】一方、上記の測定系において、コイル部を
設けないもの(従来の測定系)を用意した。なお、マル
チモード光ファイバ52a、52bは同様とした。そし
て、上記の実施例および従来例のそれぞれについて、マ
ルチモード光ファイバ52a、52bにを全長にわたっ
て同一温度とし、波長1.3μmのパルス光を入射し、
ストークス光(波長λs=1.4μm)と反ストークス
光(波長λAS=1.25μm)を測定した。
On the other hand, in the above-mentioned measurement system, one having no coil portion (conventional measurement system) was prepared. The multimode optical fibers 52a and 52b are the same. Then, in each of the above-described embodiment and the conventional example, the multi-mode optical fibers 52a and 52b have the same temperature over the entire length, and pulsed light having a wavelength of 1.3 μm is incident on
Stokes light (wavelength λs = 1.4 μm) and anti-Stokes light (wavelength λ AS = 1.25 μm) were measured.

【0023】測定結果を図6に示す。同図(a)のよう
に、従来例では同一温度であるのに入射部側で約20℃
の温度のずれが観測されたが、本実施例では略一定であ
り、本発明の効果が確認された。
The measurement results are shown in FIG. As shown in (a) of the figure, although the temperature is the same in the conventional example, it is about 20 ° C. on the incident side.
Although the temperature deviation was observed, it was almost constant in this example, confirming the effect of the present invention.

【0024】[0024]

【発明の効果】以上、詳細に説明した通り、本発明によ
れば、入射条件によって被測定用光ファイバ中に励起さ
れた伝播モードのうち、高次のモード光が屈曲部で外部
に強制的に排出される。このため、屈曲部以降の光ファ
イバ中では外部に漏出しやすい高次のモード光が少なく
なり、波形の歪みが減少される。このため、光ファイバ
の全長にわたって、高精度の温度分布測定ができる。
As described above in detail, according to the present invention, of the propagation modes excited in the optical fiber under measurement due to the incident conditions, the higher order mode light is forced to the outside at the bent portion. Is discharged to. Therefore, in the optical fiber after the bent portion, the amount of higher-order mode light that easily leaks to the outside is reduced, and the waveform distortion is reduced. Therefore, highly accurate temperature distribution measurement can be performed over the entire length of the optical fiber.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例に係る光ファイバの温度分布測定シ
ステムの構成図。
FIG. 1 is a configuration diagram of a temperature distribution measuring system for an optical fiber according to a first embodiment.

【図2】第2実施例に係る光ファイバの温度分布測定シ
ステムの構成図。
FIG. 2 is a configuration diagram of a temperature distribution measuring system for an optical fiber according to a second embodiment.

【図3】第3実施例に係る光ファイバの温度分布測定シ
ステムの構成図。
FIG. 3 is a configuration diagram of an optical fiber temperature distribution measuring system according to a third embodiment.

【図4】屈曲部の具体的な構成図。FIG. 4 is a specific configuration diagram of a bent portion.

【図5】実験系の説明図。FIG. 5 is an explanatory diagram of an experimental system.

【図6】測定結果のグラフ。FIG. 6 is a graph of measurement results.

【図7】光ファイバの温度分布測定システムの原理説明
図。
FIG. 7 is an explanatory diagram of the principle of the optical fiber temperature distribution measuring system.

【符号の説明】[Explanation of symbols]

