JP2516613B2 - Optical fiber temperature measurement method - Google Patents

Optical fiber temperature measurement method

Info

Publication number
JP2516613B2
JP2516613B2 JP62038517A JP3851787A JP2516613B2 JP 2516613 B2 JP2516613 B2 JP 2516613B2 JP 62038517 A JP62038517 A JP 62038517A JP 3851787 A JP3851787 A JP 3851787A JP 2516613 B2 JP2516613 B2 JP 2516613B2
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
light
optical
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62038517A
Other languages
Japanese (ja)
Other versions
JPS63205531A (en
Inventor
一則 中村
康真 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62038517A priority Critical patent/JP2516613B2/en
Publication of JPS63205531A publication Critical patent/JPS63205531A/en
Application granted granted Critical
Publication of JP2516613B2 publication Critical patent/JP2516613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバ自身の光透過特性の変化を利用し
た温度測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of use) The present invention relates to a temperature measuring method using a change in light transmission characteristics of an optical fiber itself.

(従来技術) 近年、光ファイバの応用技術の一環として光ファイバ
温度センサの開発が盛んになっている。光ファイバ温度
センサとしては対象物体からの放射光(赤外線)を光フ
ァイバで導き、その光強度値から温度を測定する放射形
光ファイバ温度計が開発されている。
(Prior Art) In recent years, an optical fiber temperature sensor has been actively developed as a part of application technology of optical fibers. As an optical fiber temperature sensor, a radiation type optical fiber thermometer has been developed which guides radiated light (infrared ray) from a target object through an optical fiber and measures the temperature from the light intensity value.

最近は光ファイバ自体にトランスデユーサの機能を持
たせたファイバ型温度形の検討もなされている。
Recently, a fiber type temperature type in which the optical fiber itself has a function of a transformer has been studied.

後者のタイプのセンサとして、光ファイバの母体ガラ
ス中にNd3+、Sm3+、Eu3+、Ho3+などの希土類元素イオン
をドーピングし、これら希土類元素イオンの光吸収性能
の温度変化をファイバ中の損失値の増減として検出し、
光ファイバに沿った周囲環境の温度分布を測定する手段
が考案されている。
As the latter type of sensor, rare-earth element ions such as Nd 3+ , Sm 3+ , Eu 3+ , and Ho 3+ are doped into the matrix glass of the optical fiber, and the temperature change of the optical absorption performance of these rare-earth element ions is measured. Detected as an increase or decrease in the loss value in the fiber,
Means have been devised to measure the temperature distribution of the ambient environment along the optical fiber.

具体的例として第5図にNd3+をドーピングした石英系
光ファイバの損失スペクトルを、また第6図に第5図中
に存在する900nm付近の吸収ピークの温度に対する損失
値の変化を示した。第5図で観察される590nm、750nm、
890nmなどを中心とする光吸収帯は、各々Nd3+に固有の
電子準位間遷移に基づく吸収であり、これらの吸収帯に
おいて、例えば590nm付近に中心をもつ吸収帯に含まれ
る波長600nmにおける吸収特性は、第6図に示すように
温度の上昇に対して単調に変化するので、この光吸収量
即ち光損失量を検出することにより温度を測定すること
ができる。
As a concrete example, Fig. 5 shows the loss spectrum of the silica-based optical fiber doped with Nd 3+, and Fig. 6 shows the change of the loss value with respect to the temperature of the absorption peak near 900 nm present in Fig. 5. . 590nm, 750nm observed in Fig. 5,
The optical absorption band centered at 890 nm is the absorption based on the transition between electronic levels peculiar to Nd 3+ , and in these absorption bands, for example, at the wavelength 600 nm included in the absorption band centered around 590 nm. As shown in FIG. 6, the absorption characteristic changes monotonously with a rise in temperature. Therefore, the temperature can be measured by detecting the amount of light absorption, that is, the amount of light loss.

