JPS60243583A - Laser doppler speedometer - Google Patents

Laser doppler speedometer

Info

Publication number
JPS60243583A
JPS60243583A JP9852284A JP9852284A JPS60243583A JP S60243583 A JPS60243583 A JP S60243583A JP 9852284 A JP9852284 A JP 9852284A JP 9852284 A JP9852284 A JP 9852284A JP S60243583 A JPS60243583 A JP S60243583A
Authority
JP
Japan
Prior art keywords
moving direction
moving
parallel
photodetector
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9852284A
Other languages
Japanese (ja)
Inventor
Tetsuji Nishimura
西村 哲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9852284A priority Critical patent/JPS60243583A/en
Publication of JPS60243583A publication Critical patent/JPS60243583A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • G01P3/366Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light by using diffraction of light

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To make it possible to obtain a high S/N value with high accuracy, by mounting a means for performing linear irradiation in almost parallel to a moving direction and a means for performing linear prescription of reflected light to the direction crossing the moving direction almost at right angles. CONSTITUTION:Beam emitted from a laser beam source 1 is converted to parallel beam 3 by a lens 2 and passed through a lens 9 and a beam splitter 4 to be divided into two beams which are, in turn, condensed to the direction at a right angle to a moving direction through mirrors 6, 6' to linearily irradiate the surface of an object 7 as is parallel to the moving direction. Reflected and scattered beam from the object 7 is received by a beam detector 8 to analyze the frequency thereof and the moving speed V of the object 7 is detected. The magnitude of a spectrum becomes large in the direction at a right angle to the moving direction of the object and the number of spectra on the light detection surface are reduced. Therefore, the AC component of the output signal of the detector 8 becomes large and an S/N ratio is enhanced to easily enable the processing for frequency analysis with high accuracy.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、物体あるいは流体の移動速度を非接触に検出
するレーザドツプラ速度計(関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a laser Doppler velocimeter that non-contactly detects the moving speed of an object or fluid.

〔従来技術〕[Prior art]

物体あるいは流体の移動速度を、非接触状態で高精度に
検出する装置として、従来からレーザドツプラ速度計が
使用されている。レーザドツプラ速度計とは1周知のよ
うに、移動物体を照射すると、物体による散乱光の周波
数が、物体の移動速度に比例して偏移(ドツプラシフト
)する効果(ドツプラ効果)を利用して、物体の移動速
度を検出する装置である。このような装置として、従来
から第1図に示すような構成の装置がある。図において
、1はレーザ光源(たとえば半導体レーザ)、2はコリ
メータレンズ、3は平行光束、4はビームスプリッタ、
 5 、5’は分割された2本の平行光束、6.6′は
ミラー、7は速度Vで図示矢印方向に移動しつつある物
体、8はこの物体によシ反射された散乱光を検出する光
検出器である。
BACKGROUND ART Laser Doppler velocimeters have conventionally been used as devices for detecting the moving speed of objects or fluids with high precision in a non-contact state. What is a laser Doppler velocimeter? As is well known, when a moving object is irradiated, the frequency of light scattered by the object shifts (Doppler shift) in proportion to the object's moving speed (Doppler effect). This is a device that detects the moving speed of. As such a device, there has conventionally been a device having a configuration as shown in FIG. In the figure, 1 is a laser light source (for example, a semiconductor laser), 2 is a collimator lens, 3 is a parallel light beam, 4 is a beam splitter,
5 and 5' are two divided parallel light beams, 6 and 6' are mirrors, 7 is an object moving in the direction of the arrow shown at velocity V, and 8 is the detection of scattered light reflected by this object. It is a photodetector that

つぎに、動作を説明する。レーザ光源1から出射した光
束は、コリメータレンズ2によって有限な大きさをもっ
た平行光束3となり、ビームスプリッタ4によって2光
束5.5′に分割され、ミラー6.6’で反射されたの
ち、速度Vで移動している物体7に、入射角θで2光束
入射する。物体7表面で反射された散乱光は、光検出器
8で検出される。この2光束5.5′による反射散乱光
の周波数は、物体7の移動速度に比例して、各々十Δf
Next, the operation will be explained. A beam emitted from a laser light source 1 becomes a parallel beam 3 with a finite size by a collimator lens 2, is split into two beams 5.5' by a beam splitter 4, and is reflected by a mirror 6.6'. Two beams of light are incident on an object 7 moving at a speed V at an incident angle θ. Scattered light reflected from the surface of the object 7 is detected by a photodetector 8. The frequency of the reflected and scattered light by these two light beams 5.5' is proportional to the moving speed of the object 7, and the frequencies of the reflected and scattered light are each 10Δf
.

