JPH05172657A - Optical fiber distributed temperature sensor - Google Patents

Optical fiber distributed temperature sensor

Info

Publication number
JPH05172657A
JPH05172657A JP3357288A JP35728891A JPH05172657A JP H05172657 A JPH05172657 A JP H05172657A JP 3357288 A JP3357288 A JP 3357288A JP 35728891 A JP35728891 A JP 35728891A JP H05172657 A JPH05172657 A JP H05172657A
Authority
JP
Japan
Prior art keywords
optical fiber
light
temperature
laser
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3357288A
Other languages
Japanese (ja)
Inventor
Toshihiro Imai
俊宏 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3357288A priority Critical patent/JPH05172657A/en
Publication of JPH05172657A publication Critical patent/JPH05172657A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To obtain an optical fiber distributed temperature sensor which enables measurement of a temperature distribution at a high accuracy without limiting a detection temperature range by shortening processing time of detection light with a simple construction. CONSTITUTION:An optical fiber temperature distributed sensor makes a laser pulse 12 enter an optical fiber 13 and return light from the optical fiber is detected to measure a temperature distribution along the optical fiber. Then, Brillouin scattred light out of the return lights is used to measure temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザーパルスを光フ
ァイバーに入射し、この光ファイバーからの戻り光を検
出してこの光ファイバーに沿った温度分布を測定する分
布型光ファイバー温度センサーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributed optical fiber temperature sensor for injecting a laser pulse into an optical fiber and detecting return light from the optical fiber to measure a temperature distribution along the optical fiber.

【0002】[0002]

【従来の技術】従来の分布型光ファイバー温度センサー
においては、光ファイバーからの戻り光のうちのラマン
散乱光を用い、ラマン散乱光のうち反ストークス光強度
の温度依存性を利用して温度分布を計測していた。従来
の分布型光ファイバー温度センサーの構成の一例を図3
に示す。レーザーダイオード2から発生するレーザーパ
ルス3を光ファイバー4に入射する。
2. Description of the Related Art In a conventional distributed optical fiber temperature sensor, the Raman scattered light of the return light from the optical fiber is used and the temperature distribution is measured by utilizing the temperature dependence of the intensity of the anti-Stokes light of the Raman scattered light. Was. FIG. 3 shows an example of the configuration of a conventional distributed optical fiber temperature sensor.
Shown in. A laser pulse 3 generated from the laser diode 2 is incident on the optical fiber 4.

【0003】レーザーパルス3は、光ファイバーカプラ
や音響光学素子等からなる光カプラ1を経て温度分布を
測定すべき被測定用の光ファイバー5に導入される(実
線矢印)。図4は入射パルスとラマン散乱光の周波数関
係を示す。20は入射パルスを示し、21、22はそれ
ぞれストークス光および反ストークス光を示す。図の
J、Kで示す周波数差部分は数10GHzである。
A laser pulse 3 is introduced into an optical fiber 5 to be measured, whose temperature distribution is to be measured, through an optical coupler 1 composed of an optical fiber coupler, an acousto-optical element, etc. (solid arrow). FIG. 4 shows the frequency relationship between the incident pulse and the Raman scattered light. 20 indicates an incident pulse, and 21 and 22 indicate Stokes light and anti-Stokes light, respectively. The frequency difference portion indicated by J and K in the figure is several tens GHz.

【0004】光ファイバー5内で反射する後方散乱光
(戻り光)のうちラマン散乱光が破線矢印のように逆進
し光カプラ1を経て、光電変換器や増幅器、AD変換器
等からなる検出系6、7に導かれる。検出系6、7はそ
れぞれフィルター等(図示しない)で分離されたラマン
散乱光のストークス光と反ストークス光の強度を検出す
る。検出されたストークス光と反ストークス光強度信号
は加算器8を経て平均化処理等が行なわれ、コンピュー
タ9により温度分布への換算及びデータの表示等がなさ
れる。
Of the backscattered light (returned light) reflected in the optical fiber 5, the Raman scattered light travels backward as indicated by the broken line arrow, passes through the optical coupler 1, and is detected by a photoelectric converter, amplifier, AD converter, etc. Guided by 6 and 7. The detection systems 6 and 7 detect the intensities of the Stokes light and the anti-Stokes light of the Raman scattered light separated by a filter or the like (not shown). The detected Stokes light and anti-Stokes light intensity signals are averaged through an adder 8 and converted by a computer 9 into a temperature distribution and the data is displayed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ラマン
散乱光を利用した従来の分布型光ファイバー温度センサ
ーにおいては、以下のような問題があった。
However, the conventional distributed optical fiber temperature sensor utilizing Raman scattered light has the following problems.