光ファイバの場合、Optical Time Domain Refrect
meter(OTDR)法と呼ばれる、光ファイバの損失評価手
法が確立している。この方法は光ファイバ内に入力され
た光パルスの光ファイバ内の後方レーリ散乱光強度を測
定し、光ファイバの長手方向に沿った入力光パルスの波
長での損失値を1m以内の空間分解能で評価する手法であ
る。従ってこの手法を用いてNd3+の吸収帯に含まれる波
長の光パルスを入力し、その波長での吸収損失の距離方
向の変化を調べることにより、布設した光ファイバに沿
ったファイバの近傍での温度分布が測定できる。
For optical fiber, Optical Time Domain Refrect
An optical fiber loss evaluation method called the meter (OTDR) method has been established. This method measures the backward Rayleigh scattered light intensity in the optical fiber of the optical pulse input into the optical fiber, and determines the loss value at the wavelength of the input optical pulse along the longitudinal direction of the optical fiber with a spatial resolution within 1 m. This is an evaluation method. Therefore, by inputting an optical pulse of a wavelength contained in the Nd 3+ absorption band using this method and examining the change in the absorption loss at that wavelength in the distance direction, it is possible to detect near the fiber along the installed optical fiber. The temperature distribution of can be measured.

(従来技術の問題点) 第6図のNd3+の例に示されているように一般に希土類
元素イオンの吸収特性は約100℃以下の温度域で一義的
に変化する。種種の希土類元素を添加物として選ぶこと
により−200℃から100℃の間の温度測定ができる。この
場合、光ファイバ自体がセンサであるため、光ファイバ
自体をその温度環境に置く必要がある。しかしそのよう
にすると保護のために光ファイバに施されている各種の
コーティング層(一般にポリマー)もその温度になり、
コーテイング層の温度変化(収縮、膨張など)が生じ、
それによっても光ファイバの損失が変化してしまう。従
って光ファイバの周囲の温度環境による損失変化には、
温度と対応する希土類元素の吸収特性による変化以外の
要因も含まれ、その変化が温度測定の誤差要因となる。
(Problems of Prior Art) As shown in the example of Nd 3+ in FIG. 6, generally, absorption characteristics of rare earth element ions are uniquely changed in a temperature range of about 100 ° C. or lower. By selecting various rare earth elements as additives, it is possible to measure temperatures between -200 ° C and 100 ° C. In this case, since the optical fiber itself is a sensor, it is necessary to place the optical fiber itself in its temperature environment. However, in doing so, the various coating layers (generally polymers) applied to the optical fiber for protection also reach that temperature,
Temperature change (contraction, expansion, etc.) of the coating layer occurs,
This also changes the loss of the optical fiber. Therefore, in the loss change due to the temperature environment around the optical fiber,
Factors other than the change due to the absorption characteristics of the rare earth element corresponding to the temperature are included, and the change becomes an error factor in the temperature measurement.

(発明の目的) 本発明の目的は、光ファイバの周囲温度により光ファ
イバケーブルの構造に起因して生ずる損失変化と、トラ
ンスデューサとしての機能を持たすために光ファイバに
添加した添加剤の吸収特性の変化とを分離して、正確な
温度を求める方法を実現することにある。
(Object of the Invention) The object of the present invention is to determine the loss change caused by the structure of the optical fiber cable due to the ambient temperature of the optical fiber and the absorption characteristics of the additive added to the optical fiber to have the function as a transducer. It is to realize a method for obtaining an accurate temperature by separating the change.

