JP2007240294A - Apparatus for measuring optical fiber distortion - Google Patents

Apparatus for measuring optical fiber distortion Download PDF

Info

Publication number
JP2007240294A
JP2007240294A JP2006062186A JP2006062186A JP2007240294A JP 2007240294 A JP2007240294 A JP 2007240294A JP 2006062186 A JP2006062186 A JP 2006062186A JP 2006062186 A JP2006062186 A JP 2006062186A JP 2007240294 A JP2007240294 A JP 2007240294A
Authority
JP
Japan
Prior art keywords
light
optical fiber
scattered light
optical
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006062186A
Other languages
Japanese (ja)
Inventor
Haruyoshi Uchiyama
晴義 内山
Yoshiyuki Sakairi
良幸 坂入
Makoto Komiyama
誠 小宮山
Katsumi Hirata
克己 平田
Kodai Murayama
広大 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2006062186A priority Critical patent/JP2007240294A/en
Publication of JP2007240294A publication Critical patent/JP2007240294A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten the measuring time and to measure the distortion accurately. <P>SOLUTION: The optical fiber distortion measuring device for measuring the distortion of an optical fiber using Brillouin scattering light occurring in an optical fiber to be measured comprises an optical source for emitting pulse light, an optical branching means for making the pulse light come into one end of the optical fiber, branching the back-scattering light coming from one end of the optical fiber every wavelength band, and making it go out, a distortion detecting means for making the branch light of the wavelength band including Brillouin scattering light from the optical branching means, detecting the Brillouin scattering light, and measuring the distortion, a temperature detecting means for making the branch light of the wavelength band including Raman scattering light from the optical branching means, detecting the Raman scattering light, and measuring the temperature, and an arithmetic controlling means for extracting measuring data of distortion from the distortion detecting means, extracting measuring data of temperature from the temperature detecting means, and compensating the measuring data of distortion with temperature data. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、測定対象である光ファイバ内で発生するブリルアン散乱光(ブリルアン散乱した後方散乱光)を用いて光ファイバの歪を測定する光ファイバ歪測定装置に関し、特に測定時間を短縮すると共に歪を精度良く測定することが可能な光ファイバ歪測定装置に関する。   The present invention relates to an optical fiber strain measuring apparatus that measures strain of an optical fiber by using Brillouin scattered light (back-scattered light that has been Brillouin scattered) generated in an optical fiber to be measured. The present invention relates to an optical fiber strain measuring apparatus capable of accurately measuring the above.

光ファイバ中を伝播する光の一部は、ガラスの構造分子の運動エネルギーとして吸収される。吸収されたエネルギーは一定値を超えたときに音響フォノンとして放出される。そして、ブリルアン散乱とは、放出された音響フォノンと透過光との相互干渉により、音響フォノンの周波数分だけシフト(ブリルアン周波数シフト)したストークス光が発生する現象である。   Part of the light propagating in the optical fiber is absorbed as the kinetic energy of the glass structural molecules. The absorbed energy is released as an acoustic phonon when it exceeds a certain value. Brillouin scattering is a phenomenon in which Stokes light that is shifted by the frequency of the acoustic phonon (Brillouin frequency shift) is generated due to the mutual interference between the emitted acoustic phonon and the transmitted light.

従来の被測定対象である光ファイバ内で発生するブリルアン散乱光を用いて光ファイバの歪を測定する光ファイバ歪測定装置に関連する先行技術文献としては次のようなものがある。   Prior art documents related to an optical fiber strain measuring apparatus for measuring strain of an optical fiber using Brillouin scattered light generated in an optical fiber to be measured are as follows.

特開平04−248426号公報Japanese Patent Laid-Open No. 04-248426 特開平04−276518号公報Japanese Patent Laid-Open No. 04-276518 特開平05−231923号公報Japanese Patent Laid-Open No. 05-231923 特開平11−257928号公報Japanese Patent Laid-Open No. 11-257828 特開2001−281471号公報JP 2001-281471 A 特開2002−221407号公報JP 2002-221407 A 特開2002−340531号公報Japanese Patent Laid-Open No. 2002-340531

そして、光ファイバ内で発生するブリルアン散乱光を用いて光ファイバの歪を測定する光ファイバ歪測定装置では、ブリルアン周波数シフトの変化が歪の変化にのみ依存するのではなく、温度変化によってもブリルアン周波数シフトに変化が生じてしまう。   In an optical fiber strain measuring apparatus that measures strain of an optical fiber using Brillouin scattered light generated in the optical fiber, the change in Brillouin frequency shift does not depend only on the change in strain, but is also caused by a change in temperature. A change occurs in the frequency shift.

このため、光ファイバ内の温度を別途測定して温度補償することにより、歪を精度良く測定することが必要となる。光ファイバ内の温度を測定する方法としてはラマン散乱光を用いて温度を測定する方法がある。   For this reason, it is necessary to accurately measure the strain by separately measuring the temperature in the optical fiber and compensating for the temperature. As a method of measuring the temperature in the optical fiber, there is a method of measuring the temperature using Raman scattered light.

ここで、ラマン散乱光とは、ブリルアン散乱光の発生と同時に後方散乱光として、ガラスの構成分子の振動や回転に基づき周波数がシフトしたラマン散乱光が発生する。このラマン散乱光はその光強度が温度に対して感応性の高いアンチストークス光と、感応性の低いストークス光が同時に発生し、発生したアンチストークス光とストークス光との光強度比から温度を得ることができる。   Here, the Raman scattered light generates Raman scattered light having a frequency shifted based on vibration and rotation of glass constituent molecules as backscattered light simultaneously with generation of Brillouin scattered light. This Raman scattered light is generated simultaneously with anti-Stokes light whose light intensity is highly sensitive to temperature and Stokes light with low sensitivity, and the temperature is obtained from the light intensity ratio of the generated anti-Stokes light and Stokes light. be able to.