【0006】第1に、検出するラマン散乱光信号が非常
に微弱であるため、検出信号のS/N比を良くするため
に通常数万回の平均化処理を行なう必要がある。このた
め検出信号処理時間を多く要し、実際の光ファイバーの
温度と表示温度との間に時間遅れを生じていた。
First, since the Raman scattered light signal to be detected is extremely weak, it is usually necessary to perform averaging processing tens of thousands of times in order to improve the S / N ratio of the detected signal. Therefore, it takes a long time to process the detection signal, and a time delay occurs between the actual temperature of the optical fiber and the display temperature.

【0007】第2に、反ストークス光の強度変化を検出
する際、高い温度精度を得るためには充分な強度の入射
光が必要になるが、高強度の光を光ファイバーに入射す
ることが難しかった。特に低温領域ではその強度が弱く
なるため、計測可能な温度範囲が制約されていた。
Secondly, when detecting a change in the intensity of the anti-Stokes light, incident light of sufficient intensity is required to obtain high temperature accuracy, but it is difficult to inject high intensity light into the optical fiber. It was Especially in the low temperature region, the strength becomes weak, so that the measurable temperature range is restricted.

【0008】本発明は上記従来技術の欠点に鑑みなされ
たものであって、簡単な構成で検出光処理時間を短縮
し、検出温度範囲を制限されずに高精度で温度分布を計
測可能な分布型光ファイバー温度センサーの提供を目的
とする。
The present invention has been made in view of the above-mentioned drawbacks of the prior art. It is a distribution that can shorten the detection light processing time with a simple structure and can measure the temperature distribution with high accuracy without limiting the detection temperature range. Type optical fiber temperature sensor.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明では、レーザーパルスを光ファイバーに入射
し、該光ファイバーからの戻り光を検出して該光ファイ
バーに沿った温度分布を測定する分布型光ファイバー温
度センサーにおいて、前記戻り光のうちブリルアン散乱
光を用いて温度を計測する。
In order to achieve the above object, the present invention provides a distributed type in which a laser pulse is incident on an optical fiber and the return light from the optical fiber is detected to measure the temperature distribution along the optical fiber. In the optical fiber temperature sensor, the temperature is measured using the Brillouin scattered light of the return light.

【0010】好ましい実施態様においては、前記ブリル
アン散乱光と基準光とを干渉させて該ブリルアン散乱光
の周波数変化を検出し、該周波数変化に基づいて温度を
計測する。さらに好ましい実施態様においては、前記基
準光として、CWレーザーを用いる。
In a preferred embodiment, the Brillouin scattered light and the reference light are interfered with each other to detect a frequency change of the Brillouin scattered light, and the temperature is measured based on the frequency change. In a further preferred embodiment, a CW laser is used as the reference light.

【0011】[0011]

【作用】ブリルアン散乱(Brillouin scattering)は、
物質に一定周波数の光を入射した場合、物質の音響形フ
ォノンのエネルギーに対応する分だけずれた周波数の光
が散乱される現象であり、光が物質中で音波と相互作用
し、振動数がわずかにずれて散乱され、音波により物質
密度のゆらぎが発生し屈折率が変化する。このようなブ
リルアン散乱光は、温度によりその周波数が変化するの
で、その周波数変化を計測することにより温度を検出す
ることができる。
[Operation] Brillouin scattering
When light of a certain frequency is incident on a substance, it is a phenomenon in which light of a frequency shifted by the amount corresponding to the energy of the acoustic phonon of the substance is scattered, the light interacts with the sound wave in the substance, and the frequency is Scattered with a slight shift, fluctuations in material density are caused by sound waves, and the refractive index changes. Since the frequency of such Brillouin scattered light changes with temperature, the temperature can be detected by measuring the frequency change.

