JPS6055305A - Twin core optical fiber - Google Patents

Twin core optical fiber

Info

Publication number
JPS6055305A
JPS6055305A JP58163355A JP16335583A JPS6055305A JP S6055305 A JPS6055305 A JP S6055305A JP 58163355 A JP58163355 A JP 58163355A JP 16335583 A JP16335583 A JP 16335583A JP S6055305 A JPS6055305 A JP S6055305A
Authority
JP
Japan
Prior art keywords
optical fiber
light guide
polarized plane
core
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58163355A
Other languages
Japanese (ja)
Inventor
Tsunehisa Takabayashi
高林 恒久
Seiji Shibuya
渋谷 晟二
Katsuji Shimoishizaka
下石坂 勝至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP58163355A priority Critical patent/JPS6055305A/en
Publication of JPS6055305A publication Critical patent/JPS6055305A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01222Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of multiple core optical fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To utilize information by light polarization to take a measurement in high-precision by forming a polarized plane maintaining SM light guide and a polarized plane nonmaintaining SM light guide in one optical fiber, and using the former for a reference and the latter as a sensor. CONSTITUTION:The optical fiber 1 has the polarized plane maintaining SM light guide 3 and polarized plane nonmaintaining SM light guide 5 in the same jacket 7. The latter SM light guide 5 consists of a core 9 and a clad 11, and the former SM light guide 3 consists of a core 13, a clad 15, and a stressed member 17 whose section is elliptic. The stressed member 17 is made of a glass material which is different in coefficient of thermal expansion from the glass materials constituting the clad 15 and jacket 7, and a stress is generated in one direction in the core by the difference in coefficient of thermal expansion to provide polarized plane maintaining property. Thus, the two SM light guides are formed in the same jacket; and one is a polarized plane maintaining type and stable against disturbance, and the other is a polarized plane nonmaintaining type and influenced easily by disturbance, so the interference between light beams passed through both light guides is utilized to take a high-sensitivity, stable measurement.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、光の干渉を利用した計測に用いられるツイン
コア光ファイバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a twin-core optical fiber used for measurement using optical interference.

〔従来技術〕[Prior art]

従来、2本の同一構造のシングルモード光ファイバを用
い、その一方をセンサ用光ファイバ、他方をレファレン
ス用光ファイバとして、両光ファイバに一端より同一光
源からの光を入射した状態で、上記センサ用光ファイバ
に温度、圧力、変位等の測定しようとする外乱を与え、
他端において両党ファイバから出る光の干渉縞を観測し
て、上記測定しよ5とする外乱の変化を高精度で計測し
ようとする試みがなされている。
Conventionally, two single-mode optical fibers with the same structure are used, one of which is used as a sensor optical fiber and the other as a reference optical fiber, and light from the same light source is incident on both optical fibers from one end. Apply the disturbance to be measured, such as temperature, pressure, displacement, etc., to the optical fiber for use.
Attempts have been made to measure with high precision the change in the disturbance mentioned above by observing the interference fringes of the light emitted from both fibers at the other end.

しかしながらこの方法では、センサ用光ファイバとレフ
ァレンス用光ファイバとが別になっているため、測定す
べき外乱以外の条件、例えば圧力を測定する場合には両
党ファイバの温度、長さ、曲がり具合、振動、その他を
正確に合致させておくことが困難であり、このためノイ
ズが入りやす(安定な計測ができないという問題がある
However, in this method, the sensor optical fiber and the reference optical fiber are separate, so when measuring conditions other than the disturbance to be measured, such as pressure, the temperature, length, degree of bending, It is difficult to accurately match vibrations and other factors, and as a result, noise easily enters (there is a problem that stable measurement cannot be performed).

これを改良するものとして、同一のジャケット内に特性
の異なる(例えばコア、クラッドの屈折充差の異なる)
2つのシングルモード(以下8Mと略す)光導波路を形
成したツインコア光ファイバが提案されている。このよ
うな光ファイバであれば、2つの光導波路の条件はほぼ
同一になるが、逆に2つの光導波路が同一の外乱を受け
ることになるので、測定すべき外乱の精度を上げること
は困難である。
To improve this, the same jacket may have different characteristics (for example, the core and cladding have different refractive differences).
A twin-core optical fiber in which two single-mode (hereinafter abbreviated as 8M) optical waveguides are formed has been proposed. With such an optical fiber, the conditions for the two optical waveguides will be almost the same, but conversely, the two optical waveguides will be subject to the same disturbance, making it difficult to increase the accuracy of the disturbance to be measured. It is.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の問題点に鑑み、安
定性が高(、高精度の計測が行えるツインコア光ファイ
バを提供せんとするものである。
SUMMARY OF THE INVENTION In view of the problems of the prior art described above, it is an object of the present invention to provide a twin-core optical fiber that is highly stable and capable of performing highly accurate measurements.