(問題点を解決するための手段) 本発明の光ファイバによる温度測定方法は第1図のよ
うに、温度により光吸収特性が変化する光吸収帯を持つ
不純物がガラス母体中に添加された光ファイバ6の一端
もしくは両端から、上記の光吸収帯に含まれる波長λ
の光パルスと、その光吸収帯に含まれない波長λの光
パルスとを入力し、夫々の波長の光パルスの後方散乱強
度と、光ファイバ6への入力時から後方散乱光として出
射されるまでの時間差とを測定して、光ファイバ6の一
端からの長さに対する夫々の波長での損失値を求め、こ
の両波長での損失値を比較演算して測定対象の温度を測
定するようにしたものである。
(Means for Solving the Problems) As shown in FIG. 1, a temperature measuring method using an optical fiber according to the present invention is a method in which an impurity having a light absorption band whose light absorption characteristic changes with temperature is added to a glass base material. From one end or both ends of the fiber 6, the wavelength λ 1 included in the above optical absorption band
Of the light pulse of wavelength λ 2 which is not included in the light absorption band, and is emitted as backscattered light from the time of input to the optical fiber 6 and the backscattering intensity of the light pulse of each wavelength. The loss value at each wavelength with respect to the length from one end of the optical fiber 6 is obtained by measuring the time difference until the temperature is measured, and the loss value at both wavelengths is compared and calculated to measure the temperature of the measurement target. It is the one.

(実施例1) 第1図は本発明の一実施例である。この図において6
は温度計測のトランスデューサとなる光ファイバケーブ
ルで、その光ファイバ6の母体のガラス中に、例えば希
土類元素イオンなどのような周囲温度によって光吸収特
性が変わるような吸収帯を持つ添加剤が含まれている。
(Embodiment 1) FIG. 1 shows an embodiment of the present invention. 6 in this figure
Is an optical fiber cable that serves as a temperature measuring transducer, and the glass of the matrix of the optical fiber 6 contains an additive having an absorption band whose light absorption characteristic changes with ambient temperature, such as rare earth element ions. ing.

第1図の1は上記の吸収帯に含まれる波長成分λ
持つ光パルス光源、2は上記の吸収帯に含まれない波長
λの光パルス光源である。これらの光パルス光源1、
2から発生される光パルスは合波器3により1本の光束
4とされ、ビームスプリッター5、レンズ或いは球面ミ
ラーなどの集光器15を通して光ファイバ6に入射され
る。なお、この集光器15は本発明では不可欠な構成要素
ではない。
1 in FIG. 1 is an optical pulse light source having a wavelength component λ 1 included in the above absorption band, and 2 is an optical pulse light source having a wavelength λ 2 not included in the above absorption band. These light pulse light sources 1,
The light pulse generated from 2 is made into one light beam 4 by the multiplexer 3, and is incident on the optical fiber 6 through the beam splitter 5, the condenser 15 such as a lens or a spherical mirror. The condenser 15 is not an essential component in the present invention.

光ファイバ6に入力された波長の異なる二つの光は、
夫々光ファイバ6の内部でのレーリ散乱により入射方向
とは反対方向の後方にも散乱される。この場合、その散
乱光は入力端まで戻る間に、戻る光ファイバの長さに応
じた損失を受けて同光ファイバ6の入射端面より出力さ
れる。
Two lights having different wavelengths input to the optical fiber 6 are
Due to Rayleigh scattering inside the optical fiber 6, they are also scattered backward in the direction opposite to the incident direction. In this case, the scattered light is output from the incident end face of the optical fiber 6 while receiving a loss according to the length of the returning optical fiber while returning to the input end.

出力された光7はビームスプリッタ5でその一部が反
射され、更に分波器8により波長に応じて分離され、そ
のうち一方は吸収帯に含まれる波長成分λの光、他方
は吸収帯に含まれない波長成分λの光となる。それら
の光は夫々光検出器9、10で検出され、図示されていな
い増幅器、平均化処理器を通して第2図に示したよう
な、時間に対する光強度値の関係が得られる。
A part of the output light 7 is reflected by the beam splitter 5, and further separated by the demultiplexer 8 according to the wavelength. One of them is the light of the wavelength component λ 1 included in the absorption band, and the other is in the absorption band. The light has a wavelength component λ 2 that is not included. Those lights are detected by photodetectors 9 and 10, respectively, and the relationship of the light intensity value with respect to time as shown in FIG. 2 is obtained through an amplifier and an averaging processor which are not shown.