1…被測定光ファイバ、2…測定装置、21…半導体レ
ーザ、22…ビームスプリッタ、23…波長分離部、2
4…光検出器、25…信号処理部、26…時間差測定
部、27…強度比測定部、3…演算表示装置、11…屈
曲部、12…入射用光ファイバ、13…コネクタ、14
…光ファイバ、15…芯棒、51…ラマンOTDR装
1、52…マルチモード光ファイバ、53…光コネク
タ、54…ガラス棒。
1 ... Optical fiber to be measured, 2 ... Measuring device, 21 ... Semiconductor laser, 22 ... Beam splitter, 23 ... Wavelength separation section, 2
4 ... Photodetector, 25 ... Signal processing part, 26 ... Time difference measuring part, 27 ... Intensity ratio measuring part, 3 ... Computation display device, 11 ... Bending part, 12 ... Incident optical fiber, 13 ... Connector, 14
... optical fiber, 15 ... core rod, 51 ... Raman OTDR equipment 1, 52 ... multimode optical fiber, 53 ... optical connector, 54 ... glass rod.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定光ファイバにパルス光を入射し、
前記パルス光の入射タイミングと後方散乱光の検出タイ
ミングとの時間差から前記被測定光ファイバの測定点を
算出すると共に、前記後方散乱光に含まれるラマン散乱
光のうちストークス光と反ストークス光との検出強度比
から前記被測定光ファイバの温度を算出する光ファイバ
の温度分布測定システムにおいて、 前記パルス光の前記被測定光ファイバへの入射部近傍の
光ファイバ部分に、当該光ファイバを屈曲させた屈曲部
を設けたことを特徴とする光ファイバの温度分布測定シ
ステム。
1. A pulsed light is incident on an optical fiber to be measured,
While calculating the measurement point of the measured optical fiber from the time difference between the incident timing of the pulsed light and the detection timing of the backscattered light, between the Stokes light and the anti-Stokes light of the Raman scattered light included in the backscattered light. In an optical fiber temperature distribution measuring system for calculating the temperature of the measured optical fiber from the detected intensity ratio, in the optical fiber portion near the incident portion of the pulsed light to the measured optical fiber, the optical fiber is bent. An optical fiber temperature distribution measuring system characterized in that a bent portion is provided.
【請求項2】 一端が前記パルス光の光源に光結合さ
れ、他端が前記被測定光ファイバに接続された入射用光
ファイバを有し、前記屈曲部は前記入射用光ファイバを
屈曲させて形成されている請求項1記載の光ファイバの
温度分布測定システム。
2. An incident optical fiber, one end of which is optically coupled to the light source of the pulsed light and the other end of which is connected to the measured optical fiber, and the bent portion bends the incident optical fiber. The temperature distribution measuring system for an optical fiber according to claim 1, which is formed.
【請求項3】 前記入射用光ファイバとの接続部近傍の
前記被測定光ファイバが屈曲されることにより、さらに
別の屈曲部が形成されている請求項2記載の光ファイバ
の温度分布測定システム。
3. The temperature distribution measuring system for an optical fiber according to claim 2, wherein another bent portion is formed by bending the measured optical fiber in the vicinity of the connection portion with the incident optical fiber. ..
JP4060435A 1992-03-17 1992-03-17 Optical fiber temperature distribution measurement system Expired - Lifetime JP3063063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4060435A JP3063063B2 (en) 1992-03-17 1992-03-17 Optical fiber temperature distribution measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4060435A JP3063063B2 (en) 1992-03-17 1992-03-17 Optical fiber temperature distribution measurement system

Publications (2)

Publication Number Publication Date
JPH05264370A true JPH05264370A (en) 1993-10-12
JP3063063B2 JP3063063B2 (en) 2000-07-12

Family

ID=13142184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4060435A Expired - Lifetime JP3063063B2 (en) 1992-03-17 1992-03-17 Optical fiber temperature distribution measurement system

Country Status (1)