〔発明の構成〕[Structure of the invention]

上記目的を達成すべ(、本発明は、1本の光フアイバ内
に、偏波面保存型の8M光導波路と偏波面非保存型の8
M光導波路を形成し、前者をレファレンス、後者をセン
サとして用いて、光の偏光による情報を利用して高精度
の計測を行うようにしたものである。
To achieve the above object, the present invention provides a polarization-maintaining 8M optical waveguide and a non-polarization-preserving 8M optical waveguide in one optical fiber.
M optical waveguides are formed, the former is used as a reference, and the latter is used as a sensor, and highly accurate measurements are performed using information from the polarization of light.

〔実施例〕〔Example〕

第1図ないし第3図はそれぞれ本発明の実施例を示す。 1 to 3 each show an embodiment of the present invention.

これらの光ファイバ1は、偏波面保存型の8M光導波路
3と偏波面非保存型の8M光導波路5を同一のジャケッ
トγ内に形成したものである。偏波面非保存型の8M光
導波路5はそれぞれコア9とクラッド11から構成され
ているが、偏波面保存型の8M光導波路3は、第1図の
例ではコア13とクラッド15と断面楕円形の応力付与
部材1Tから成り、第2図の例ではコア13とクラッド
15と断面扇形の1対の応力付与部材19から成り、第
3図の例ではコア13とクラッド15と断面円形の1対
の応力付与部材21力)ら成っている。なお第3図にお
いてもう1対の応力付与部材23は中心にある偏波面非
保存型の8M光導波路5に生じる応力をノくランスさせ
て、偏波面1ト保存性を維持させるために設けたもので
ある。それぞれの応力付与部材17,19.21,23
を1、クラッド15やジャケット7を構成するガラス材
料と熱膨張係数の異なるガラス材料で構成され、その熱
膨張係数差によってコア13に一定方向の応力を生じさ
せ、偏波面保存性を持たせるものである。
These optical fibers 1 have a polarization-maintaining 8M optical waveguide 3 and a polarization-nonmaintaining 8M optical waveguide 5 formed within the same jacket γ. Each of the non-polarization preserving 8M optical waveguides 5 is composed of a core 9 and a cladding 11, whereas the polarization preserving 8M optical waveguide 3 has a core 13, a cladding 15, and an elliptical cross section in the example shown in FIG. In the example shown in FIG. 2, the stress applying member 1T consists of a core 13, a cladding 15, and a pair of stress applying members 19 having a fan-shaped cross section, and in the example shown in FIG. It consists of a stress applying member 21). In FIG. 3, another pair of stress applying members 23 are provided to relieve the stress generated in the non-polarization preserving type 8M optical waveguide 5 located at the center and to maintain the polarization preservation property. It is something. Respective stress applying members 17, 19, 21, 23
1. It is composed of a glass material with a different coefficient of thermal expansion from the glass material constituting the cladding 15 and jacket 7, and the difference in the coefficient of thermal expansion causes stress in a certain direction in the core 13, giving it polarization preservation property. It is.

このようなツインコア光7アイノ<Hi、偏波面保存型
光コアイノ(を製造するためのプリ7オームロツドと通
常のSM光ファイノくを製造するためのプリ7オームロ
ツドを同一のジャケット用ガラス管の中に入れ、間隙に
適当なガラスロット°を充填した状態で、加熱、線引す
ることにより製造することができる。
A pre-7 ohm rod for manufacturing such a twin-core optical 7-ohm < Hi, polarization preserving optical core ino and a pre-7 ohm rod for manufacturing a normal SM optical fiber are placed in the same jacket glass tube. It can be manufactured by heating and drawing after filling the gap with an appropriate glass rod.