この場合の時間は光パルスの光ファイバ中の走行時間
であるから、光ファイバの長さ、即ち測定点の位置に対
応する。また、その位置で光ファイバの損失値は光強度
の値を時間(即ち光ファイバの長さ)で微分することに
よって与えられる。つまり曲線の勾配が損失を表してい
る。この勾配が一定ならば損失値は一定であるが、急峻
に変化するところは何らかの要因で他と損失値が異なる
位置であり、その勾配(微分値)の大きさにより損失値
を求めることができる。
Since the time in this case is the transit time of the optical pulse in the optical fiber, it corresponds to the length of the optical fiber, that is, the position of the measurement point. The loss value of the optical fiber at that position is given by differentiating the value of the light intensity with respect to time (that is, the length of the optical fiber). In other words, the slope of the curve represents the loss. If this slope is constant, the loss value is constant, but the abrupt change is at a position where the loss value differs from others due to some reason, and the loss value can be calculated from the magnitude of the gradient (differential value). .

本発明ではこのような時間に対する光温度値の関係の
特性が、添加剤の吸収帯に含まれる波長成分λの光パ
ルスによるものと、吸収帯に含まれない波長成分λ
光パルスによるものとの2種類得られる。このうち後者
の特性は希土類元素イオンなどの温度計測のために添加
した添加剤の吸収の温度による変化情報が含まれず、そ
の他の影響、例えば、光ファイバのコーティング材の周
囲温度変化による収縮、膨張の変化に基づくような周囲
温度との一意的な対応がつきにくい損失変化による影響
のみを受けている。前者の特性は、後者の特性に加えて
添加材の吸収の温度特性の影響も合せて含まれている。
このため前者と後者の2種類の特性を比較し、補正、例
えば減算や除算をおこなうことにより、添加剤の吸収の
温度特性のみを摘出することができる。
In the present invention, such characteristics of the relationship of the light temperature value with respect to time depend on the light pulse of the wavelength component λ 1 included in the absorption band of the additive and the light pulse of the wavelength component λ 2 not included in the absorption band. You can get two kinds of things. Of these, the latter characteristic does not include information on changes in temperature due to absorption of additives added for temperature measurement of rare earth ions, and other effects such as contraction and expansion due to changes in the ambient temperature of the coating material of the optical fiber. It is only affected by the loss change that is difficult to uniquely correspond to the ambient temperature based on the change of. In addition to the latter characteristic, the former characteristic includes the influence of the temperature characteristic of absorption of the additive.
Therefore, it is possible to extract only the temperature characteristic of the absorption of the additive by comparing the two types of characteristics of the former and the latter and performing correction, for example, subtraction or division.

(実施例2) 第3図は本発明の他の実施例である。第1図では添加
剤の吸収帯に含まれる波長成分λの光パルスと、吸収
帯に含まれない波長成分λの光パルスが共に光ファイ
バ6の同一の入射端面から入力されているが、第3図に
示したものは波長成分λの光パルスと、吸収帯に含ま
れない波長成分λの光パルスとを光ファイバ6の逆方
向から入力するようにしたものである。
(Embodiment 2) FIG. 3 shows another embodiment of the present invention. In FIG. 1 , both the optical pulse of wavelength component λ 1 included in the absorption band of the additive and the optical pulse of wavelength component λ 2 not included in the absorption band are input from the same incident end face of the optical fiber 6. 3, the optical pulse having the wavelength component λ 1 and the optical pulse having the wavelength component λ 2 not included in the absorption band are input from the opposite direction of the optical fiber 6.