Country Link
JP (1) JP3063063B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243919A (en) * 1994-03-03 1995-09-19 Kobe Steel Ltd Temperature distribution measuring optical fiber
WO2013081123A1 (en) * 2011-12-01 2013-06-06 株式会社フジクラ Method for detecting normal conduction transition of superconducting wire rod
EP2975373A1 (en) 2014-07-15 2016-01-20 Yokogawa Electric Corporation Optical fiber temperature distribution measuring device
EP2977734A1 (en) 2014-07-16 2016-01-27 Yokogawa Electric Corporation Optical fiber temperature distribution measuring device
JP2016023929A (en) * 2014-07-16 2016-02-08 横河電機株式会社 Optical fiber temperature distribution measuring device
JP2016176744A (en) * 2015-03-19 2016-10-06 住友電気工業株式会社 Optical fiber temperature measuring apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035436A1 (en) 2006-09-22 2008-03-27 J-Power Systems Corporation Device for measuring temperature distribution of optical fiber and method for measuring temperature distribution of optical fiber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243919A (en) * 1994-03-03 1995-09-19 Kobe Steel Ltd Temperature distribution measuring optical fiber
WO2013081123A1 (en) * 2011-12-01 2013-06-06 株式会社フジクラ Method for detecting normal conduction transition of superconducting wire rod
CN103959044A (en) * 2011-12-01 2014-07-30 株式会社藤仓 Method for detecting normal conduction transition of superconducting wire rod
JPWO2013081123A1 (en) * 2011-12-01 2015-04-27 株式会社フジクラ Method for detecting normal conducting transition of superconducting wire
EP2975373A1 (en) 2014-07-15 2016-01-20 Yokogawa Electric Corporation Optical fiber temperature distribution measuring device
US9952104B2 (en) 2014-07-15 2018-04-24 Yokogawa Electric Corporation Optical fiber temperature distribution measuring device
EP2977734A1 (en) 2014-07-16 2016-01-27 Yokogawa Electric Corporation Optical fiber temperature distribution measuring device
JP2016023929A (en) * 2014-07-16 2016-02-08 横河電機株式会社 Optical fiber temperature distribution measuring device
US9835503B2 (en) 2014-07-16 2017-12-05 Yokogawa Electric Corporation Optical fiber temperature distribution measuring device
JP2016176744A (en) * 2015-03-19 2016-10-06 住友電気工業株式会社 Optical fiber temperature measuring apparatus

Also Published As

Publication number Publication date
JP3063063B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
Hoffman et al. Position determination of an acoustic burst along a Sagnac interferometer
AU2013100784A4 (en) An optical refractive index measuring system based on speckel correlation
KR101465788B1 (en) optical sening system having dual core
JPH0364812B2 (en)
EP3475662B1 (en) Calibration device for distributing sensing technologies
EP3172545B1 (en) Temperature sensor
CN210981350U (en) Distributed optical fiber humidity and temperature simultaneous detection device
JP3063063B2 (en) Optical fiber temperature distribution measurement system
FR2782799A1 (en) APPARATUS FOR MEASURING LINEAR PARADIAPHOTY OF MULTI-CORE FIBERS
JP2004212325A (en) Otdr measuring device and otdr measuring method
CN110887527A (en) Distributed optical fiber humidity and temperature simultaneous detection device and detection method
JP4862594B2 (en) Optical fiber sensor
JPH04332835A (en) Corrective processing method of distributed temperature data
CN110518967B (en) Single-axis optical fiber interferometer and positioning device for eliminating optical fiber vibration blind area
JP2003014561A (en) Strain sensor and strain sensing unit
JPH0712655A (en) Measurement system
CN111238684A (en) Optical fiber temperature sensor
JP2724246B2 (en) Optical fiber distributed temperature sensor
JP3106443B2 (en) Temperature distribution measuring method and device therefor
JPH06213770A (en) Method and system for evaluating characteristics of single mode optical fiber
JP2001013036A (en) Backscattering measuring apparatus for optical time domain for multimode optical fiber, its light source and manufacture of light source part
JPH04318432A (en) Distribution temperature measuring method by optical fiber sensor
JP2008185422A (en) Brillouin frequency shift measurement method and apparatus
JPH05272920A (en) Optical-fiber displacement gage
JPH04248426A (en) Apparatus for measuring strain distribution of optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

EXPY Cancellation because of completion of term