図15は「特許文献4」に記載された歪の温度補償を行う従来の光ファイバ歪測定装置の一例を示す構成ブロック図である。図15において、1は歪の測定対象である光ファイバ、2は光スイッチ等の入射光の光路を切り替える光路切替手段、3はブリルアン散乱光を検出して歪を測定する歪検出手段、4はラマン散乱光を検出して温度を測定する温度検出手段、5は光路切替手段を制御し歪検出手段3及び温度検出手段4からの測定データを取り込み処理するCPU(Central Processing Unit)等の演算制御手段である。   FIG. 15 is a configuration block diagram showing an example of a conventional optical fiber strain measuring apparatus that performs temperature compensation of strain described in “Patent Document 4”. In FIG. 15, 1 is an optical fiber to be measured for strain, 2 is an optical path switching means for switching the optical path of incident light such as an optical switch, 3 is a strain detection means for detecting the Brillouin scattered light and measuring the strain, 4 is Temperature detection means 5 for detecting the Raman scattered light and measuring the temperature, 5 controls the optical path switching means, and controls the arithmetic processing of a CPU (Central Processing Unit) etc. that takes in and processes the measurement data from the strain detection means 3 and the temperature detection means 4 Means.

光ファイバ1の一端は光路切替手段2の入射端に接続される。そして、光路切替手段2の一方の出射端からの出力光は歪検出手段3の入射端に入射され、光路切替手段2の他方の出射端からの出力光は温度検出手段4の入射端に入射される。   One end of the optical fiber 1 is connected to the incident end of the optical path switching means 2. The output light from one exit end of the optical path switching means 2 is incident on the incident end of the strain detection means 3, and the output light from the other exit end of the optical path switching means 2 is incident on the incident end of the temperature detection means 4. Is done.

歪検出手段3及び温度検出手段4の出力はそれぞれ演算制御手段5に接続され、演算制御手段5の制御信号は光路切替手段2の制御端子に接続される。   The outputs of the strain detection means 3 and the temperature detection means 4 are respectively connected to the calculation control means 5, and the control signal of the calculation control means 5 is connected to the control terminal of the optical path switching means 2.

ここで、図15に示す従来例の動作を説明する。図示しない光源等の手段から測定対象である光ファイバ1の一端に入射された光によって生じた後方散乱光(ブリルアン散乱光及びラマン散乱光)は、図15中”LG01”に示すように伝播して光ファイバ1の一端から出射されて光路切替手段2に入射される。   Here, the operation of the conventional example shown in FIG. 15 will be described. Backscattered light (Brillouin scattered light and Raman scattered light) generated by light incident on one end of the optical fiber 1 to be measured from means such as a light source (not shown) propagates as indicated by “LG01” in FIG. The light is emitted from one end of the optical fiber 1 and enters the optical path switching means 2.

そして、演算制御手段5は、図15中”CT01”に示す制御信号により図15中”LG01”に示すように入射された後方散乱光の光路を切り替えて歪検出手段3若しくは温度検出手段4に入射させる。   Then, the arithmetic control unit 5 switches the optical path of the incident backscattered light as shown by “LG01” in FIG. 15 by the control signal shown by “CT01” in FIG. 15 to the strain detecting unit 3 or the temperature detecting unit 4. Make it incident.

例えば、演算制御手段5は、光路切替手段2を制御して図15中”LG02”に示すように後方散乱光を歪検出手段3に入射させ、歪検出手段3において後方散乱光のうちブリルアン散乱光に基づき歪を測定させ、歪の測定データを取得する。   For example, the arithmetic control unit 5 controls the optical path switching unit 2 to cause the backscattered light to enter the strain detecting unit 3 as indicated by “LG02” in FIG. 15, and the strain detecting unit 3 performs Brillouin scattering of the backscattered light. Strain is measured based on light to obtain strain measurement data.

その後、演算制御手段5は、光路切替手段2を制御して図15中”LG03”に示すように後方散乱光を温度検出手段4に入射させ、温度検出手段4において後方散乱光のうちラマン散乱光に基づき温度を測定させ、温度の測定データを取得すると共に先に取得した歪の測定データを当該温度データで補償して正確な歪を得る。   Thereafter, the arithmetic control means 5 controls the optical path switching means 2 to cause the backscattered light to enter the temperature detecting means 4 as indicated by “LG03” in FIG. Temperature is measured based on light, temperature measurement data is acquired, and distortion data acquired previously is compensated with the temperature data to obtain accurate distortion.

この結果、測定対象である光ファイバから出射する後方散乱光のうちブリルアン散乱光に基づき歪を測定すると共に、ラマン散乱光に基づき測定された温度で歪を補償することにより、ブリルアン散乱光の温度による影響を除去して、歪を精度良く測定することが可能になる。   As a result, the temperature of the Brillouin scattered light is measured by measuring the strain based on the Brillouin scattered light out of the backscattered light emitted from the optical fiber to be measured and compensating the strain at the temperature measured based on the Raman scattered light. It becomes possible to measure the distortion with high accuracy by removing the influence of.

しかし、図15に示す従来例では、後方散乱光を光路切替手段2で順次切り替えて歪や温度を測定しているため、同時刻のブリルアン散乱光及びラマン散乱光に基づき歪や温度を測定することができないといった問題点があった。   However, in the conventional example shown in FIG. 15, since the backscattered light is sequentially switched by the optical path switching means 2 to measure the strain and temperature, the strain and temperature are measured based on the Brillouin scattered light and the Raman scattered light at the same time. There was a problem that it was not possible.

例えば、歪を温度補償するといっても同時刻の温度で補償することはできず、歪の測定時間や温度の測定時間が長い場合には、温度補償の精度が悪化してしまう恐れがあった。   For example, even if temperature compensation is used for strain, it cannot be compensated for at the same time. If the strain measurement time or temperature measurement time is long, the accuracy of temperature compensation may deteriorate. .

また、歪の測定時間と温度の測定時間の合計時間が全体の測定時間となるため、測定に要する時間が長くなってしまうと言った問題点があった。
従って本発明が解決しようとする課題は、測定時間を短縮すると共に歪を精度良く測定することが可能な光ファイバ歪測定装置を実現することにある。
Further, since the total time of the strain measurement time and the temperature measurement time is the total measurement time, there is a problem that the time required for the measurement becomes long.
Therefore, the problem to be solved by the present invention is to realize an optical fiber strain measuring device capable of shortening the measuring time and measuring the strain with high accuracy.