【0012】さらに詳しくいえば、まず被測定用の光フ
ァイバーに周波数νのレーザーパルスを入射し、この光
ファイバーからの戻り光のうちブリルアン散乱光を検出
する。ブリルアン散乱光は温度により周波数がν−Δν
に変化している。ここで、他のレーザー光源から既知の
周波数ν−Δν’の連続出力を与えるCWレーザー光を
干渉させる。この干渉光のスペクトルからブリルアン散
乱光とCWレーザー光の周波数差Δν−Δν’を求め
る。Δν−Δν’が求まればΔνが求まりさらに温度が
求まる。
More specifically, first, a laser pulse of frequency ν is incident on the optical fiber to be measured, and Brillouin scattered light is detected from the return light from this optical fiber. The frequency of Brillouin scattered light is ν-Δν depending on the temperature.
Has changed to. Here, the CW laser light that gives a continuous output of a known frequency ν-Δν 'from another laser light source is caused to interfere. From the spectrum of this interference light, the frequency difference Δν−Δν ′ between the Brillouin scattered light and the CW laser light is obtained. If Δν−Δν ′ is obtained, Δν is obtained and the temperature is further obtained.

【0013】[0013]

【実施例】図1は本発明に係る分布型光ファイバー温度
センサーの構成を示す。入射レーザーパルスを発光する
ための固体レーザーまたは半導体レーザーからなるレー
ザー光源11が、4つの端子NO.1〜NO.4を有す
る光カプラ10のNO.1端子に接続される。光カプラ
10のNO.3端子には温度分布を検出すべき被測定光
ファイバー13が接続される。さらに、光カプラ10の
NO.2端子には光電変換フォトダイオード等からなる
光検知器14が接続され、この光検知器14はゲート回
路16、スペクトラムアナライザ17を介してコンピュ
ータ18に接続される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the structure of a distributed optical fiber temperature sensor according to the present invention. A laser light source 11 composed of a solid-state laser or a semiconductor laser for emitting an incident laser pulse has four terminals NO. 1-NO. No. 4 of the optical coupler 10 having No. Connected to one terminal. The NO. An optical fiber 13 to be measured whose temperature distribution is to be detected is connected to the three terminals. Further, the NO. A photodetector 14 including a photoelectric conversion photodiode or the like is connected to the two terminals, and the photodetector 14 is connected to a computer 18 via a gate circuit 16 and a spectrum analyzer 17.

【0014】また、光カプラ10のNO.4端子には連
続発振状態のレーザー光を出力するCWレーザー15が
接続される。また、光カプラ10と光ファイバー13の
間には基準温度部用の光ファイバー19が設けられ、基
準温度をサーミスタ等の固体素子で検出しコンピュータ
18に入力する。
Further, the NO. A CW laser 15 that outputs laser light in a continuous oscillation state is connected to the four terminals. Further, an optical fiber 19 for the reference temperature portion is provided between the optical coupler 10 and the optical fiber 13, and the reference temperature is detected by a solid-state element such as a thermistor and input to the computer 18.

【0015】上記構成の分布型光ファイバー温度センサ
ーの作用について以下に説明する。レーザー光源11は
周波数νのレーザーパルス12を光カプラ10のNO.
1端子に矢印Pのように入射する。光カプラ10はこの
レーザーパルス12をNO.3端子に接続された被測定
用の光ファイバー13に導き、レーザーパルスは光ファ
イバー13内を矢印Eのように伝搬する。光ファイバー
13内の各点からは、戻り光として入射レーザーパルス
に対しΔνだけ周波数の異なるブリルアン散乱光が破線
矢印Fのように逆向きに伝搬する。
The operation of the distributed optical fiber temperature sensor having the above structure will be described below. The laser light source 11 sends the laser pulse 12 of the frequency ν to the NO.
It is incident on one terminal as shown by an arrow P. The optical coupler 10 sends the laser pulse 12 to the NO. Guided to the optical fiber 13 to be measured connected to the three terminals, the laser pulse propagates in the optical fiber 13 as indicated by arrow E. From each point in the optical fiber 13, Brillouin scattered light having a frequency different from the incident laser pulse by Δν propagates in the opposite direction as a return light as indicated by a broken arrow F.

【0016】このブリルアン散乱光は光カプラ10によ
り光検知器14に導かれ(矢印G)光強度が後述のよう
に検出される。一方、CWレーザー15からは入射レー
ザーパルスに対しΔν’だけ周波数の異なる連続発振の
レーザー光が基準光として矢印Hのように入力され、光
カプラ10はこれを光検知器14に導く(矢印I)。光
検知器14は、被測定光用の光ファイバー13からのブ
リルアン散乱光とCWレーザー15からの基準レーザー
光とを同時に検出する。ここで、距離方向に関する情報
を得るため、ゲート回路16により検出信号を細分化す
る。図2(A)(a)はブリルアン散乱光検出信号を示
し、同図(A)(b)はCWレーザー光検出信号を示
す。
The Brillouin scattered light is guided to the photodetector 14 by the optical coupler 10 (arrow G), and the light intensity is detected as described later. On the other hand, from the CW laser 15, continuous wave laser light whose frequency is different from the incident laser pulse by Δν 'is input as reference light as shown by an arrow H, and the optical coupler 10 guides it to the photodetector 14 (arrow I). ). The photodetector 14 simultaneously detects the Brillouin scattered light from the optical fiber 13 for the measured light and the reference laser light from the CW laser 15. Here, in order to obtain information regarding the distance direction, the detection signal is subdivided by the gate circuit 16. 2A and 2A show Brillouin scattered light detection signals, and FIGS. 2A and 2B show CW laser light detection signals.

【0017】続いて、スペクトラムアナライザ17は、
図2(B)に示すように、ゲート回路16により抜取ら
れた信号同士(図2(A)(a)(b)の破線部同士)
を干渉させ、その周波数差Δν’−Δνを計測する。こ
こで基準信号のΔν’は既知であるため、ブリルアン散
乱光の周波数変化Δνが求まる。被測定用の光ファイバ
ーにおいて、予め温度と周波数変化の情報を得ておき、
計測した周波数変化から温度への変換を行なう(図2
(C))。
Subsequently, the spectrum analyzer 17
As shown in FIG. 2 (B), signals extracted by the gate circuit 16 (between broken lines in FIGS. 2 (A) (a) (b)).
And the frequency difference Δν′−Δν is measured. Here, since the reference signal Δν ′ is known, the frequency change Δν of the Brillouin scattered light can be obtained. For the optical fiber to be measured, obtain information on temperature and frequency changes in advance,
Convert the measured frequency change to temperature (Fig. 2
(C)).

【0018】このような温度計測をゲート回路16のゲ
ートをずらせて繰り返す。即ち、図2(A)の細分化さ
れた距離(破線位置)をずらせて同様の信号処理を行な
う。このようにして各ゲートで得た距離と温度との関係
を表示する(図2(D))。この場合、温度精度を上げ
るために、基準温度部用の光ファイバー19におけるC
Wレーザー光との周波数差を測定しておき、そのデータ
を温度への変換処理に利用することもできる。なお、距
離の決定は、パルス光が発光されてから戻り光信号が検
出されるまでの遅れ時間により求める。
Such temperature measurement is repeated by shifting the gate of the gate circuit 16. That is, the same signal processing is performed by shifting the subdivided distance (broken line position) in FIG. In this way, the relationship between the distance obtained at each gate and the temperature is displayed (FIG. 2D). In this case, in order to improve the temperature accuracy, C in the optical fiber 19 for the reference temperature part
It is also possible to measure the frequency difference from the W laser light and use the data for the temperature conversion process. The distance is determined by the delay time from the emission of the pulsed light to the detection of the return light signal.

【0019】上記実施例において、ブリルアン散乱光の
周波数ずれが数10GHz程度と小さいため、入射レー
ザーパルス光のスペクトル線幅はできるだけ狭いほうが
よい。このような条件を満たすレーザーとしてはDPY
(ダイオード・ポンピング・YAGレーザー)等の固体
レーザーが好ましい(スペクトル幅1MHz程度)。ま
た、半導体レーザーであればDFBレーザーが好まし
い。
In the above embodiment, since the frequency shift of the Brillouin scattered light is as small as several tens GHz, the spectral line width of the incident laser pulse light should be as narrow as possible. DPY is a laser that meets these requirements.
A solid-state laser such as (diode, pumping, YAG laser) is preferable (spectrum width of about 1 MHz). If it is a semiconductor laser, a DFB laser is preferable.

【0020】干渉用として用いるCWレーザー光は、ブ
リルアン散乱光との干渉周波数をスペクトルアナライザ
の測定範囲内に入れる必要があるため、ブリルアン散乱
光に近い周波数であることが望ましい。またこのレーザ
ー光も前述の入射レーザーと同じ理由でスペクトル線幅
は狭いほうが望ましい。ここで用いる光源の周波数は基
準光として用いるので精密に制御できるように構成す
る。この場合、波長を外部から微調整できるように構成
すれば精度向上が図られる。
The CW laser light used for interference needs to have an interference frequency with the Brillouin scattered light within the measurement range of the spectrum analyzer, so that it is desirable that the frequency is close to the Brillouin scattered light. Further, it is desirable that this laser light also has a narrow spectral line width for the same reason as the above-mentioned incident laser. Since the frequency of the light source used here is used as the reference light, it is configured so that it can be precisely controlled. In this case, if the wavelength can be finely adjusted from the outside, accuracy can be improved.

【0021】[0021]

【発明の効果】以上説明したように、本発明において
は、光ファイバーからの戻り光のうちブリルアン散乱光
を検出して温度分布を計測するため、従来の微弱なラマ
ン散乱光を用いた場合のように多数回の平均化処理が不
要となり、測定時間が短縮されほとんどリアルタイムで
実測温度分布表示が可能となる。また、温度感度が常温
付近で数MHz/℃と高いため、温度分解能が向上し高
精度の温度分布測定が達成される。特に従来測定の制限
を受けていた低温領域においても、絶対零度まで比較的
容易に測定可能となる。
As described above, according to the present invention, the Brillouin scattered light is detected from the return light from the optical fiber to measure the temperature distribution. Therefore, the conventional weak Raman scattered light is used. In addition, the averaging process is not required many times, and the measurement time is shortened and the measured temperature distribution can be displayed almost in real time. Moreover, since the temperature sensitivity is as high as several MHz / ° C. near room temperature, the temperature resolution is improved and highly accurate temperature distribution measurement is achieved. In particular, even in the low temperature region where the conventional measurement has been limited, it is possible to relatively easily measure up to absolute zero.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る分布型光ファイバー温度
センサーの構成図。
FIG. 1 is a configuration diagram of a distributed optical fiber temperature sensor according to an embodiment of the present invention.

【図2】励起光とブリルアン散乱光の周波数差の説明
図。
FIG. 2 is an explanatory diagram of a frequency difference between excitation light and Brillouin scattered light.

【図3】本発明の実施例に係る分布型光ファイバー温度
センサーによる検出信号処理手順の説明図。
FIG. 3 is an explanatory diagram of a detection signal processing procedure by the distributed optical fiber temperature sensor according to the embodiment of the present invention.

【図4】従来技術の説明図。FIG. 4 is an explanatory diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

10 光カプラ 11 レーザー光源 12 入射パルスレーザー 13 光ファイバー 14 光検知器 15 CWレーザー 10 Optical Coupler 11 Laser Light Source 12 Incident Pulse Laser 13 Optical Fiber 14 Photodetector 15 CW Laser

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G02B 6/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G02B 6/00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】レーザーパルスを光ファイバーに入射し、
該光ファイバーからの戻り光を検出して該光ファイバー
に沿った温度分布を測定する分布型光ファイバー温度セ
ンサーにおいて、前記戻り光のうちブリルアン散乱光を
用いて温度を計測することを特徴とする分布型光ファイ
バー温度センサー。
1. A laser pulse is incident on an optical fiber,
A distributed optical fiber temperature sensor for detecting a return light from the optical fiber to measure a temperature distribution along the optical fiber, wherein the temperature is measured by using Brillouin scattered light among the returned light. Temperature sensor.
【請求項2】前記ブリルアン散乱光と基準光とを干渉さ
せて該ブリルアン散乱光の周波数変化を検出し、該周波
数変化に基づいて温度を計測することを特徴とする請求
項1の分布型光ファイバー温度センサー。
2. The distributed optical fiber according to claim 1, wherein the Brillouin scattered light and the reference light are caused to interfere with each other to detect a frequency change of the Brillouin scattered light, and the temperature is measured based on the frequency change. Temperature sensor.
【請求項3】前記基準光として、CWレーザーを用いた
ことを特徴とする請求項2の分布型光ファイバー温度セ
ンサー。
3. The distributed optical fiber temperature sensor according to claim 2, wherein a CW laser is used as the reference light.
JP3357288A 1991-12-25 1991-12-25 Optical fiber distributed temperature sensor Withdrawn JPH05172657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3357288A JPH05172657A (en) 1991-12-25 1991-12-25 Optical fiber distributed temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3357288A JPH05172657A (en) 1991-12-25 1991-12-25 Optical fiber distributed temperature sensor

Publications (1)

Publication Number Publication Date
JPH05172657A true JPH05172657A (en) 1993-07-09

Family

ID=18453357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3357288A Withdrawn JPH05172657A (en) 1991-12-25 1991-12-25 Optical fiber distributed temperature sensor

Country Status (1)

Country Link
JP (1) JPH05172657A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6813403B2 (en) 2002-03-14 2004-11-02 Fiber Optic Systems Technology, Inc. Monitoring of large structures using brillouin spectrum analysis
JP2007240294A (en) * 2006-03-08 2007-09-20 Yokogawa Electric Corp Apparatus for measuring optical fiber distortion
WO2010011211A1 (en) * 2008-07-21 2010-01-28 Qorex, Llc Dual wavelength strain-temperature brillouin sensing system and method
JP2017049255A (en) * 2015-09-02 2017-03-09 リオス テクノロジー ゲーエムベーハーLIOS Technology GmbH Device and method for spatially resolved measurement of temperature and/or strain by brillouin scattering

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6813403B2 (en) 2002-03-14 2004-11-02 Fiber Optic Systems Technology, Inc. Monitoring of large structures using brillouin spectrum analysis
JP2007240294A (en) * 2006-03-08 2007-09-20 Yokogawa Electric Corp Apparatus for measuring optical fiber distortion
WO2010011211A1 (en) * 2008-07-21 2010-01-28 Qorex, Llc Dual wavelength strain-temperature brillouin sensing system and method
JP2017049255A (en) * 2015-09-02 2017-03-09 リオス テクノロジー ゲーエムベーハーLIOS Technology GmbH Device and method for spatially resolved measurement of temperature and/or strain by brillouin scattering
US9933322B2 (en) 2015-09-02 2018-04-03 Lios Technology Gmbh Device and method for spatially resolved measurement of temperature strain, or both by brillouin scattering

Similar Documents

Publication Publication Date Title
JP3780322B2 (en) Distributed strain and temperature sensing system
US5928222A (en) Fiber optic sensing techniques in laser medicine
KR100930342B1 (en) Distribution fiber optic sensor system
EP0603826B1 (en) Optical distance meter
US6700655B2 (en) Optical fiber characteristic measuring device
JPH0364812B2 (en)
CN110441792A (en) The Rayleigh lidar system and dependent correction method of wind thermometric are surveyed simultaneously
CN114777950B (en) Temperature strain double-parameter sensing system and method based on dual-wavelength pulse
JP2007240287A (en) Apparatus for measurement of optical fiber distortion
JP7352962B2 (en) Brillouin frequency shift measurement device and Brillouin frequency shift measurement method
CN112880866A (en) Long-distance high-spatial-resolution Raman fiber multi-parameter sensing system and method
JPH05172657A (en) Optical fiber distributed temperature sensor
JP3377067B2 (en) Brillouin frequency shift distribution measuring method and apparatus
US6417926B1 (en) Wavelength measuring system
JP2905269B2 (en) Temperature measurement method using optical fiber
JP3154450B2 (en) Distributed magneto-optical fiber sensor
JP6141433B2 (en) Optical fiber sensing optical system and optical fiber sensing system
KR0171312B1 (en) Optic system of light temperature sensor of distribution using light circulator
JPH06221930A (en) Distribution type temperature sensor
JPH06123661A (en) Optical fiber distribution type temperature sensor and apparatus for generating two wavelength light
JPH0821849A (en) Measuring method for high-temperature body by laser doppler system
JP2885979B2 (en) Temperature distribution detector
JP2722524B2 (en) Optical pulse tester
RU2164663C1 (en) Scanner measuring linear dimensions of heated gas jets
CN115420313A (en) Multi-parameter distributed optical fiber sensing device based on chaotic laser and measuring method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311