本発明のツインコア光ファイノく&ま例え+f第4図の
ようにして使用される。即ち、本発明の光ファイバ1を
測定すべき外乱が加えられる箇所人に設置し、その一端
において光源25、レンズ21、偏光子29を用いて、
その主′軸に合った偏光を両SM光導波路に入射し、他
端において両8M光導波路から出る光を偏光子31、レ
ンズ33を通してスクリーン35に照射する。すると、
偏波面保存型の8M光導波路を通る光は外乱に関係なく
偏波面が保存され、非保存型の8M光導波路を通る光は
外乱に応じて偏波面が変化する。つまり、偏波面保存型
の8M光導波路はレファレンスとして、非保存型の8M
光導波路はセンサとして機能する。
The twin-core optical fiber of the present invention is used as shown in FIG. That is, the optical fiber 1 of the present invention is installed at a place where the disturbance to be measured is applied, and a light source 25, a lens 21, and a polarizer 29 are used at one end of the optical fiber 1.
Polarized light matching the principal' axis is incident on both SM optical waveguides, and at the other end, light exiting from both 8M optical waveguides is irradiated onto a screen 35 through a polarizer 31 and a lens 33. Then,
The plane of polarization of light passing through a polarization-maintaining 8M optical waveguide is maintained regardless of disturbances, and the plane of polarization of light passing through a non-polarization-maintaining 8M optical waveguide changes depending on the disturbance. In other words, the polarization preserving type 8M optical waveguide is used as a reference, and the non-polarization preserving type 8M optical waveguide is used as a reference.
The optical waveguide functions as a sensor.

このためスクリーン35に写し出される干渉縞は、外乱
に応じて変化することになり、この干渉縞を観測するこ
とKより光ファイバ1に加わる外乱の変化を計測するこ
とができる。特にこの光ファイバは2つの光導波路が同
じ条件下にありながら、偏波面保存型の8M光導波路は
外乱の影響を受けず、非保存型の8M光導波路は外乱の
影響を受け易いので、きわめて安定した高感度のセンサ
を構成できる。
Therefore, the interference fringes projected on the screen 35 change according to the disturbance, and by observing these interference fringes, changes in the disturbance applied to the optical fiber 1 can be measured. In particular, in this optical fiber, although the two optical waveguides are under the same conditions, the polarization preserving 8M optical waveguide is not affected by disturbances, while the non-polarization preserving 8M optical waveguide is easily affected by disturbances. A stable and highly sensitive sensor can be constructed.

第4図の例では、干渉縞を観測したが、第5図に示すよ
うに、光ファイバ1の出光端に偏光プリズム37と光検
出器39を設置して、干渉光の強弱の変化を検出するこ
とにより計測を行うようにしてもよい。
In the example shown in Fig. 4, interference fringes were observed, but as shown in Fig. 5, a polarizing prism 37 and a photodetector 39 are installed at the light output end of the optical fiber 1 to detect changes in the intensity of the interference light. The measurement may be performed by doing this.

また、この光ファイバはきわめて高感度であるため、セ
ンサ部と伝送部の区別が難しくなるので、光源部及び検
出部をセンサ部にできるだけ近づけ、伝送部で外乱が加
わらない状態で使用することが望ましい。もし伝送部の
外乱が問題となる場合には、第6図に示すよ5に、セン
サ部Aに本発明の光ファイバ1を設置し、伝送部Bには
同一ジャケット内に2つの偏波面保存型の8M光導波路
を有する光ファイバ41を使用するとよい、、第6図に
おけるその他の符号は第4図と同じであるので、説明を
省略する。
Additionally, since this optical fiber has extremely high sensitivity, it is difficult to distinguish between the sensor section and the transmission section. Therefore, it is recommended to use the light source section and the detection section as close as possible to the sensor section and to avoid disturbances at the transmission section. desirable. If the disturbance in the transmission part becomes a problem, install the optical fiber 1 of the present invention in the sensor part A as shown in FIG. It is preferable to use an optical fiber 41 having a type 8M optical waveguide.Other symbols in FIG. 6 are the same as those in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明のツインコア光ファイバは、
同一ジャケット内に2つの8M光導波路が設げてあり、
その一方は偏波面保存型で外乱に対して安定であり、他
方は偏波面非保存型で外乱の影響を受け易くなっている
から、この両党導波路を通過した光の干渉を利用するこ
とにより、きわめて高感度で安定した計測を行うことが
できる。
As explained above, the twin core optical fiber of the present invention is
Two 8M optical waveguides are installed in the same jacket,
One of them is polarization-preserving and stable against disturbances, and the other is polarization-preserving and susceptible to disturbances. Therefore, it is possible to utilize the interference of light that has passed through both waveguides. This makes it possible to perform extremely sensitive and stable measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図はそれぞれ本発明のツインコア光フ
ァイバの異なる実施例を示す断面図、第4図ないし第6
図はそれぞれ本発明のツインコア光ファイバを用いた計
測方法を示す構成図である。 1・・・・・・ツインコア光ファイバ、3・・・・・・
偏波面保存型のシングルモード光導波路、5・・・・・
・偏波面非保存型のシングルモード光導波路、7・・・
・・・ジャケット。 第1図 第2図 第4図
FIGS. 1 to 3 are cross-sectional views showing different embodiments of the twin-core optical fiber of the present invention, and FIGS.
Each figure is a configuration diagram showing a measurement method using the twin-core optical fiber of the present invention. 1... Twin core optical fiber, 3...
Polarization preserving single mode optical waveguide, 5...
・Polarization non-maintaining single mode optical waveguide, 7...
···Jacket. Figure 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)偏波面保存型のシングルモード光導波路と偏波面
非保存型のシングルモード光導波路を一同一のジャケッ
ト内に設けたことを特徴とするツインコア光ファイバ。
(1) A twin-core optical fiber characterized in that a polarization-maintaining single-mode optical waveguide and a polarization-non-maintaining single-mode optical waveguide are provided in one and the same jacket.
JP58163355A 1983-09-07 1983-09-07 Twin core optical fiber Pending JPS6055305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58163355A JPS6055305A (en) 1983-09-07 1983-09-07 Twin core optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58163355A JPS6055305A (en) 1983-09-07 1983-09-07 Twin core optical fiber