(実施例3) 第4図は本発明の更に他実施例である。これは時間に
対する後方レーリ散乱光強度を観測する際に、ビームス
プリッタ5の一方に反射ミラー14を設け、光ファイバ6
に入力する直前の光パルスを反射ミラー14により光検出
器内9、10へ入力し、この信号をトリガとして時間掃引
をさせるようにしたものである。この方法では反射ミラ
ー14の位置を変化させることにより、光ファイバ6内の
うち特に観測したい部分のみを時間掃引して温度測定を
することができる。このようにすれば応答時間を短縮す
ることができる。また光パルスの発振器からの外部出力
をトリガとして時間帰引を開始する場合では時間遅延器
を用いることもできる。
(Embodiment 3) FIG. 4 shows still another embodiment of the present invention. This is because a reflection mirror 14 is provided on one side of the beam splitter 5 when observing the backward Rayleigh scattered light intensity with respect to time, and the optical fiber 6
The optical pulse immediately before being input to is input to the photodetectors 9 and 10 by the reflection mirror 14 and the time sweep is performed by using this signal as a trigger. In this method, by changing the position of the reflection mirror 14, it is possible to measure the temperature by time-sweeping only the portion of the optical fiber 6 that is particularly desired to be observed. By doing so, the response time can be shortened. A time delay device can also be used when the time subtraction is started by using the external output of the optical pulse oscillator as a trigger.

(発明の効果) 本発明の光ファイバによる温度測定方法は、光ファイ
バ6中に温度測定のために添加した添加剤の吸収の温度
特性に基づく損失変化と、それ以外の原因による光ファ
イバの損失変化とを観測し、両者の差から添加剤による
温度に対する吸収損失を摘出するので、正確な温度を光
ファイバの長手方向に沿って測定することが可能とな
る。
(Effect of the invention) The temperature measurement method using the optical fiber of the present invention is a loss change based on the temperature characteristic of absorption of an additive added for temperature measurement in the optical fiber 6, and an optical fiber loss due to other causes. By observing the change and extracting the absorption loss with respect to the temperature due to the additive from the difference between them, it becomes possible to measure the accurate temperature along the longitudinal direction of the optical fiber.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の温度測定方法の一実施例を示す説明
図、第2図は第1図の温度測定方法による時間差−後方
散乱光強度の特性説明図、第3図、第4図は本発明の他
の実施例の説明図、第5図はNd3+をドーピングした石英
系光ファイバの損失スペクトルの説明図、、第6図は60
0nmの吸収損失による出力変化と温度との関係を示す説
明図である。 1、2は光パルス光源 3は合波器 5はビームスプリッター 6は光ファイバ 7は後方散乱光 8は分波器 9、10は光検出器 14は反射ミラー
FIG. 1 is an explanatory view showing an embodiment of the temperature measuring method of the present invention, FIG. 2 is a characteristic explanatory view of time difference-backscattered light intensity by the temperature measuring method of FIG. 1, FIG. 3, and FIG. FIG. 5 is an explanatory view of another embodiment of the present invention, FIG. 5 is an explanatory view of a loss spectrum of a silica optical fiber doped with Nd 3+, and FIG.
It is explanatory drawing which shows the relationship between the output change by 0 nm absorption loss, and temperature. 1 and 2 are optical pulse light sources 3 are multiplexers 5 are beam splitters 6 are optical fibers 7 are backscattered light 8 are demultiplexers 9 and 10 are photodetectors 14 are reflection mirrors

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】温度により光吸収特性が変化する光吸収帯
を持つ不純物がガラス母体中に混入された光ファイバの
一端もしくは両端から、上記の光吸収帯に含まれる波長
の光パルスと、その光吸収帯に含まれない波長の光パル
スとを入力し、夫々の波長の光パルスの後方散乱強度
と、光ファイバへの入力時から後方散乱光として出射さ
れるまでの時間差とを測定して、光ファイバの一端から
の長さに対する夫々の波長での損失値を求め、この両波
長での損失値を比較演算して測定対象の温度を測定する
ようにしたことを特徴とする光ファイバによる温度測定
方法。
1. An optical pulse having a wavelength contained in the above optical absorption band from one or both ends of an optical fiber in which an impurity having an optical absorption band whose optical absorption characteristic changes depending on temperature is mixed in a glass matrix, Input the light pulse of the wavelength not included in the light absorption band, measure the backscattering intensity of the light pulse of each wavelength, and the time difference from the time of input to the optical fiber until the light is emitted as backscattered light. The optical fiber is characterized in that the loss value at each wavelength with respect to the length from one end of the optical fiber is obtained, and the loss value at both wavelengths is compared and calculated to measure the temperature of the measurement target. How to measure temperature.
JP62038517A 1987-02-21 1987-02-21 Optical fiber temperature measurement method Expired - Fee Related JP2516613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62038517A JP2516613B2 (en) 1987-02-21 1987-02-21 Optical fiber temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62038517A JP2516613B2 (en) 1987-02-21 1987-02-21 Optical fiber temperature measurement method