−Δfのドツプラシフトを受ける。上記Δfは、次式+
11により表わされる。
undergoes a Doppler shift of −Δf. The above Δf is calculated by the following formula +
11.

Δf=vSLrIθ/λ ・・・・・・・・・・・・(
1)ここに、λはレーザ光の波長である。
Δf=vSLrIθ/λ ・・・・・・・・・・・・(
1) Here, λ is the wavelength of the laser beam.

そして、光検出器8の出力周波数Fは、F=2Δf=2
vsinθ/λ ・・・・・・・・・・・・(2)によ
り与えられる。式(2)から、スペクトルアナライザな
どにより周波数Fを測定すれば、物体7の移動速度Vが
められる。
Then, the output frequency F of the photodetector 8 is F=2Δf=2
vsin θ/λ . . . It is given by (2). From equation (2), if the frequency F is measured using a spectrum analyzer or the like, the moving speed V of the object 7 can be determined.

以上のような原理に基づいて構成されている従来のレー
ザドツプラ速度計においては、以下に述べる理由により
、光検出器8の出力信号の81N値が低いという欠点が
あった。
The conventional laser Doppler velocimeter constructed based on the above-mentioned principle has a drawback in that the 81N value of the output signal of the photodetector 8 is low for the reason described below.

すなわち、式(1)からも明らかなように、移動速度V
を精度良く測定するためKは、入射角θに拡がシがない
ことが必要である。そのため、2本の入射光5.5′は
平行光束であることが必要である。
That is, as is clear from equation (1), the moving speed V
In order to accurately measure K, it is necessary that there is no expansion in the incident angle θ. Therefore, it is necessary that the two incident lights 5.5' be parallel light beams.

物体7面上に直径dのレーザ平行光束を照射すると、反
射散乱光は、不規則な斑点状のいわゆるスペクトルパタ
ーンを形成し、物体7面から距離したけ離れた光検出器
8の面上でのスペクトルパターンの平均直径りは、 DωλL/d ・・・・・・・・・・・・13)で表わ
されることが知られている。すなわち、有限な大きさで
ある直径dの平行光束および有限な距離゛Lのために、
光検出面上のスペックルは大きくならず、有効な感度を
得るた、めに、有限な大きさをもっている光検出面上で
は、多数のスペックルが形成されているごとになシ、そ
のため、光検出器8の出力は、例えば第2図に示すよう
に、直流成分に対して、交流成分(ドツプラ変調分)の
小さい、つまりS/’Hの低い信号になるという欠点が
あった。
When a parallel laser beam with a diameter d is irradiated onto the surface of the object 7, the reflected and scattered light forms a so-called spectral pattern in the form of irregular spots, and is reflected on the surface of the photodetector 8 at a distance from the surface of the object 7. It is known that the average diameter of the spectral pattern is expressed as DωλL/d...13). That is, due to the parallel beam of diameter d, which is a finite size, and the finite distance ゛L,
In order to obtain effective sensitivity without increasing speckles on the photodetection surface, a large number of speckles are formed on the photodetection surface, which has a finite size. As shown in FIG. 2, for example, the output of the photodetector 8 has a drawback that the AC component (Doppler modulation) is smaller than the DC component, that is, it becomes a signal with a low S/'H.

〔目的〕〔the purpose〕

本発明は、以上のような問題点にかんがみてなされたも
ので、上記のような欠点を解消して、高精度でかつ高い
8/N値を得るレーザドツプラ速度計を提供しようとす
るものであ、る。
The present invention has been made in view of the above-mentioned problems, and aims to provide a laser Doppler speedometer that is highly accurate and obtains a high 8/N value by eliminating the above-mentioned drawbacks. ,ru.

〔実施例〕〔Example〕

以下に本発明を図面に基づいて説明する。第3図、第5
図、第6図、第7図は、それぞれ本発明のレーザドツプ
ラ速度計の各実施例の構成図で。
The present invention will be explained below based on the drawings. Figures 3 and 5
6 and 7 are configuration diagrams of respective embodiments of the laser Doppler velocimeter of the present invention.

いずれも、第1図従来例と同一(相当)構成は同一符号
で示し、重複説明は省略する。第3図において、9は移
動物体7の楓動方向(図示矢印)と直角な方向に屈折力
を有し、移動方向にはほとんど屈折力を有しない円筒レ
ンズで、移動物体面上を焦点とするような位置に配設し
である。
In both cases, components that are the same (equivalent) to the conventional example shown in FIG. In FIG. 3, reference numeral 9 denotes a cylindrical lens that has refractive power in a direction perpendicular to the deflection direction (arrow in the figure) of the moving object 7, but has almost no refractive power in the moving direction, and focuses on the surface of the moving object. It is placed in such a position that it

つぎに本実施例の動作を説明する。レーザ光源1から出
射した光束は、コリメータレンズ2によって平行光束3
となったのち1円筒レンズ9を通過して、ビームスプリ
ッタ4により2光束に分割され、ミラー6.6′を介し
て移動方向と直角な方向に集光し、移動方向には平行な
ままの状態で物体7面を照射する。すなわち、物体7面
を線状に照射する。そして物体7からの反射散乱光を光
検出器8で受光してその周波数を解析し、物体7の移動
速度Vを検出する。
Next, the operation of this embodiment will be explained. The light beam emitted from the laser light source 1 is converted into a parallel light beam 3 by the collimator lens 2.
After that, it passes through a cylindrical lens 9, is split into two beams by a beam splitter 4, and is focused through a mirror 6.6' in a direction perpendicular to the direction of movement, while remaining parallel to the direction of movement. In this state, 7 surfaces of the object are irradiated. That is, the object 7 surface is irradiated linearly. Then, the reflected and scattered light from the object 7 is received by a photodetector 8, its frequency is analyzed, and the moving speed V of the object 7 is detected.

以上のような構成にすることによって、図示のようにス
ペクトルの平均的な大さ、さは、物体7の移動方向と直
角な方向に犬きくなり、光検出面上でのスペクトル数は
少くなる。したがって、光検出器8の出力信号の交流成
分(ドツプラ変調分)は、第4図に示すように大きくな
り、S/Nを高めて、周波数解析のための信号処理を容
易かつ高精度化できる。また、物体Tの移動方向には平
行光束で入射しているため、この方向には入射角の波力
;りはなく、速度検出精度を害することはない。
With the above configuration, as shown in the figure, the average size and width of the spectrum becomes larger in the direction perpendicular to the moving direction of the object 7, and the number of spectra on the photodetection surface decreases. . Therefore, the alternating current component (Doppler modulation component) of the output signal of the photodetector 8 becomes large as shown in FIG. 4, increasing the S/N ratio and making signal processing for frequency analysis easier and more accurate. . Furthermore, since the light is incident in the direction of movement of the object T as a parallel light beam, there is no wave force at the angle of incidence in this direction, and the accuracy of speed detection is not impaired.

〔他の実施例〕[Other Examples]

第5図に、本発明の第2の実施例を示す。 FIG. 5 shows a second embodiment of the invention.

10 、10’は第3図の第1実施例における円筒レン
ズ9よりも曲率半径の小さい円筒レンズで。
10 and 10' are cylindrical lenses having a smaller radius of curvature than the cylindrical lens 9 in the first embodiment shown in FIG.

光路中のミラー6.6′の後、すなわち物体7面の直前
に配設して、物体7面上でその移動方向と直交する方向
の照射幅を小さくしてやることによ多光検出器8面上で
の、この方向のスペクトル数らに大きくなり、光検出器
8出力信号のS/Nはさらに高くなシ、前記実施例より
大きな効果が得られる。
By disposing the mirror 6.6' in the optical path, that is, just before the object 7 surface, and reducing the irradiation width in the direction orthogonal to the moving direction of the object 7 surface, the multi-photodetector 8 surface As mentioned above, the number of spectra in this direction is increased, and the S/N of the output signal of the photodetector 8 is further increased, so that a greater effect than in the previous embodiment can be obtained.

また、第6図は、本発明の第3の実施例を示すものであ
る。11は物体7の移動方向と平行な方向に線状の開口
を備えたマスク、いわゆるスリットで、第1実施例の円
筒レンズ9に代って相当位置に配設してあり、同様に、
物体7を、その移動方向と平行方向に線状照射できるの
で、第1実施例と同様の効果をもたらす。尚1本実施例
にならって第2実施例の円筒レンズ10 、10’をス
リットに代えても良い。
Further, FIG. 6 shows a third embodiment of the present invention. Reference numeral 11 denotes a mask having a linear aperture in a direction parallel to the moving direction of the object 7, a so-called slit, which is arranged at a corresponding position in place of the cylindrical lens 9 of the first embodiment, and similarly,
Since the object 7 can be linearly irradiated in a direction parallel to the direction of movement thereof, the same effects as in the first embodiment can be obtained. It should be noted that the cylindrical lenses 10 and 10' of the second embodiment may be replaced with slits in accordance with the present embodiment.

さらにまた、第7図に1本発明の第4の実施例を示す。Furthermore, FIG. 7 shows a fourth embodiment of the present invention.

12は光検出器8の検出面上に、物体7の移動方向と直
角方向に設けたスリットである。
Reference numeral 12 denotes a slit provided on the detection surface of the photodetector 8 in a direction perpendicular to the moving direction of the object 7.

このスリット12の幅を、光検出面上に形成されるスペ
クトルパターンの物体移動方向における平均的大きさに
制限してやれば、光検出器8の出力信号のS/Nが高く
なり、同様の効果が得られる。
If the width of the slit 12 is limited to the average size of the spectral pattern formed on the photodetection surface in the direction of object movement, the S/N of the output signal of the photodetector 8 will increase, and a similar effect can be obtained. can get.

前記スリット12は、第1.第2実施例に示した様な円
筒レンズを以って代えることが出来る。
The slit 12 is the first slit. It can be replaced with a cylindrical lens as shown in the second embodiment.

尚、以上に示した4つの実施例は夫々単独に採用しても
良く、或いは適宜組み合わせて採用しても良いものであ
る・。
Incidentally, the four embodiments shown above may be employed individually, or may be employed in appropriate combinations.

〔効果〕〔effect〕

以上、各実施例に基づいて説明してきたように、本発明
によれば、光路中に1円筒レンズあるいシまスリットを
設けるという簡単で安価な構成により光検出器出力信号
のS/Nを高めてレーザドツプラ速度計の高精度化を達
成することができる。
As described above based on each embodiment, according to the present invention, the S/N of the photodetector output signal can be increased by a simple and inexpensive configuration in which one cylindrical lens or stripe slit is provided in the optical path. By increasing the accuracy of the laser Doppler speedometer, it is possible to achieve high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のレーザドツプラ速度計の一例の構成図
、第2図はその光検出器出力信号例、第3図、第5図、
第6図、第7図はそれぞれ本発明のレーザドツプラ速度
計の各第1ないし第4実施例の各構成図、第4図は、第
3図の第1実施例の光検出器出力信号例である、 1・・・・・・・・・レーザ光源 3 、5 、5’・・・・・・・・・レーザ平行光束4
・・・・・・・・・ビームスプリッタ7・・・・・・・
・・移動物体 8・・・・・・・・・光検出器
Figure 1 is a configuration diagram of an example of a conventional laser Doppler velocimeter, Figure 2 is an example of its photodetector output signal, Figures 3, 5,
6 and 7 are respective configuration diagrams of the first to fourth embodiments of the laser Doppler velocimeter of the present invention, and FIG. 4 is an example of the photodetector output signal of the first embodiment of FIG. 3. Yes, 1...... Laser light source 3, 5, 5'...... Laser parallel beam 4
......Beam splitter 7...
・・Moving object 8・・・・・・・Photodetector

Claims (1)

【特許請求の範囲】[Claims] その移動速度を検出すべき移動物体を、その移動方向と
ほぼ平行に線状照射する手段及び又は物体からの反射光
をその移動方向とほぼ直交する方向に線状規制する手段
を備えたことを特徴とするレーザドツプラ速度計。
A means for linearly irradiating a moving object whose moving speed is to be detected in a direction substantially parallel to its moving direction and/or a means for linearly regulating light reflected from the object in a direction substantially perpendicular to its moving direction. Features a laser Doppler speedometer.
JP9852284A 1984-05-18 1984-05-18 Laser doppler speedometer Pending JPS60243583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9852284A JPS60243583A (en) 1984-05-18 1984-05-18 Laser doppler speedometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9852284A JPS60243583A (en) 1984-05-18 1984-05-18 Laser doppler speedometer

Publications (1)

Publication Number Publication Date
JPS60243583A true JPS60243583A (en) 1985-12-03

Family

ID=14221989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9852284A Pending JPS60243583A (en) 1984-05-18 1984-05-18 Laser doppler speedometer

Country Status (1)

Country Link
JP (1) JPS60243583A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191086A (en) * 1987-02-03 1988-08-08 Mitsubishi Electric Corp Laser doppler speedometer
JPS63191989A (en) * 1987-02-04 1988-08-09 Mitsubishi Electric Corp Laser doppler speedometer
JPS63200085A (en) * 1987-02-16 1988-08-18 Mitsubishi Electric Corp Laser doppler speedometer
FR2637085A1 (en) * 1988-07-08 1990-03-30 Saint Louis Inst DOPPLER LASER ANEMOMETER
JPH05244477A (en) * 1991-10-18 1993-09-21 Olympus Optical Co Ltd Automatic focusing device
EP0965843A1 (en) * 1998-06-16 1999-12-22 Canon Kabushiki Kaisha Displacement measuring apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191086A (en) * 1987-02-03 1988-08-08 Mitsubishi Electric Corp Laser doppler speedometer
JPS63191989A (en) * 1987-02-04 1988-08-09 Mitsubishi Electric Corp Laser doppler speedometer
JPS63200085A (en) * 1987-02-16 1988-08-18 Mitsubishi Electric Corp Laser doppler speedometer
FR2637085A1 (en) * 1988-07-08 1990-03-30 Saint Louis Inst DOPPLER LASER ANEMOMETER
JPH05244477A (en) * 1991-10-18 1993-09-21 Olympus Optical Co Ltd Automatic focusing device
EP0965843A1 (en) * 1998-06-16 1999-12-22 Canon Kabushiki Kaisha Displacement measuring apparatus
US6259531B1 (en) 1998-06-16 2001-07-10 Canon Kabushiki Kaisha Displacement information measuring apparatus with hyperbolic diffraction grating

Similar Documents

Publication Publication Date Title
US4540283A (en) Apparatus and method for determining the size and velocity of particles, droplets, bubbles or the like using laser light scattering
EP0279347B1 (en) Optical axis displacement sensor
JPH06258437A (en) Optical equipment and speed information detecting equipment
JP2801360B2 (en) Doppler speedometer
EP1336095B1 (en) Measurement of surface defects
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
JP2732849B2 (en) Interferometer
JPS60243583A (en) Laser doppler speedometer
UST102104I4 (en) Scanning optical system adapted for linewidth measurement in semiconductor devices
JPS5999223A (en) Method and device for monitoring unequal motion of surface of body
JP2000002510A (en) Displacement information measuring device
JPH07181009A (en) Method and equipment for measuring displacement
JPS5979122A (en) Laser power measuring device
JPH07229913A (en) Speedometer
JP2671667B2 (en) Laser doppler velocimeter
JPH08114673A (en) Laser doppler speed measuring apparatus
US4808807A (en) Optical focus sensor system
JPH02167413A (en) Interval measuring instrument
RU2148790C1 (en) Method and device for precise contactless measurement of distance between surfaces
JPS6316232A (en) Measuring method for diameter of laser beam
JPH0331367B2 (en)
JPH0425787A (en) Doppler speed indicator
CN117805431A (en) Laser Doppler instantaneous rotating speed measuring device and method
JPH06117825A (en) Apparatus of measuring diameter or width of thin wire
Tkaczyk et al. Heterodyne interferometer for measurement of linear displacements of a rough sample