Publications (1)

Publication Number Publication Date
JPS6055305A true JPS6055305A (en) 1985-03-30

Family

ID=15772308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58163355A Pending JPS6055305A (en) 1983-09-07 1983-09-07 Twin core optical fiber

Country Status (1)

Country Link
JP (1) JPS6055305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317235A (en) * 1986-07-03 1988-01-25 Fujikura Ltd Production of preform for nonaxisymmetric optical fiber
CN102261978A (en) * 2011-04-28 2011-11-30 浙江师范大学 Method and device for implementing hydraulic pressure sensing based on twin-core and twin-hole optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317235A (en) * 1986-07-03 1988-01-25 Fujikura Ltd Production of preform for nonaxisymmetric optical fiber
CN102261978A (en) * 2011-04-28 2011-11-30 浙江师范大学 Method and device for implementing hydraulic pressure sensing based on twin-core and twin-hole optical fiber

Similar Documents

Publication Publication Date Title
EP0104932B1 (en) Polarization-maintaining fiber system and method of manufacturing the same
US4659923A (en) Fiber optic interferometer transducer
JP4083809B2 (en) Optical fiber grating lateral strain sensor system
US11947159B2 (en) Interferometric fibre optic gyroscopes using hollow core optical fibre and methods thereof
US4443698A (en) Sensing device having a multicore optical fiber as a sensing element
CN105865752B (en) Method and device for comprehensively judging polarization maintaining optical fiber characteristics by adopting distributed polarization crosstalk analyzer
US5093569A (en) Tapered optical fiber sensor
Ouyang et al. Highly sensitive two-axis bending sensor based on arc-induced long period fiber grating in dual side-hole fiber
CN110174547A (en) A kind of inverse piezoelectric type optical fibre voltage sensor
Lu et al. Birefringent interferometer cascaded with PM-FBG for multi-parameter testing
JPS6055305A (en) Twin core optical fiber
Bock et al. Characterization of highly birefringent optical fibers using interferometric techniques
JPH05272920A (en) Optical-fiber displacement gage
JPH01318903A (en) Displacement sensor using optical fiber
Pelayo et al. Chromatic dispersion characterization in short single-mode fibers by spectral scanning of phase difference in a Michelson interferometer
WO2023151112A1 (en) Optical fiber humidity sensor having temperature calibration capability
Tian et al. Sensitivity-enhanced temperature sensor of cascaded Lyot filter and Mach-Zehnder interferometer based on the Vernier effect
Robinson Polarization modulation and splicing techniques for stressed birefringent fiber
JPH0371051B2 (en)
JPH0361898B2 (en)
Sinha et al. Acoustically scanned low-coherence interrogated simultaneous measurement of absolute strain and temperature using highly birefringent fibers
JPS59113402A (en) Optical fiber sensor
JPH1164392A (en) Optical fiber applied measuring instrument
Wang et al. Advances in sapphire optical fiber sensors
JPS61141408A (en) Dual optical fiber