Publications (2)

Publication Number Publication Date
JPS63205531A JPS63205531A (en) 1988-08-25
JP2516613B2 true JP2516613B2 (en) 1996-07-24

Family

ID=12527463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62038517A Expired - Fee Related JP2516613B2 (en) 1987-02-21 1987-02-21 Optical fiber temperature measurement method

Country Status (1)

Country Link
JP (1) JP2516613B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2738127B2 (en) * 1990-04-23 1998-04-08 日立電線株式会社 Overlay method of optical fiber composite trolley wire
US5263776A (en) * 1992-09-25 1993-11-23 International Business Machines Corporation Multi-wavelength optical thermometry
JP2006023260A (en) * 2004-07-09 2006-01-26 J-Power Systems Corp Method and instrument for measuring temperature distribution in optical fiber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173732A (en) * 1981-04-18 1982-10-26 Omron Tateisi Electronics Co Optical temperature measuring method
JPS61202131A (en) * 1985-03-06 1986-09-06 Agency Of Ind Science & Technol Distribution type optical fiber temperature sensor
JPS61225627A (en) * 1985-03-29 1986-10-07 Mitsubishi Electric Corp Photometer

Also Published As

Publication number Publication date
JPS63205531A (en) 1988-08-25

Similar Documents

Publication Publication Date Title
US7284903B2 (en) Distributed optical fibre measurements
EP0983486B1 (en) Distributed sensing system
CA1265938A (en) Temperature measurement
EP0636868A1 (en) Optical time domain reflectometry
US8529123B2 (en) Device and method for calibrating a fiber-optic temperature measuring system
US5272334A (en) Device for detecting a temperature distribution having a laser source with temperature and wavelength adjusting means
US4804264A (en) Arrangement for time-resolved optical backscatter measurement at optical waveguides
US4830513A (en) Distributed temperature sensor with optical-fiber sensing element
US20030103552A1 (en) Method of enhancing spatial resolution for distributed temperature measurement
US4714829A (en) Fibre optic sensing device and method
Li et al. R-DTS with heat transfer functional model for perceiving the surrounding temperature
JP2516613B2 (en) Optical fiber temperature measurement method
GB2122337A (en) Fibre optic sensing device
JP3935631B2 (en) Optical fiber strain measuring apparatus and method
RU2428682C1 (en) Method for thermal nondestructive inspection of thermal-technical state of long, non-uniform and hard-to-reach objects
Pastor-Graells et al. Impact of the laser phase noise on chirped-pulse phase-sensitive OTDR
Fernández-Ruiz et al. Statistical Analysis of SNR in Chirped-pulse ΦOTDR
JP6141433B2 (en) Optical fiber sensing optical system and optical fiber sensing system
CN219914342U (en) Strain monitoring system for long-distance single-multimode hybrid fiber engineering
Namkung et al. Fiber optic distributed temperature sensor using Raman backscattering
JPH04248426A (en) Apparatus for measuring strain distribution of optical fiber
JP3614491B2 (en) Optical fiber temperature distribution measuring method and apparatus
GB2200204A (en) Temperature sensing apparatus
JPH06221930A (en) Distribution type temperature sensor
JPH05172657A (en) Optical fiber distributed temperature sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees