JPH0821849A - Measuring method for high-temperature body by laser doppler system - Google Patents

Measuring method for high-temperature body by laser doppler system

Info

Publication number
JPH0821849A
JPH0821849A JP6180600A JP18060094A JPH0821849A JP H0821849 A JPH0821849 A JP H0821849A JP 6180600 A JP6180600 A JP 6180600A JP 18060094 A JP18060094 A JP 18060094A JP H0821849 A JPH0821849 A JP H0821849A
Authority
JP
Japan
Prior art keywords
laser
light
high heat
doppler
optical sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6180600A
Other languages
Japanese (ja)
Inventor
Kosaku Shiono
幸策 塩野
Tadahiko Ishida
忠彦 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Hokkaido Control Systems Co Ltd
ACT Electronics Corp
Original Assignee
Nittetsu Hokkaido Control Systems Co Ltd
ACT Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Hokkaido Control Systems Co Ltd, ACT Electronics Corp filed Critical Nittetsu Hokkaido Control Systems Co Ltd
Priority to JP6180600A priority Critical patent/JPH0821849A/en
Publication of JPH0821849A publication Critical patent/JPH0821849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To reduce the deterioration of the measurement accuracy due to the effect of the radiation light emitted from a high-temperature body and resolve impossible measurement in measuring the moving speed and length of the high-temperature body. CONSTITUTION:Laser beams (a) are radiated to a high-temperature body from two directions, scattered beams (b) emitted from the high-temperature body and having the intensity proportional to the brightness of interference fringes generated by the interference with both laser beams (a) are received by a light sensor 2, a Doppler signal (d) is outputted, and the speed and length of a measured object are measured based on the Doppler signal (d). The beam shape of the laser beams (a) radiated to the high temperature body is narrowed, and its energy density is increased. A receiving lens 3 having a long focal distance is arranged in front of the light sensor 2 to narrow the measuring visual field, and the received quantity of the radiation light by the light sensor 2 is reduced. A wavelength filter passing the wavelength band of the laser beams (a) is arranged in front of the light sensor 2 so that no light other than the wavelength band of the laser beams (a) is fed to the light sensor 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザドップラ方式によ
り高熱体(例えば製造中の鉄板)の速度、長さ等を測定
するのに使用される測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring method used for measuring the speed, length and the like of a hot body (for example, an iron plate being manufactured) by a laser Doppler method.

【0002】[0002]

【従来の技術】レーザドップラ方式により高熱体の速度
や長さを測定することは本件発明者が先に開発した。そ
の測定原理は図4に示すように、He−Neレーザ等の
レーザ光源5からのレーザ光aをコリメートレンズ6を
通して平行光に変換し、その平行光を戻り光防止用の偏
向ビームスプリッタ7、λ/4板8を通してビ−ムスプ
リッタ9に入れて二分し、その一方のレーザ光aを直
接、他方のレーザ光aをミラー10で反射させて、両レ
ーザ光aを交差角φで高熱体1に照射すると、高熱体1
からの散乱光bが受光レンズ3を介して光センサ(光電
変換器:例えばフォトダイオード:PD)2に受光され
てヘテロダイン検波され、同光センサ2からドップラ信
号dが出力されるようにしたものである。
2. Description of the Related Art The inventor of the present invention has previously developed the measurement of the speed and length of a high heat element by the laser Doppler method. The measurement principle is as shown in FIG. 4, in which laser light a from a laser light source 5 such as a He—Ne laser is converted into parallel light through a collimator lens 6, and the parallel light is deflected by a deflecting beam splitter 7 for preventing return light. It is put into a beam splitter 9 through a λ / 4 plate 8 and is divided into two beams. One of the laser beams a is directly reflected, and the other laser beam a is reflected by a mirror 10, so that both laser beams a are crossed at a cross angle φ. When irradiated to 1, high heat element 1
The scattered light b from the photosensor 2 is received by the photosensor (photoelectric converter: for example, photodiode: PD) 2 through the light receiving lens 3 and heterodyne detected, and the Doppler signal d is output from the photosensor 2. Is.

【0003】このドップラ信号dのドップラ周波数fd
は次式で表される。 fd=1/T=1/(d/v・cosΔθ) =v・cosΔθ/d =v・cosΔθ/{λ/(2sinφ/2)} =2v/λ・ sinφ/2・cos Δθ fd:ドップラ周波数 v:高熱体1の走行速度 λ:レーザ波長(632.8nm) φ:ビ−ム交差角 Δθ:ビ−ム法線と高熱体1の直角からのずれ角 前記式のように、ドップラ周波数fdは高熱体1の走行
速度vに比例するので前記測定原理によれば同走行速度
vを求めることができるのは勿論、同速度vを時間積分
すれば高熱体1の長さを測定することもできる。
The Doppler frequency fd of this Doppler signal d
Is represented by the following equation. fd = 1 / T = 1 / (d / v · cos Δθ) = v · cos Δθ / d = v · cos Δθ / {λ / (2sinφ / 2)} = 2v / λ · sinφ / 2 · cos Δθ fd: Doppler frequency v: traveling speed of the high-heat body 1 λ: laser wavelength (632.8 nm) φ: beam crossing angle Δθ: deviation angle from the normal of the beam and the right angle of the high-heat body 1 As described above, the Doppler frequency fd Is proportional to the traveling speed v of the high-heat body 1, so that the traveling speed v can be obtained according to the measurement principle, and the length of the high-heat body 1 can be measured by integrating the traveling speed v with time. it can.

【0004】図4のように高熱体1にレーザ光aを照射
すると、高熱体1の微小粒子によって散乱光bが生ず
る。この場合、レーザ光aを二方向から照射することに
より両レーザ光aの干渉によって図4(b)、図5
(a)のように干渉縞が生じ、散乱光bはこの干渉縞の
明暗に比例した強度になる。この散乱光を光センサ2で
受光すれば光センサ2の出力は図5(b)の様な波形の
信号になる。これがドップラ信号dであり、そのレベル
は図6(a)と(b),(c)と(d)の関係から明ら
かな様に干渉縞の明暗差に比例する。
When the high heat element 1 is irradiated with the laser beam a as shown in FIG. 4, scattered particles b are generated by the fine particles of the high heat element 1. In this case, by irradiating the laser light a from two directions, the interference of the two laser light a causes the interference of the laser light a as shown in FIG.
Interference fringes are generated as shown in (a), and the scattered light b has an intensity proportional to the brightness of the interference fringes. If this scattered light is received by the optical sensor 2, the output of the optical sensor 2 becomes a signal having a waveform as shown in FIG. This is the Doppler signal d, and its level is proportional to the contrast difference of the interference fringes, as is clear from the relationship between FIGS. 6 (a) and (b), and (c) and (d).

【0005】[0005]

【発明が解決しようとする課題】従来のレーザドップラ
方式による速度、長さ等の測定方法では、高熱体1を測
定する場合、次の様な問題があった。 .高熱体1の温度が上昇するに従って高熱体1からの
放射光が多くなる。このため前記レーザ光aの干渉縞の
明暗差が低減し、ドップラ信号のレベルが低減し、著し
い場合は測定不能になる。また、測定できる場合でもド
ップラ信号のレベルが低下するとS/N比が悪くなって
測定精度が低下する。ちなみに、高熱体1の温度とドッ
プラ信号のレベルとの関係は表1の様になり、高熱体1
の温度が1100℃の時は25℃の時より−20dB
m、即ち、1/10に低下してしまう。
The conventional method of measuring the speed, length, etc. by the laser Doppler method has the following problems when measuring the high heat element 1. . As the temperature of the high heat element 1 rises, the emitted light from the high heat element 1 increases. For this reason, the difference in brightness between the interference fringes of the laser light a is reduced, the level of the Doppler signal is reduced, and if it is significant, measurement becomes impossible. Further, even when measurement is possible, if the level of the Doppler signal is lowered, the S / N ratio is deteriorated and the measurement accuracy is lowered. By the way, the relationship between the temperature of the high heat element 1 and the level of the Doppler signal is as shown in Table 1.
When the temperature is 1100 ℃, it is -20dB than when it is 25 ℃.
m, that is, 1/10.

【0006】[0006]

【表1】 [Table 1]

【0007】.高熱体1は一般に高熱のために柔らか
くなって、先端の曲り、ハネ上り等が大きくなり、ドッ
プラセンサとの間の測定距離が変動し易い。この変動に
よってもドップラ信号レベルは低下する。このレベル低
下は前記の温度によるレベル低下と相まって測定がより
困難になる。
[0007]. The high-heat body 1 is generally soft due to high heat, the bending of the tip end, the rising of the blade, and the like become large, and the measurement distance between the high-heat body 1 and the Doppler sensor easily changes. This fluctuation also lowers the Doppler signal level. This decrease in level, together with the decrease in level due to the temperature, makes measurement more difficult.

【0008】.図1の光センサ2には通常はアバラン
シェホトダイオード(APD)が使用される。このAP
Dには入射光が弱いときに感度が上り、強いときは感度
が下がるAGC機能が付加されている。このため、高熱
体1の温度が高くなって放射光が多くなると、レーザ光
aの干渉縞の明暗差が少なくなってドップラ信号のレベ
ルが低減する。しかも、このとき、放射光が光センサ2
へ入射するため、光センサ2へ入射する全体の光量が強
くなり、光センサ2のAGC機能によりその感度が下が
る。このため益々測定精度が低下し、著しい場合は測定
不能となる。
[0008] An avalanche photodiode (APD) is usually used for the optical sensor 2 of FIG. This AP
D has an AGC function of increasing the sensitivity when the incident light is weak and decreasing the sensitivity when the incident light is strong. Therefore, when the temperature of the heating element 1 rises and the amount of emitted light increases, the difference in brightness between the interference fringes of the laser light a decreases and the level of the Doppler signal decreases. Moreover, at this time, the emitted light is emitted by the optical sensor 2.
Since the total amount of light incident on the optical sensor 2 increases, the sensitivity decreases due to the AGC function of the optical sensor 2. For this reason, the accuracy of measurement decreases more and more, and if it is significant, the measurement becomes impossible.

【0009】本発明の目的はレーザドップラ方式により
高熱体の移動速度、長さ等を測定する場合に、高熱体か
ら発生される放射光の影響による測定精度の低下を軽減
し、測定不能になることを解消することにある。
An object of the present invention is to reduce the deterioration of the measurement accuracy due to the effect of the radiated light generated from the high heat element when measuring the moving speed, length, etc. of the high heat element by the laser Doppler method, and the measurement becomes impossible. To solve that.

【0010】[0010]

【課題を解決するための手段】本発明のうち請求項1の
レーザドップラ方式による高熱体の測定方法は、図1に
示す様に、高熱体1に二方向からレーザ光aを照射する
ことにより高熱体1から発光され且つ両レーザ光aの干
渉により生ずる干渉縞の明暗に比例する強度の散乱光b
を、光センサ2により受光してドップラ信号dとして出
力し、このドップラ信号dに基づいて被測定物1の速
度、長さ等を測定するようにしたレーザドップラ方式に
よる高熱体1の測定方法において、高熱体1に照射され
るレーザ光aのビーム形状の断面積を図2(b)(c)
に示す様に狭くするようにした方法である。
A method for measuring a high heat element by a laser Doppler method according to claim 1 of the present invention is to irradiate the high heat element 1 with laser light a from two directions as shown in FIG. Scattered light b emitted from the heating element 1 and having an intensity proportional to the brightness of the interference fringes generated by the interference of the two laser lights a.
Is received by the optical sensor 2 and output as a Doppler signal d, and the speed, length, etc. of the DUT 1 are measured based on the Doppler signal d. 2B and 2C show the cross-sectional area of the beam shape of the laser light a with which the high-temperature body 1 is irradiated.
This is a method of narrowing it as shown in.

【0011】本発明のうち請求項2のレーザドップラ方
式による高熱体の測定方法は、図1に示す様に、高熱体
1に二方向からレーザ光aを照射することにより高熱体
1から発光され且つ両レーザ光aの干渉により生ずる干
渉縞の明暗に比例する強度の散乱光bを、光センサ2に
より受光してドップラ信号dとして出力し、このドップ
ラ信号dに基づいて被測定物1の速度、長さ等を測定す
るようにしたレーザドップラ方式による高熱体1の測定
方法において、光センサ2の前に配置される受光レンズ
3に焦点距離の長いものを使用することにより、図3
(a)(b)(c)のように測定視野を狭くするように
した方法である。
According to the second aspect of the present invention, the method for measuring a high-heat body by the laser Doppler method, as shown in FIG. 1, emits light from the high-heat body 1 by irradiating the high-heat body 1 with laser light a from two directions. The scattered light b having an intensity proportional to the contrast of the interference fringes generated by the interference of the two laser lights a is received by the optical sensor 2 and is output as the Doppler signal d, and the velocity of the DUT 1 is measured based on the Doppler signal d. In the method of measuring the high-heat body 1 by the laser Doppler method for measuring the length, etc., by using a light receiving lens 3 arranged in front of the optical sensor 2 having a long focal length,
This is a method in which the measurement visual field is narrowed as in (a), (b) and (c).

【0012】本発明のうち請求項3のレーザドップラ方
式による高熱体の測定方法は、図1に示す様に、高熱体
1に二方向からレーザ光aを照射することにより高熱体
1から発光され且つ両レーザ光aの干渉により生ずる干
渉縞の明暗に比例する強度の散乱光bを、光センサ2に
より受光してドップラ信号dとして出力し、このドップ
ラ信号dに基づいて被測定物1の速度、長さ等を測定す
るようにしたレーザドップラ方式による高熱体1の測定
方法において、図3(c)のように光センサ2の前にレ
ーザ光aの波長帯域を通す波長フィルタ4を配置するこ
とにより光センサ2にレーザ光aの波長帯域以外の光は
入射しないようにした方法である。
According to the third aspect of the present invention, in the method for measuring a high heat element by the laser Doppler method, as shown in FIG. 1, when the high heat element 1 is irradiated with laser light a from two directions, the high heat element 1 emits light. The scattered light b having an intensity proportional to the contrast of the interference fringes generated by the interference of the two laser lights a is received by the optical sensor 2 and is output as the Doppler signal d, and the velocity of the DUT 1 is measured based on the Doppler signal d. In the method of measuring the heat-generating body 1 by the laser Doppler method in which the length and the like are measured, a wavelength filter 4 that passes the wavelength band of the laser light a is arranged in front of the optical sensor 2 as shown in FIG. 3C. In this way, light other than the wavelength band of the laser light a is prevented from entering the optical sensor 2.

【0013】[0013]

【請求項1の作用】本発明のうち請求項1のレーザドッ
プラ方式による高熱体の測定方法では、高熱体1に照射
されるレーザ光a(図2a)のビーム形状の面積を図2
(b)(c)のように狭くしたので、レーザ光源2から
発光されるレーザ光aはその面積が狭くなった分だけエ
ネルギー密度が高くなり、干渉縞の明暗差が大きくな
り、それに比例してドップラ信号dの出力も大きくな
り、測定時のC/Nが改善され、測定精度が向上する。
According to the first aspect of the present invention, in the method for measuring a high heat element by the laser Doppler method according to the first aspect of the present invention, the area of the beam shape of the laser beam a (FIG. 2a) with which the high heat element 1 is irradiated is shown in FIG.
Since the width is narrowed as in (b) and (c), the energy density of the laser light a emitted from the laser light source 2 becomes higher as the area becomes smaller, and the difference in brightness between the interference fringes becomes larger, which is proportional to that. As a result, the output of the Doppler signal d also becomes large, the C / N at the time of measurement is improved, and the measurement accuracy is improved.

【0014】[0014]

【請求項2の作用】本発明のうち請求項2のレーザドッ
プラ方式による高熱体の測定方法では、図3(b)のよ
うに光センサ2の前に配置される受光レンズ4に焦点距
離の長いものを使用して測定視野を狭くしたので、高熱
体1の測定視野から発生する散乱光b(測定に必要のあ
る光)は光センサ2に受光されるが、同測定視野の外側
から放射される放射光(測定に必要の無い光)は除去さ
れる。このため光センサ2の感度が測定に必要の無い放
射光により低下することがなく、測定精度の低下が抑制
される。
According to the second aspect of the present invention, in the method for measuring a high-heat body by the laser Doppler method according to the second aspect of the present invention, the light receiving lens 4 arranged in front of the optical sensor 2 as shown in FIG. Since the measurement field of view is narrowed by using a long one, the scattered light b (light necessary for measurement) generated from the measurement field of view of the high heat element 1 is received by the optical sensor 2, but is radiated from the outside of the measurement field of view. The emitted light (light not necessary for measurement) is removed. Therefore, the sensitivity of the optical sensor 2 does not decrease due to the emitted light that is not necessary for measurement, and the decrease in measurement accuracy is suppressed.

【0015】[0015]

【請求項3の作用】本発明のうち請求項3のレーザドッ
プラ方式による高熱体の測定方法では、図3(c)のよ
うに光センサ2の前にレーザ光aの波長帯域を通す波長
フィルタ4を配置するので、光センサ2にレーザ光aの
波長帯域以外の光は殆ど入射しなくなり、測定に必要の
無い放射光の影響による前記干渉縞の明暗差の低減が少
なくなる。また、測定に必要の無い放射光が波長フィル
タ4でカットされる分だけ光センサ2の受光量も少なく
なり、光センサ2のAGC機能による感度低下も少なく
なる。
According to the third aspect of the present invention, in the method for measuring a high heat element by the laser Doppler method according to the third aspect of the present invention, as shown in FIG. 3 (c), a wavelength filter which passes the wavelength band of the laser light a in front of the optical sensor 2 is provided. Since 4 is arranged, almost no light other than the wavelength band of the laser light a is incident on the optical sensor 2, and the reduction in the contrast difference of the interference fringes due to the influence of the radiated light which is not necessary for measurement is reduced. In addition, the amount of light received by the optical sensor 2 is reduced by the amount of radiated light that is not required for measurement being cut by the wavelength filter 4, and the sensitivity is less reduced due to the AGC function of the optical sensor 2.

【0016】[0016]

【実施例1】本発明のレーザドップラ方式による高熱体
の測定方法の第1の実施例を図1に基づいて説明する。
図1は基本的には図4と同じ構成であり、異なるのは図
1ではコリメートレンズ6と偏向ビームスプリッタ7と
の間に第1のシリンドカルレンズ(円柱レンズ)12を
配置し、λ/4板8とビームスプリッタ9との間に第2
のタシリンドカルレンズ(円柱レンズ)13を配置した
ことである。
[Embodiment 1] A first embodiment of the method for measuring a high heat element by the laser Doppler method of the present invention will be described with reference to FIG.
1 has basically the same configuration as that of FIG. 4, except that in FIG. 1, a first cylindrical lens (cylindrical lens) 12 is arranged between a collimating lens 6 and a deflecting beam splitter 7, and λ Between the quarter plate 8 and the beam splitter 9
That is, the tachylindical lens (cylindrical lens) 13 is arranged.

【0017】シリンドカルレンズ12、13は同じ形状
のものであり、図1(b)に示すように、同レンズ1
2、13の平面17から平行なレーザ光aが面積d、
e、f、gの広さで入射されると、同レンズ12、13
の曲面18側の先方にh、i、j、kの細長の像が結像
される(細長の面積に変換される)ものである。
The cylindrical lenses 12 and 13 have the same shape, and as shown in FIG.
The laser light a parallel to the plane 17 of 2, 13 has an area d,
When the incident light has a size of e, f, and g, the lenses 12, 13
An elongated image of h, i, j, and k is formed (converted into an elongated area) on the front side of the curved surface 18 side.

【0018】例えば、レーザ光源5から発生されるレー
ザ光aのビーム形状(断面形状)が図2(a)のように
円形であり、その直径が8mmの場合、その面積は約5
0mm2 である。このレーザ光aをシリンドカルレンズ
12、13により、例えば図2(b)のように横幅8m
m、縦幅2mmの細長形状にすると、その面積は約16
mm2 で、図2(a)の約1/3となり、レーザ光aの
エネルギー密度は約3倍になる。また、図2(c)のよ
うに横幅8mm、縦幅1mmの細長形状すると、そのビ
ーム形状の面積は約8mm2 で、図2(a)の約1/6
の面積、即ち、レーザ光aのエネルギー密度は約6倍と
なる。
For example, when the beam shape (cross-sectional shape) of the laser light a generated from the laser light source 5 is circular as shown in FIG. 2A and its diameter is 8 mm, its area is about 5 mm.
It is 0 mm 2 . This laser light a is passed through the cylindrical lenses 12 and 13 to have a width of 8 m as shown in FIG.
If it is made into an elongated shape with m and a vertical width of 2 mm, the area will be about 16
In mm 2 , the energy density is about ⅓ of that in FIG. 2A, and the energy density of the laser beam a is tripled. Further, as shown in FIG. 2 (c), if the width is 8 mm and the vertical width is 1 mm, the beam shape has an area of about 8 mm 2, which is about 1/6 of that of FIG. 2 (a).
Area, that is, the energy density of the laser beam a is about 6 times.

【0019】図1では、第1、第2のシリンドカルレン
ズ12、13をその平面17がレーザ光aの入射側にな
り、曲面18がレーザ光aの出射側になるように配置し
て、その平面17から入射されるレーザ光aが曲面18
から出射されて、レーザ光aの断面積がせまくなる様に
してある。
In FIG. 1, the first and second cylindrical lenses 12 and 13 are arranged such that the plane 17 thereof is the incident side of the laser light a and the curved surface 18 is the emission side of the laser light a. , The laser light a incident from the plane 17 is curved surface 18.
The cross-sectional area of the laser light a emitted from the laser is reduced.

【0020】そして、図1では半導体レーザ等のレーザ
光源5がレーザダイオード駆動回路11で駆動されると
レーザ光aが出力され、このレーザ光aはコリメートレ
ンズ6を通して平行光に変換され、それが第1のシリン
ドカルレンズ12を通過することにより図1(b)のよ
うに細長の面積に変換され、それが偏向ビ−ムスプリッ
タ7、λ/4板8を通り、更に第2のシリンドカルレン
ズ13を通過することにより図1(b)のように再度細
長の面積に変換される。それがビ−ムスプリッタ4に入
射されて二分割され、このうち一方のレーザ光aはビ−
ムスプリッタ4から直接高熱体1に照射され、他方のレ
ーザ光aはミラー10により反射されて高熱体1に交差
角φで照射される。
In FIG. 1, when a laser light source 5 such as a semiconductor laser is driven by a laser diode drive circuit 11, laser light a is output, and this laser light a is converted into parallel light through a collimator lens 6, which is converted into parallel light. By passing through the first cylindrical lens 12, it is converted into an elongated area as shown in FIG. 1 (b), which passes through the deflecting beam splitter 7 and the λ / 4 plate 8 and further into the second system. By passing through the lindcal lens 13, it is converted into an elongated area again as shown in FIG. It is incident on the beam splitter 4 and is split into two beams. One of the laser beams a is beamed.
The high heat element 1 is directly irradiated from the beam splitter 4, and the other laser beam a is reflected by the mirror 10 and is applied to the high heat element 1 at the crossing angle φ.

【0021】このとき高熱体1の微小粒子によって生ず
る散乱光bは、二方向からのレーザ光aの干渉によって
生ずる干渉縞(図1b)の明暗差に比例して強度が変化
する。この散乱光が受光レンズ3を通して集光され、光
センサ2に受光され、光センサ2からドップラ信号が出
力され、増幅器20で増幅されて測定部に出力され、同
測定部において同ドップラ信号dに基ずいて高熱体1の
走行速度vが求められる。また、この走行速度vに基ず
いて高熱体1の走行距離(長さ)を求めることもでき
る。
At this time, the intensity of the scattered light b generated by the fine particles of the heating element 1 changes in proportion to the difference in brightness between the interference fringes (FIG. 1b) caused by the interference of the laser light a from two directions. The scattered light is collected through the light receiving lens 3, received by the optical sensor 2, the Doppler signal is output from the optical sensor 2, amplified by the amplifier 20, and output to the measurement unit. The Doppler signal d is output in the measurement unit. Based on this, the traveling speed v of the high heat element 1 is obtained. Further, the traveling distance (length) of the high-heat body 1 can be obtained based on the traveling speed v.

【0022】高熱体1から放射される放射光は高熱体1
の温度が高ければ高い程強くなるので、その影響を受け
て前記干渉縞の明暗差が低減し、それに伴ってドップラ
信号のレベルが低下するが、図1の実施例では前記の様
に第1、第2のシリンドカルレンズ12、13によりレ
ーザ光2のビーム形状を狭くするので、図2(a)のレ
ーザ光aをそのままの形状で使用する場合よりも、狭く
なった分だけレーザ光2のエネルギー密度が高まり、干
渉縞の明暗差が明確になり、ドップラ信号のレベル低減
が抑制される。
The radiant light emitted from the high heat element 1 is the high heat element 1.
The higher the temperature is, the stronger the temperature becomes. Therefore, the difference in brightness between the interference fringes is reduced under the influence of the temperature, and the level of the Doppler signal is reduced accordingly. However, in the embodiment of FIG. , The beam shape of the laser beam 2 is narrowed by the second cylindrical lenses 12 and 13, so that the laser beam a is narrowed as compared with the case where the laser beam a in FIG. 2A is used as it is. The energy density of No. 2 is increased, the contrast difference of the interference fringes becomes clear, and the level reduction of the Doppler signal is suppressed.

【0023】図1(a)では2つのシリンドカルレンズ
12、13を使用して、レーザ光2のビーム形状を二段
階に狭めるようにしてあるが、いずれか一方のシリンド
カルレンズだけで所望の面積まで狭くすることができれ
ば、シリンドカルレンズ12、13は一つだけにしても
よい。
In FIG. 1A, the two cylindrical lenses 12 and 13 are used to narrow the beam shape of the laser beam 2 in two steps. However, only one of the cylindrical lenses is used. The number of the cylindrical lenses 12 and 13 may be one if the area can be reduced to a desired area.

【0024】図1に示す実施例では光センサ2の出力で
あるドップラ信号dに含まれるAC分をコンデンサCに
よりカットしてモニタ信号eを得るようにしてある。こ
のモニタ信号eはモニタ増幅器21で増幅され、モニタ
部のレベルメ−タやインジケ−タ等の表示器に表示され
る。その表示より一つのレーザ光源5を光源とする二つ
のレーザ光aの2等分線の法線に対する高熱体1の傾き
θと、レーザ光源2に対する高熱体1の位置ずれを検出
することができる。
In the embodiment shown in FIG. 1, the AC component contained in the Doppler signal d output from the optical sensor 2 is cut by the capacitor C to obtain the monitor signal e. The monitor signal e is amplified by the monitor amplifier 21 and displayed on a display such as a level meter or an indicator of the monitor section. From the display, it is possible to detect the inclination θ of the high heat body 1 with respect to the normal line of the bisector of the two laser beams a using one laser light source 5 as a light source, and the positional deviation of the high heat body 1 with respect to the laser light source 2. .

【0025】[0025]

【実施例2】本発明の第2の実施例を図3(a)〜
(c)に示す。この実施例は基本的測定方法においては
図1の場合と同じであり、異なるのは高熱体1からの放
射光の影響を抑制するために、図3(b)に示す様に光
センサ2の前に配置される受光レンズ3に焦点距離の長
いものを使用するようにしたものである。この受光レン
ズ3に焦点距離の短いもの、例えば図3(a)のF2
ものを使用すると、図3(c)に明示するように光セン
サ2に入る測定点の視野が広くなるが、焦点距離の長い
もの、例えば図3(a)のF1 のものを使用すると、図
3(b)に明示するように光センサ2に入る測定点の視
野が狭くなる。このため焦点距離の長いものを使用する
実施例2では高熱体1の測定視野から発生する散乱光b
(測定に必要のある光)は光センサ2に受光されるが、
同測定視野の外側から放射される放射光(測定に必要の
無い光)は除去される。従って、光センサ2の感度が測
定に必要の無い放射光により低下することがなく、測定
精度の低下が抑制される。
[Embodiment 2] A second embodiment of the present invention is shown in FIGS.
It is shown in (c). This embodiment is the same as the case of FIG. 1 in the basic measurement method, but is different from that of the optical sensor 2 as shown in FIG. 3B in order to suppress the influence of the radiated light from the high heat body 1. The light receiving lens 3 arranged in front has a long focal length. If a light-receiving lens 3 having a short focal length, for example, F 2 shown in FIG. 3A is used, the field of view of the measurement point entering the optical sensor 2 becomes wide, as clearly shown in FIG. If a long focal length, for example, F 1 shown in FIG. 3A is used, the field of view of the measurement point entering the optical sensor 2 becomes narrow as clearly shown in FIG. 3B. Therefore, in the second embodiment in which the one having a long focal length is used, the scattered light b generated from the measurement visual field of the high heat element 1 is generated.
(The light necessary for measurement) is received by the optical sensor 2,
Emission light (light not necessary for measurement) emitted from the outside of the measurement field of view is removed. Therefore, the sensitivity of the optical sensor 2 does not decrease due to the emitted light that is not necessary for measurement, and the decrease in measurement accuracy is suppressed.

【0026】[0026]

【実施例3】本発明の第3の実施例を図3(c)に示
す。この実施例は基本的測定方法においては図1の場合
と同じであり、異なるのは高熱体1からの放射光の影響
を抑制するために、光センサ2の前にレーザ光aの波長
帯域を通すがそれ以外の帯域は除去する狭帯域の波長フ
ィルタ4を配置したことである。これにより、高熱体1
から放射される放射光は同波長フィルタ4で除去されて
光センサ2に入射せず、光センサ2にはレーザ光a以外
の光は殆ど入射しないようにしてある。このため測定に
必要の無い放射光の影響による干渉縞の明暗差の低減が
少なくなり、また、測定に必要の無い放射光が波長フィ
ルタ4でカットされる分だけ光センサ2の受光量も少な
くなり、光センサ2のAGC機能による感度低下も少な
くなる。
[Embodiment 3] A third embodiment of the present invention is shown in FIG. This embodiment is the same as the case of FIG. 1 in the basic measurement method, except that the wavelength band of the laser light a is set in front of the optical sensor 2 in order to suppress the influence of the radiated light from the high heat body 1. The narrow band wavelength filter 4 is arranged to allow the light to pass but remove the other bands. As a result, the high heat element 1
The radiated light emitted from is removed by the same wavelength filter 4 and does not enter the optical sensor 2, and almost no light other than the laser light a enters the optical sensor 2. For this reason, the reduction of the contrast difference of the interference fringes due to the influence of the radiated light not required for the measurement is reduced, and the amount of light received by the optical sensor 2 is reduced by the amount of the radiated light not required for the measurement being cut by the wavelength filter 4. Therefore, the decrease in sensitivity due to the AGC function of the optical sensor 2 is reduced.

【0027】[0027]

【請求項1の発明の効果】請求項1のレーザドップラ方
式による高熱体の測定方法では、高熱体1に照射される
レーザ光aのビーム形状をそのエネルギー密度が高くな
る様に変えるので、干渉縞の明暗差が明確になり、ドッ
プラ信号dの出力が大きくなり、測定時のC/Nが改善
され、測定精度が向上し、測定不能が解消される。
According to the first aspect of the present invention, in the method for measuring a high-heat body by the laser Doppler method, the beam shape of the laser beam a with which the high-heat body 1 is irradiated is changed so that the energy density thereof becomes high, so that the interference occurs. The difference between light and dark stripes becomes clear, the output of the Doppler signal d becomes large, the C / N at the time of measurement is improved, the measurement accuracy is improved, and the inability to measure is eliminated.

【0028】[0028]

【請求項2の発明の効果】請求項2のレーザドップラ方
式による高熱体の測定方法では、光センサ2の前に配置
される受光レンズ4に焦点距離の長いものを使用するの
で、放射光の影響による干渉縞の明暗差の減少が少なく
なり、測定時のC/Nが改善され、測定精度が向上し、
光センサ2のAGC機能による感度低下も少なくなり、
測定不能も解消される。
According to the second aspect of the present invention, in the method for measuring a high heat element by the laser Doppler method, since the light receiving lens 4 arranged in front of the optical sensor 2 has a long focal length, the emitted light The decrease in the difference in brightness of the interference fringes due to the influence is reduced, the C / N at the time of measurement is improved, the measurement accuracy is improved,
The decrease in sensitivity due to the AGC function of the optical sensor 2 is reduced,
Unmeasurable is also eliminated.

【0029】[0029]

【請求項3の発明の効果】請求項3のレーザドップラ方
式による高熱体の測定方法では、光センサ2の前にレー
ザ光aの波長帯域を通す波長フィルタ4を配置するの
で、放射光の影響による干渉縞の明暗差の減少が少なく
なり、測定時のC/Nが改善され、測定精度が向上し、
光センサ2のAGC機能による感度低下も少なくなり、
測定不能も解消される。
According to the third aspect of the present invention, in the method for measuring a high heat element by the laser Doppler method, the wavelength filter 4 that passes the wavelength band of the laser light a is arranged in front of the optical sensor 2, so that the influence of the radiation light is exerted. The decrease in the contrast difference of the interference fringes due to is reduced, the C / N at the time of measurement is improved, the measurement accuracy is improved,
The decrease in sensitivity due to the AGC function of the optical sensor 2 is reduced,
Unmeasurable is also eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明のレーザドップラ方式による高
熱体の長さ測定方法の一実施例を示す説明図、(b)は
図1(a)におけるシリンドカルレンズの説明図、
(c)は図1(a)の測定方法における干渉縞の説明
図。
FIG. 1A is an explanatory view showing an embodiment of a method for measuring a length of a high heat element by a laser Doppler method of the present invention, and FIG. 1B is an explanatory view of a cylindrical lens in FIG. 1A.
FIG. 1C is an explanatory diagram of interference fringes in the measuring method of FIG.

【図2】(a)〜(c)はレーザ光のビーム形状を狭く
する場合の説明図。
2A to 2C are explanatory views in the case of narrowing the beam shape of laser light.

【図3】(a)は受光レンズの焦点距離と測定視野との
関係を示す説明図、(b)は受光レンズの焦点距離が長
い場合の測定視野との関係を示す説明図、(c)は受光
レンズの焦点距離が短く且つフィルタを設けた場合の測
定視野との関係を示す説明図。
3A is an explanatory view showing a relationship between a focal length of a light receiving lens and a measurement visual field, FIG. 3B is an explanatory view showing a relationship between a measurement visual field when the focal length of the light receiving lens is long, and FIG. FIG. 3 is an explanatory view showing the relationship with the measurement visual field when the focal length of the light receiving lens is short and a filter is provided.

【図4】(a)は本件出願人が先に開発したレーザドッ
プラ方式による高熱体の長さ測定方法の一例を示す説明
図、(b)は図1における干渉縞の説明図。
4A is an explanatory view showing an example of a method for measuring the length of a high heat body by a laser Doppler method previously developed by the applicant of the present application, and FIG. 4B is an explanatory view of interference fringes in FIG.

【図5】(a)(b)は干渉縞の明暗差とドップラ信号
との関係を示す説明図。
5A and 5B are explanatory diagrams showing the relationship between the contrast difference of interference fringes and the Doppler signal.

【図6】(a)〜(d)は干渉縞の明暗差とドップラ信
号のレベルとの関係を示す説明図。
6A to 6D are explanatory diagrams showing the relationship between the contrast difference of interference fringes and the level of a Doppler signal.

【符号の説明】[Explanation of symbols]

1 高熱体 2 光センサ 3 受光レンズ 4 フィルタ a レーザ光 b 散乱光 d ドップラ信号 1 high heat body 2 optical sensor 3 light receiving lens 4 filter a laser light b scattered light d Doppler signal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高熱体(1)に二方向からレーザ光(a)
を照射することにより高熱体(1)から発光され且つ両
レーザ光(a)の干渉により生ずる干渉縞の明暗に比例
する強度の散乱光(b)を、光センサ(2)により受光
してドップラ信号(d)として出力し、このドップラ信
号(d)に基づいて高熱体(1)の速度、長さ等を測定
するようにしたレーザドップラ方式による高熱体(1)
の測定方法において、高熱体(1)に照射されるレーザ
光(a)のビーム形状の断面積を狭くするようにしたこ
とを特徴とするレーザドップラ方式による高熱体の測定
方法。
1. Laser light (a) is applied to a high heat element (1) from two directions.
The scattered light (b), which is emitted from the high heat element (1) by irradiating the laser beam and has an intensity proportional to the brightness of the interference fringes generated by the interference of the two laser beams (a), is received by the optical sensor (2) and the Doppler A high heat body (1) by a laser Doppler system, which outputs as a signal (d) and measures the speed, length, etc. of the high heat body (1) based on this Doppler signal (d).
In the measuring method of 1., the cross-sectional area of the beam shape of the laser beam (a) with which the high heat element (1) is irradiated is narrowed, and the method for measuring the high heat element by the laser Doppler method.
【請求項2】高熱体(1)に二方向からレーザ光(a)
を照射することにより高熱体(1)から発光され且つ両
レーザ光(a)の干渉により生ずる干渉縞の明暗に比例
する強度の散乱光(b)を、光センサ(2)により受光
してドップラ信号(d)として出力し、このドップラ信
号(d)に基づいて高熱体(1)の速度、長さ等を測定
するようにしたレーザドップラ方式による高熱体(1)
の測定方法において、光センサ(2)の前に配置される
受光レンズ(3)に焦点距離の長いものを使用して測定
視野を狭くするようにしたことを特徴とするレーザドッ
プラ方式による高熱体の測定方法。
2. A laser beam (a) is applied to a heating element (1) from two directions.
The scattered light (b), which is emitted from the high heat element (1) by irradiating the laser beam and has an intensity proportional to the contrast of the interference fringes generated by the interference of the two laser beams (a), is received by the optical sensor (2) and the Doppler A high heat body (1) by a laser Doppler system, which outputs as a signal (d) and measures the speed, length, etc. of the high heat body (1) based on this Doppler signal (d).
In the above measuring method, a high-heat body by a laser Doppler system characterized in that a light receiving lens (3) arranged in front of the optical sensor (2) has a long focal length to narrow the measurement field of view. Measuring method.
【請求項3】高熱体(1)に二方向からレーザ光(a)
を照射することにより高熱体(1)から発光され且つ両
レーザ光(a)の干渉により生ずる干渉縞の明暗に比例
する強度の散乱光(b)を、光センサ(2)により受光
してドップラ信号(d)として出力し、このドップラ信
号(d)に基づいて高熱体(1)の速度、長さ等を測定
するようにしたレーザドップラ方式による高熱体(1)
の測定方法において、光センサ(2)の前にレーザ光
(a)の波長帯域を通す波長フィルタ(4)を配置する
ことにより光センサ(2)にレーザ光(a)の波長帯域
以外の光は入射しないようにしたことを特徴とするレー
ザドップラ方式による高熱体の測定方法。
3. A laser beam (a) is applied to the heating element (1) from two directions.
The scattered light (b), which is emitted from the high heat element (1) by irradiating the laser beam and has an intensity proportional to the brightness of the interference fringes generated by the interference of the two laser beams (a), is received by the optical sensor (2) and the Doppler A high heat body (1) by a laser Doppler system, which outputs as a signal (d) and measures the speed, length, etc. of the high heat body (1) based on this Doppler signal (d).
In the measuring method of 1., by disposing a wavelength filter (4) that passes the wavelength band of the laser light (a) in front of the optical sensor (2), light other than the wavelength band of the laser light (a) is provided to the optical sensor (2). Is a laser doppler method for measuring high heat elements, which is characterized in that it is not incident.
JP6180600A 1994-07-08 1994-07-08 Measuring method for high-temperature body by laser doppler system Pending JPH0821849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6180600A JPH0821849A (en) 1994-07-08 1994-07-08 Measuring method for high-temperature body by laser doppler system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6180600A JPH0821849A (en) 1994-07-08 1994-07-08 Measuring method for high-temperature body by laser doppler system

Publications (1)

Publication Number Publication Date
JPH0821849A true JPH0821849A (en) 1996-01-23

Family

ID=16086097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6180600A Pending JPH0821849A (en) 1994-07-08 1994-07-08 Measuring method for high-temperature body by laser doppler system

Country Status (1)

Country Link
JP (1) JPH0821849A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5782036B2 (en) * 2010-09-03 2015-09-24 株式会社ブリヂストン Band-shaped member shape detection device and two-dimensional displacement sensor
JP2016148561A (en) * 2015-02-10 2016-08-18 株式会社小野測器 Laser doppler speedometer
JP2016223973A (en) * 2015-06-02 2016-12-28 株式会社小野測器 Laser beam combining/branching device and laser measurement device
WO2021055715A1 (en) * 2019-09-20 2021-03-25 Ndc Technologies Inc. Laser interferometry systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057204A (en) * 1983-09-09 1985-04-03 Kawasaki Steel Corp Method and device for measuring surface state of high-temperature material
JPH0540176A (en) * 1991-08-07 1993-02-19 Mitsubishi Electric Corp Laser doppler sppedometer
JPH0566226A (en) * 1991-09-06 1993-03-19 Canon Inc Displacement-information detecting apparatus and speedometer
JPH0735587A (en) * 1993-07-23 1995-02-07 Kawasaki Steel Corp Molten metal flowrate measuring device and molten metal flowrate measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057204A (en) * 1983-09-09 1985-04-03 Kawasaki Steel Corp Method and device for measuring surface state of high-temperature material
JPH0540176A (en) * 1991-08-07 1993-02-19 Mitsubishi Electric Corp Laser doppler sppedometer
JPH0566226A (en) * 1991-09-06 1993-03-19 Canon Inc Displacement-information detecting apparatus and speedometer
JPH0735587A (en) * 1993-07-23 1995-02-07 Kawasaki Steel Corp Molten metal flowrate measuring device and molten metal flowrate measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5782036B2 (en) * 2010-09-03 2015-09-24 株式会社ブリヂストン Band-shaped member shape detection device and two-dimensional displacement sensor
JP2016148561A (en) * 2015-02-10 2016-08-18 株式会社小野測器 Laser doppler speedometer
JP2016223973A (en) * 2015-06-02 2016-12-28 株式会社小野測器 Laser beam combining/branching device and laser measurement device
WO2021055715A1 (en) * 2019-09-20 2021-03-25 Ndc Technologies Inc. Laser interferometry systems and methods
US11703315B2 (en) 2019-09-20 2023-07-18 Nordson Corporation Laser interferometry systems and methods

Similar Documents

Publication Publication Date Title
US20050046821A1 (en) Optical device and method for measuring velocity
JPS6217610A (en) Method and device for monitoring change of distance
US4865446A (en) Laser power and energy meter
JPH0821849A (en) Measuring method for high-temperature body by laser doppler system
JPH06213658A (en) Method and equipment for distance measurement
US20030122054A1 (en) Vertical cavity surface emitting laser array for velocity measurement
JP2694304B2 (en) Light diffraction, scattering type particle size distribution analyzer
JPH0515976B2 (en)
JPH0429477B2 (en)
JPS61112905A (en) Optical measuring apparatus
JPWO2020255447A1 (en) Thermophysical property value measuring device and thermophysical characteristic value measuring method
JPS60243583A (en) Laser doppler speedometer
JPH02193041A (en) Particle size distribution apparatus
JPH05172657A (en) Optical fiber distributed temperature sensor
JP3950567B2 (en) Torque measuring device
JPH0875433A (en) Surface form measuring device
JPS5856094B2 (en) Microvibration measuring device
JPH04258705A (en) Position-sensing radiation detecting apparatus
JPH0729452Y2 (en) Displacement measuring device
JPH03238308A (en) Outer-shape measuring apparatus
JPS6316232A (en) Measuring method for diameter of laser beam
JPS6361110A (en) High-speed three-dimensional measuring method and device
JPH0588436B2 (en)
JPS62156515A (en) Displacement measuring instrument
RU2148790C1 (en) Method and device for precise contactless measurement of distance between surfaces