このような課題を達成するために、本発明のうち請求項1記載の発明は、
測定対象である光ファイバ内で発生するブリルアン散乱光を用いて光ファイバの歪を測定する光ファイバ歪測定装置において、
パルス光を出射する光源と、前記パルス光を前記光ファイバの一端に入射させ、前記光ファイバの一端から出射される後方散乱光を波長帯毎に分岐させて出射させる光分岐手段と、この光分岐手段からブリルアン散乱光を含む波長帯の分岐光が入射され前記ブリルアン散乱光を検出して歪を測定する歪検出手段と、前記光分岐手段からラマン散乱光を含む波長帯の分岐光が入射され前記ラマン散乱光を検出して温度を測定する温度検出手段と、前記歪検出手段から歪の測定データを取り込み前記温度検出手段から温度の測定データを取り込むと共に歪の測定データを温度データで補償する演算制御手段とを備えたことにより、歪を精度良く測定することが可能になる。また、歪の測定と温度の測定は同時に行われるため測定時間を短縮することが可能になる。
In order to achieve such a problem, the invention according to claim 1 of the present invention is:
In an optical fiber strain measuring apparatus that measures strain of an optical fiber using Brillouin scattered light generated in an optical fiber to be measured,
A light source that emits pulsed light, light branching means for causing the pulsed light to enter one end of the optical fiber, branching backscattered light emitted from one end of the optical fiber for each wavelength band, and emitting the light. A branching light of a wavelength band including Brillouin scattered light is incident from the branching means, a strain detecting means for detecting the Brillouin scattered light and measuring the strain, and a branched light of a wavelength band including Raman scattered light is incident from the light branching means. Temperature detection means for detecting the Raman scattered light and measuring the temperature; strain measurement data from the strain detection means; temperature measurement data from the temperature detection means; and strain measurement data compensated by the temperature data By providing the calculation control means, it is possible to accurately measure the distortion. In addition, since the measurement of strain and the measurement of temperature are performed simultaneously, the measurement time can be shortened.

請求項2記載の発明は、
請求項1記載の発明である光ファイバ歪測定装置において、
前記光分岐手段が、
前記パルス光を前記光ファイバの一端に入射させ、前記光ファイバの一端から出射される後方散乱光を分岐させる光方向性結合器と、この光方向性結合器の分岐光を2つの波長帯に分けてそれぞれ出射する第1の光フィルタと、この第1の光フィルタの一方の分岐光を2つの波長帯に分けてそれぞれ出射する第2の光フィルタとから構成されたことにより、歪を精度良く測定することが可能になる。また、歪の測定と温度の測定は同時に行われるため測定時間を短縮することが可能になる。
The invention according to claim 2
In the optical fiber strain measuring device which is the invention according to claim 1,
The light branching means is
An optical directional coupler for causing the pulsed light to enter one end of the optical fiber and branching backscattered light emitted from the one end of the optical fiber, and the branched light of the optical directional coupler in two wavelength bands The first optical filter that divides and emits separately, and the second optical filter that divides and emits one branched light of the first optical filter into two wavelength bands, thereby enabling distortion to be accurately detected. It becomes possible to measure well. Further, since the measurement of strain and the measurement of temperature are performed simultaneously, the measurement time can be shortened.

請求項3記載の発明は、
請求項2記載の発明である光ファイバ歪測定装置において、
前記第1の光フィルタが、前記ラマン散乱光のアンチストークス光を含む波長帯と前記ラマン散乱光のストークス光及び前記ブリルアン散乱光を含む波長帯に分けてそれぞれ出射し、前記第2の光フィルタが、前記ラマン散乱光のストークス光を含む波長帯と前記ブリルアン散乱光を含む波長帯に分けてそれぞれ出射することにより、歪を精度良く測定することが可能になる。また、歪の測定と温度の測定は同時に行われるため測定時間を短縮することが可能になる。
The invention described in claim 3
In the optical fiber strain measuring device which is the invention according to claim 2,
The first optical filter is divided into a wavelength band including anti-Stokes light of the Raman scattered light and a wavelength band including Stokes light of the Raman scattered light and the Brillouin scattered light, and the second optical filter. However, it is possible to measure the distortion with high accuracy by separately emitting the wavelength band including the Stokes light of the Raman scattered light and the wavelength band including the Brillouin scattered light. In addition, since the measurement of strain and the measurement of temperature are performed simultaneously, the measurement time can be shortened.

請求項4記載の発明は、
請求項2記載の発明である光ファイバ歪測定装置において、
前記第1の光フィルタが、前記ラマン散乱光のストークス光を含む波長帯と前記ラマン散乱光のアンチストークス光及び前記ブリルアン散乱光を含む波長帯に分けてそれぞれ出射し、前記第2の光フィルタが、前記ラマン散乱光のアンチストークス光を含む波長帯と前記ブリルアン散乱光を含む波長帯に分けてそれぞれ出射することにより、歪を精度良く測定することが可能になる。また、歪の測定と温度の測定は同時に行われるため測定時間を短縮することが可能になる。
The invention according to claim 4
In the optical fiber strain measuring device which is the invention according to claim 2,
The first optical filter is divided into a wavelength band including the Stokes light of the Raman scattered light and an anti-Stokes light of the Raman scattered light and a wavelength band including the Brillouin scattered light, respectively, and the second optical filter However, it is possible to measure the distortion with high accuracy by separately emitting the wavelength band including the anti-Stokes light of the Raman scattered light and the wavelength band including the Brillouin scattered light. In addition, since the measurement of strain and the measurement of temperature are performed simultaneously, the measurement time can be shortened.

請求項5記載の発明は、
請求項2乃至請求項4のいずれかに記載の発明である光ファイバ歪測定装置において、
前記第1及び前記第2の光フィルタが、
反射型、エタロン型、或いは、回折格子型の光フィルタであることにより、歪を精度良く測定することが可能になる。また、歪の測定と温度の測定は同時に行われるため測定時間を短縮することが可能になる。
The invention according to claim 5
In the optical fiber strain measuring device according to any one of claims 2 to 4,
The first and second optical filters are
By using a reflection type, etalon type, or diffraction grating type optical filter, distortion can be measured with high accuracy. In addition, since the measurement of strain and the measurement of temperature are performed simultaneously, the measurement time can be shortened.

請求項6記載の発明は、
請求項2乃至請求項4のいずれかに記載の発明である光ファイバ歪測定装置において、
前記第1及び前記第2の光フィルタが、
ファイバカプラ型、或いは、空間光型の光フィルタであることにより、歪を精度良く測定することが可能になる。また、歪の測定と温度の測定は同時に行われるため測定時間を短縮することが可能になる。
The invention described in claim 6
In the optical fiber strain measuring device according to any one of claims 2 to 4,
The first and second optical filters are
By using a fiber coupler type or spatial light type optical filter, it becomes possible to measure distortion with high accuracy. In addition, since the measurement of strain and the measurement of temperature are performed simultaneously, the measurement time can be shortened.

本発明によれば次のような効果がある。
請求項1,2,3,4,5及び請求項6の発明によれば、光ファイバにパルス光を入射させ発生した後方散乱光を光分岐手段でブリルアン散乱光とラマン散乱光とに分岐させ、ブリルアン散乱光に基づき歪を測定し、ラマン散乱光に基づき温度を測定して、歪の測定データを温度データで補償することにより、歪を精度良く測定することが可能になる。また、歪の測定と温度の測定は同時に行われるため測定時間を短縮することが可能になる。
The present invention has the following effects.
According to the first, second, third, fourth, and fifth aspects of the present invention, the backscattered light generated by making the pulsed light incident on the optical fiber is branched into Brillouin scattered light and Raman scattered light by the light branching means. By measuring the strain based on the Brillouin scattered light, measuring the temperature based on the Raman scattered light, and compensating the strain measurement data with the temperature data, the strain can be accurately measured. In addition, since the measurement of strain and the measurement of temperature are performed simultaneously, the measurement time can be shortened.

以下本発明を図面を用いて詳細に説明する。図1は歪の温度補償を行う本発明に係る光ファイバ歪測定装置の一実施例を示す構成ブロック図である。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of an optical fiber strain measuring apparatus according to the present invention for performing temperature compensation of strain.

図1において、6は出力光としてパルス光を出射する光源、7は入射端からの入射光を入出射端から出射させ、この入出射端からの入射光を3つの波長帯に分岐させて出射させる光分岐手段、8は歪の測定対象である光ファイバ、9はブリルアン散乱光を検出して歪を測定する歪検出手段、10はラマン散乱光(アンチストークス光及びストークス光)を検出して温度を測定する温度検出手段、11は歪検出手段9及び温度検出手段10からの測定データを取り込み処理するCPU等の演算制御手段である。   In FIG. 1, 6 is a light source that emits pulsed light as output light, 7 is an incident light from an incident end that is emitted from an incident / exit end, and the incident light from the incident / exit end is branched into three wavelength bands and emitted. 8 is an optical fiber to be measured for strain, 9 is a strain detection unit for detecting Brillouin scattered light and measuring strain, and 10 is for detecting Raman scattered light (anti-Stokes light and Stokes light). A temperature detection means 11 for measuring the temperature, and 11 is an arithmetic control means such as a CPU for fetching and processing measurement data from the strain detection means 9 and the temperature detection means 10.

光源6の出力光であるパルス光は図1中”LG11”に示すように光分岐手段7の入射端に入射され、光分岐手段7の入出射端から出射され光ファイバ8の一端から入射されて図1中”LG12”に示すように光ファイバ8内を伝播する。   The pulsed light that is the output light of the light source 6 is incident on the incident end of the light branching means 7 as indicated by “LG11” in FIG. 1 propagates through the optical fiber 8 as indicated by “LG12” in FIG.

図1中”LG12”に示すように光ファイバ8内を伝播するパルス光によって生じた後方散乱光(ブリルアン散乱光及びラマン散乱光)は、図1中”LG13”に示すように伝播して光ファイバ8の一端から出射され光分岐手段7の入出射端に入射される。   As shown by “LG12” in FIG. 1, the back scattered light (Brillouin scattered light and Raman scattered light) generated by the pulse light propagating in the optical fiber 8 propagates as shown by “LG13” in FIG. The light is emitted from one end of the fiber 8 and is incident on the incident / exit end of the light branching means 7.

光分岐手段7では入射された後方散乱光のうちブリルアン散乱光を分岐させて図1中”LG14”に示すように歪検出手段9に入射させ、後方散乱光のうちラマン散乱光(アンチストークス光)を分岐させて図1中”LG15”に示すように温度検出手段10に入射させ、後方散乱光のうちラマン散乱光(ストークス光)を分岐させて図1中”LG16”に示すように温度検出手段10に入射させる。   In the light branching means 7, the Brillouin scattered light of the incident backscattered light is branched and made incident on the strain detecting means 9 as indicated by “LG 14” in FIG. 1, and the Raman scattered light (anti-Stokes light) of the backscattered light. ) And is incident on the temperature detecting means 10 as indicated by “LG15” in FIG. 1, and Raman scattered light (Stokes light) of the backscattered light is branched and the temperature is indicated by “LG16” in FIG. The light is incident on the detection means 10.

演算制御手段11は、歪検出手段9において図1中”LG14”に示すように入射された後方散乱光のうちブリルアン散乱光に基づき歪を測定させ、歪の測定データを取得する。   The arithmetic control unit 11 causes the strain detection unit 9 to measure strain based on Brillouin scattered light among the backscattered light incident as indicated by “LG14” in FIG. 1, and obtains strain measurement data.

同様に、演算制御手段11は、温度検出手段10において図1中”LG15”及び図1中”LG16”に示すように入射された後方散乱光のうちラマン散乱光に基づき温度を測定させ、温度の測定データを取得すると共に先に取得した歪の測定データを当該温度データで補償して正確な歪を得る。   Similarly, the calculation control means 11 causes the temperature detection means 10 to measure the temperature based on the Raman scattered light among the backscattered light incident as indicated by “LG15” in FIG. 1 and “LG16” in FIG. In addition to acquiring the measurement data, the distortion measurement data acquired previously is compensated with the temperature data to obtain accurate distortion.

ここで、光分岐手段7の動作を図2、図3、図4、図5、図6、図7、図8、図9、図10、図11、図12、図13及び図14を用いて詳細に説明する。   Here, the operation of the optical branching means 7 will be described with reference to FIGS. 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11, 12, 13, and 14. Will be described in detail.

図2は光分岐手段の構成を説明する説明図、図3は光ファイバ8に入射されるパルス光のスペクトルの一例を示す特性曲線図、図4は光ファイバ8から出射される後方散乱光の一例を示す特性曲線図、図5は光フィルタの構成を説明する説明図、図6及び図9は光フィルタの特性の一例を示す説明図、図7、図8、図10及び図11は光フィルタの出力光のスペクトルの一例を示す特性曲線図、図12は歪の測定データの一例を示す特性曲線図、図13は温度の測定データの一例を示す特性曲線図、図14は温度補償された歪の測定データの一例を示す特性曲線図である。   2 is an explanatory diagram for explaining the configuration of the optical branching means, FIG. 3 is a characteristic curve diagram showing an example of the spectrum of the pulsed light incident on the optical fiber 8, and FIG. 4 is a diagram of the backscattered light emitted from the optical fiber 8. FIG. 5 is an explanatory diagram illustrating the configuration of the optical filter, FIGS. 6 and 9 are explanatory diagrams illustrating an example of the characteristics of the optical filter, and FIGS. 7, 8, 10 and 11 are optical diagrams. FIG. 12 is a characteristic curve diagram showing an example of strain measurement data, FIG. 13 is a characteristic curve diagram showing an example of temperature measurement data, and FIG. 14 is temperature compensated. It is a characteristic curve figure which shows an example of the measured data of the distortion.

図2において”LG11”,”LG12”、”LG13”、”LG14”、”LG15”及び”LG16”は図1と同一符号を付してあり、12は入射端からの入射光を入出射端から出射させると共に入出射端からの入射光を出射端から出射させる光方向性結合器、13及び14は反射膜を用いた反射型でファイバカプラ型の光フィルタである。また、12,13及び14は光分岐手段50を構成している。   In FIG. 2, “LG11”, “LG12”, “LG13”, “LG14”, “LG15”, and “LG16” are assigned the same reference numerals as in FIG. 1, and 12 indicates the incident light from the incident end. The optical directional couplers 13 and 14 are configured to emit light from the light input and output light from the light input / output end, and are reflection type and fiber coupler type optical filters using a reflection film. In addition, 12, 13 and 14 constitute an optical branching means 50.

図2中”LG11”に示す光源6からのパルス光は光方向性結合器12の入射端に入射され、図2中”LG12”及び”LG13”に示す出射光及び入射光は光方向性結合器12の入出射端から出射、或いは、入射される。   The pulsed light from the light source 6 indicated by “LG11” in FIG. 2 enters the incident end of the optical directional coupler 12, and the emitted light and the incident light indicated by “LG12” and “LG13” in FIG. The light is emitted or incident from the incident / exit end of the vessel 12.

光方向性結合器12の出射端からの出射光は光フィルタ13の入射端に入射され、光フィルタ13の透過端からは図2中”LG15”に示すようなラマン散乱光(アンチストークス光)が出射される。   The outgoing light from the outgoing end of the optical directional coupler 12 is incident on the incident end of the optical filter 13, and the Raman scattered light (anti-Stokes light) as indicated by “LG 15” in FIG. Is emitted.

また、光フィルタ13の反射端からの出射光は光フィルタ14の入射端に入射され、光フィルタ14の透過端からは図2中”LG14”に示すようなブリルアン散乱光が出射される。さらに、光フィルタ14の反射端からは図2中”LG16”に示すようなラマン散乱光(ストークス光)が出射される。   Further, light emitted from the reflection end of the optical filter 13 is incident on the incident end of the optical filter 14, and Brillouin scattered light as indicated by “LG 14” in FIG. 2 is emitted from the transmission end of the optical filter 14. Further, Raman scattered light (Stokes light) as indicated by “LG16” in FIG. 2 is emitted from the reflection end of the optical filter.

例えば、図3中”SP21”に示すようなスペクトル(出力波長:1550nm帯)を有するパルス光が光ファイバ8の一端から入射された場合を想定すると、当該パルス光によって生じる後方散乱光のスペクトル分布は図4に示すようになる。   For example, assuming that a pulsed light having a spectrum (output wavelength: 1550 nm band) as shown in “SP21” in FIG. 3 is incident from one end of the optical fiber 8, the spectral distribution of the backscattered light generated by the pulsed light Is as shown in FIG.

すなわち、図4中”SP31”に示すような入射光(パルス光)と同一波長のレイリー散乱光/フレネル散乱光(1550nm帯)、図4中”SP32”及び”SP33”に示すようなブリルアン散乱光、図4中”SP34”に示すラマン散乱光(アンチストークス光:1450nm帯)、図4中”SP35”に示すラマン散乱光(ストークス光:1650nm帯)からなる後方散乱光が発生して、光方向性結合器12を介して光フィルタ13の入射端に入射されることになる。   That is, Rayleigh scattered light / Fresnel scattered light (1550 nm band) having the same wavelength as the incident light (pulse light) as indicated by “SP31” in FIG. 4, Brillouin scattering as indicated by “SP32” and “SP33” in FIG. Backscattered light consisting of the Raman scattered light (anti-Stokes light: 1450 nm band) shown in FIG. 4 and the Raman scattered light (Stokes light: 1650 nm band) shown in FIG. The light is incident on the incident end of the optical filter 13 through the optical directional coupler 12.

ここで、図5に示す光フィルタは図5中”IP41”に示す入射端から光が入射され、或る波長以下の光は反射膜を透過して図5中”TP41”に示す透過端から出射され、或る波長以上の光は反射膜で反射され図5中”RP41”に示す反射端から出射される。   Here, in the optical filter shown in FIG. 5, light is incident from the incident end indicated by “IP41” in FIG. 5, and light having a certain wavelength or less is transmitted through the reflection film and transmitted from the transmission end indicated by “TP41” in FIG. The emitted light having a certain wavelength or longer is reflected by the reflective film and emitted from the reflection end indicated by “RP41” in FIG.

例えば、光フィルタ13の特性を図6に示す特性とした場合、図6中”TB51”に示す波長帯の光は透過端から出射され、図6中”TB52”に示す波長帯の光は反射端から出射されることになる。   For example, when the characteristics of the optical filter 13 are the characteristics shown in FIG. 6, the light in the wavelength band indicated by “TB51” in FIG. 6 is emitted from the transmission end, and the light in the wavelength band indicated by “TB52” in FIG. The light is emitted from the end.

このため、ラマン散乱光(アンチストークス光:1450nm帯)は反射膜を透過して、図2中”LG15”のように透過端から出射され、残りの後方散乱光は反射膜で反射され反射端から出射される。   For this reason, the Raman scattered light (anti-Stokes light: 1450 nm band) is transmitted through the reflection film and emitted from the transmission end as indicated by “LG15” in FIG. 2, and the remaining backscattered light is reflected by the reflection film and reflected at the reflection end. It is emitted from.

このため、図2中”LG15”に示す光フィルタ13の透過端から出射される光のスペクトルは図7に示すようになり、図7中”SP34”に示すラマン散乱光(アンチストークス光:1450nm帯)の成分が抽出される。   Therefore, the spectrum of the light emitted from the transmission end of the optical filter 13 indicated by “LG15” in FIG. 2 is as shown in FIG. 7, and the Raman scattered light (anti-Stokes light: 1450 nm indicated by “SP34” in FIG. Band) components are extracted.

一方、光フィルタ13の反射端から出射される光のスペクトルは図8に示すようになり、図8中”SP31”に示すような入射光(パルス光)と同一波長のレイリー散乱光/フレネル散乱光、図8中”SP32”及び”SP33”に示すようなブリルアン散乱光、図8中”SP35”に示すラマン散乱光(ストークス光:1650nm帯)からなる後方散乱光となる。   On the other hand, the spectrum of the light emitted from the reflection end of the optical filter 13 is as shown in FIG. 8, and Rayleigh scattered light / Fresnel scattered light having the same wavelength as the incident light (pulsed light) as indicated by “SP31” in FIG. Back-scattered light consisting of light, Brillouin scattered light as indicated by “SP32” and “SP33” in FIG. 8, and Raman scattered light (Stokes light: 1650 nm band) indicated by “SP35” in FIG.

また、例えば、光フィルタ14の特性を図9に示す特性とした場合、図9中”TB61”に示す波長帯の光は透過端から出射され、図9中”TB62”に示す波長帯の光は反射端から出射されることになる。   For example, when the characteristics of the optical filter 14 are the characteristics shown in FIG. 9, the light in the wavelength band indicated by “TB61” in FIG. 9 is emitted from the transmission end, and the light in the wavelength band indicated by “TB62” in FIG. Is emitted from the reflection end.

このため、レイリー散乱光/フレネル散乱光(1550nm帯)及びブリルアン散乱光は反射膜を透過して、図2中”LG14”のように透過端から出射され、残りの後方散乱光は反射膜で反射され反射端から出射される。   For this reason, Rayleigh scattered light / Fresnel scattered light (1550 nm band) and Brillouin scattered light are transmitted through the reflective film and emitted from the transmission end as indicated by “LG14” in FIG. 2, and the remaining backscattered light is reflected by the reflective film. Reflected and emitted from the reflection end.

このため、図2中”LG14”に示す光フィルタ14の透過端から出射される光のスペクトルは図10に示すようになり、図10中”SP31”に示すような入射光(パルス光)と同一波長のレイリー散乱光/フレネル散乱光(1550nm帯)、図10中”SP32”及び”SP33”に示すようなブリルアン散乱光の成分が抽出される。   Therefore, the spectrum of the light emitted from the transmission end of the optical filter 14 indicated by “LG14” in FIG. 2 is as shown in FIG. 10, and the incident light (pulse light) as indicated by “SP31” in FIG. Rayleigh scattered light / Fresnel scattered light (1550 nm band) of the same wavelength, Brillouin scattered light components as indicated by “SP32” and “SP33” in FIG. 10 are extracted.

一方、図2中”LG16”に示す光フィルタ14の反射端から出射される光のスペクトルは図11に示すようになり、図11中”SP35”に示すラマン散乱光(ストークス光:1650nm帯)の成分が抽出される。   On the other hand, the spectrum of the light emitted from the reflection end of the optical filter 14 indicated by “LG16” in FIG. 2 is as shown in FIG. 11, and Raman scattered light (Stokes light: 1650 nm band) indicated by “SP35” in FIG. Are extracted.

このように、抽出された各後方散乱光は、前述のように、歪検出手段3において図2中”LG14”に示すように入射された後方散乱光のうちブリルアン散乱光に基づき歪を測定され、演算制御手段11は歪検出手段3から歪の測定データを取得する。   In this way, as described above, the distortion of each extracted backscattered light is measured based on the Brillouin scattered light of the incident backscattered light as indicated by “LG14” in FIG. The arithmetic control unit 11 acquires strain measurement data from the strain detection unit 3.

例えば、演算制御手段11が歪検出手段3から取得した歪の測定データが図12中”CH71”に示すような特性を有していたと想定する。   For example, it is assumed that the strain measurement data acquired by the arithmetic control unit 11 from the strain detection unit 3 has a characteristic as indicated by “CH71” in FIG.

同様に、温度検出手段4において図2中”LG15”及び図2中”LG16”に示すように入射された後方散乱光のうちラマン散乱光に基づき温度を測定され、演算制御手段11は温度検出手段4から温度の測定データを取得すると共に先に取得した歪の測定データを当該温度データで補償して正確な歪を得る。   Similarly, the temperature detection means 4 measures the temperature based on the Raman scattered light among the backscattered light incident as indicated by “LG15” in FIG. 2 and “LG16” in FIG. 2, and the arithmetic control means 11 detects the temperature. The temperature measurement data is acquired from the means 4 and the distortion measurement data acquired previously is compensated with the temperature data to obtain an accurate distortion.

同様に、例えば、演算制御手段11が温度検出手段4から取得した温度の測定データが図13中”CH81”に示すような特性を有していたと想定する。   Similarly, for example, it is assumed that the temperature measurement data acquired by the arithmetic control unit 11 from the temperature detection unit 4 has a characteristic as indicated by “CH81” in FIG.

ここで、ブリルアン散乱光の周波数シフトは、以下の式(1)に示されるように、光ファイバの歪量”δε”に応じて変化する。但し、”∂ν/∂ε”はブリルアン周波数シフトの歪係数、”∂ν/∂T”はブリルアン周波数シフトの温度係数である。

Figure 2007240294
Here, the frequency shift of the Brillouin scattered light changes according to the strain “δε” of the optical fiber, as shown in the following formula (1). However, “∂ν b / ∂ε” is a Brillouin frequency shift distortion coefficient, and “∂ν b / ∂T” is a Brillouin frequency shift temperature coefficient.
Figure 2007240294

このため、その周波数の変化量”δν ”を検出することで歪量”δε”を得ることができるとされているが、式(1)から分かるように、温度のパラメータを含んでおり、温度変化”δT”によっても周波数シフトが生じる。 For this reason, it is said that the strain amount “δε” can be obtained by detecting the amount of change “δν b ” of the frequency, but as can be seen from the equation (1), the temperature parameter is included, A frequency shift also occurs due to the temperature change “δT”.

また、”δT”は温度変化量であるので、ラマン散乱光から得られた温度分布波形の温度を”T ”、基準温度を”TREF ”とすると、
δT=T −TREF (2)
となる。
Since “δT” is a temperature change amount, if the temperature of the temperature distribution waveform obtained from the Raman scattered light is “T R ” and the reference temperature is “T REF ”,
δT = T R −T REF (2)
It becomes.

事前に、ブリルアン周波数シフトの歪係数と温度係数を測定しておけば、ブリルアン散乱光の周波数シフト”δν(ε、T)”と、ラマン散乱光のよる温度”T ”の測定により、言い換えれば、温度補償により温度の影響を受けない歪量を得ることができる。 If the distortion coefficient and temperature coefficient of the Brillouin frequency shift are measured in advance, the frequency shift “δν b (ε, T)” of the Brillouin scattered light and the temperature “T R ” of the Raman scattered light are measured. In other words, a strain amount that is not affected by temperature can be obtained by temperature compensation.

同様に、例えば、演算制御手段11が歪検出手段3から取得した歪の測定データを、温度検出手段4から取得した温度の測定データで補償することにより、図14中”CH91”に示すような温度の影響を受けない特性を得ることができる。   Similarly, for example, by compensating the strain measurement data acquired by the arithmetic control unit 11 from the strain detection unit 3 with the temperature measurement data acquired from the temperature detection unit 4, as indicated by “CH 91” in FIG. 14. Characteristics that are not affected by temperature can be obtained.

すなわち、図12中”CH71”に示すような歪の測定データの特性から、図13中”CH81”に示すような温度の測定データの特性を除去した図14中”CH91”に示すような温度補償された歪の測定データの特性を得ることができる。   That is, the temperature as indicated by “CH91” in FIG. 14 is obtained by removing the characteristic of the temperature measurement data as indicated by “CH81” in FIG. 13 from the characteristic of the strain measurement data as indicated by “CH71” in FIG. The characteristics of the compensated distortion measurement data can be obtained.

この結果、光ファイバにパルス光を入射させ発生した後方散乱光を光分岐手段でブリルアン散乱光とラマン散乱光とに分岐させ、ブリルアン散乱光に基づき歪を測定し、ラマン散乱光に基づき温度を測定して、歪の測定データを温度データで補償することにより、歪を精度良く測定することが可能になる。また、歪の測定と温度の測定は同時に行われるため測定時間を短縮することが可能になる。   As a result, the backscattered light generated when the pulsed light is incident on the optical fiber is branched into Brillouin scattered light and Raman scattered light by the light branching means, the strain is measured based on the Brillouin scattered light, and the temperature is measured based on the Raman scattered light. By measuring and compensating the distortion measurement data with the temperature data, the distortion can be accurately measured. In addition, since the measurement of strain and the measurement of temperature are performed simultaneously, the measurement time can be shortened.

なお、図2に示す実施例では光分岐手段ではラマン散乱光(アンチストークス光:1450nm帯)、ブリルアン散乱光(レイリー散乱光/フレネル散乱光(1550nm帯)を含む)及びラマン散乱光(ストークス光:1650nm帯)の順番で散乱光を分離抽出しているが、勿論、分離抽出の順番はどのような順番であっても構わない。   In the embodiment shown in FIG. 2, Raman scattering light (anti-Stokes light: 1450 nm band), Brillouin scattered light (including Rayleigh scattered light / Fresnel scattered light (1550 nm band)), and Raman scattered light (Stokes light) are used in the light branching means. : 1650 nm band), the scattered light is separated and extracted. Of course, the order of separation and extraction may be any order.

例えば、最初にラマン散乱光(ストークス光:1650nm帯)を抽出し、ブリルアン散乱光(レイリー散乱光/フレネル散乱光(1550nm帯)を含む)、ラマン散乱光(アンチストークス光:1450nm帯)の順番で散乱光を分離抽出しても良い。   For example, first, Raman scattered light (Stokes light: 1650 nm band) is extracted, Brillouin scattered light (including Rayleigh scattered light / Fresnel scattered light (1550 nm band)), and Raman scattered light (anti-Stokes light: 1450 nm band). Alternatively, the scattered light may be separated and extracted.

また、光フィルタとしては反射膜を用いた反射型の光フィルタを例示したが、勿論、エタロン型の光フィルタや回折格子型の光フィルタであっても構わない。   Further, as the optical filter, a reflective optical filter using a reflective film has been illustrated, but of course, an etalon optical filter or a diffraction grating optical filter may be used.

また、光フィルタとしてはファイバカプラ型の光フィルタを例示したが、勿論、空間光型の光フィルタであっても構わない。   Further, as the optical filter, a fiber coupler type optical filter is exemplified, but it is needless to say that a spatial light type optical filter may be used.

本発明に係る光ファイバ歪測定装置の一実施例を示す構成ブロック図である。1 is a configuration block diagram showing an embodiment of an optical fiber strain measuring apparatus according to the present invention. 光分岐手段の構成を説明する説明図である。It is explanatory drawing explaining the structure of an optical branching means. 光ファイバに入射されるパルス光のスペクトルの一例を示す特性曲線図である。It is a characteristic curve figure which shows an example of the spectrum of the pulsed light which injected into an optical fiber. 光ファイバから出射される後方散乱光の一例を示す特性曲線図である。It is a characteristic curve figure which shows an example of the backscattered light radiate | emitted from an optical fiber. 光フィルタの構成を説明する説明図である。It is explanatory drawing explaining the structure of an optical filter. 光フィルタの特性の一例を示す説明図である。It is explanatory drawing which shows an example of the characteristic of an optical filter. 光フィルタの出力光のスペクトルの一例を示す特性曲線図である。It is a characteristic curve figure which shows an example of the spectrum of the output light of an optical filter. 光フィルタの出力光のスペクトルの一例を示す特性曲線図である。It is a characteristic curve figure which shows an example of the spectrum of the output light of an optical filter. 光フィルタの特性の一例を示す説明図である。It is explanatory drawing which shows an example of the characteristic of an optical filter. 光フィルタの出力光のスペクトルの一例を示す特性曲線図である。It is a characteristic curve figure which shows an example of the spectrum of the output light of an optical filter. 光フィルタの出力光のスペクトルの一例を示す特性曲線図である。It is a characteristic curve figure which shows an example of the spectrum of the output light of an optical filter. 歪の測定データの一例を示す特性曲線図である。It is a characteristic curve figure which shows an example of the measurement data of distortion. 温度の測定データの一例を示す特性曲線図である。It is a characteristic curve figure which shows an example of the measurement data of temperature. 温度補償された歪の測定データの一例を示す特性曲線図である。It is a characteristic curve figure which shows an example of the measurement data of distortion compensated for temperature. 歪の温度補償を行う従来の光ファイバ歪測定装置の一例を示す構成ブロック図である。It is a configuration block diagram showing an example of a conventional optical fiber strain measurement device that performs temperature compensation of strain.

符号の説明Explanation of symbols

1,8 光ファイバ
2 光路切替手段
3,9 歪検出手段
4,10 温度検出手段
5,11 演算制御手段
6 光源
7,50 光分岐手段
12 光方向性結合器
13,14 光フィルタ
DESCRIPTION OF SYMBOLS 1,8 Optical fiber 2 Optical path switching means 3,9 Strain detection means 4,10 Temperature detection means 5,11 Operation control means 6 Light source 7,50 Optical branching means 12 Optical directional coupler 13,14 Optical filter

Claims (6)

測定対象である光ファイバ内で発生するブリルアン散乱光を用いて光ファイバの歪を測定する光ファイバ歪測定装置において、
パルス光を出射する光源と、
前記パルス光を前記光ファイバの一端に入射させ、前記光ファイバの一端から出射される後方散乱光を波長帯毎に分岐させて出射させる光分岐手段と、
この光分岐手段からブリルアン散乱光を含む波長帯の分岐光が入射され前記ブリルアン散乱光を検出して歪を測定する歪検出手段と、
前記光分岐手段からラマン散乱光を含む波長帯の分岐光が入射され前記ラマン散乱光を検出して温度を測定する温度検出手段と、
前記歪検出手段から歪の測定データを取り込み前記温度検出手段から温度の測定データを取り込むと共に歪の測定データを温度データで補償する演算制御手段と
を備えたことを特徴とする光ファイバ歪測定装置。
In an optical fiber strain measuring apparatus that measures strain of an optical fiber using Brillouin scattered light generated in an optical fiber to be measured,
A light source that emits pulsed light;
Light branching means for causing the pulsed light to enter one end of the optical fiber, branching backscattered light emitted from one end of the optical fiber for each wavelength band, and emitting the branched light;
Strain detecting means for measuring the strain by detecting the Brillouin scattered light when the branched light in the wavelength band including the Brillouin scattered light is incident from the light branching means,
Temperature detecting means for measuring the temperature by detecting the Raman scattered light when the branched light in the wavelength band including the Raman scattered light is incident from the light branching means;
An optical fiber strain measuring apparatus comprising: strain measurement data from the strain detection means; temperature control data from the temperature detection means; and calculation control means for compensating the strain measurement data with temperature data. .
前記光分岐手段が、
前記パルス光を前記光ファイバの一端に入射させ、前記光ファイバの一端から出射される後方散乱光を分岐させる光方向性結合器と、
この光方向性結合器の分岐光を2つの波長帯に分けてそれぞれ出射する第1の光フィルタと、
この第1の光フィルタの一方の分岐光を2つの波長帯に分けてそれぞれ出射する第2の光フィルタとから構成されたことを特徴とする
請求項1記載の光ファイバ歪測定装置。
The light branching means is
An optical directional coupler for causing the pulsed light to enter one end of the optical fiber and branching backscattered light emitted from one end of the optical fiber;
A first optical filter that divides the branched light of the optical directional coupler into two wavelength bands and emits the divided light;
2. The optical fiber strain measuring apparatus according to claim 1, further comprising: a second optical filter that divides one branched light of the first optical filter into two wavelength bands and outputs the divided light.
前記第1の光フィルタが、
前記ラマン散乱光のアンチストークス光を含む波長帯と前記ラマン散乱光のストークス光及び前記ブリルアン散乱光を含む波長帯に分けてそれぞれ出射し、
前記第2の光フィルタが、
前記ラマン散乱光のストークス光を含む波長帯と前記ブリルアン散乱光を含む波長帯に分けてそれぞれ出射することを特徴とする
請求項2記載の光ファイバ歪測定装置。
The first optical filter comprises:
Separated into a wavelength band containing anti-Stokes light of the Raman scattered light and a Stokes light of the Raman scattered light and a wavelength band containing the Brillouin scattered light, respectively,
The second optical filter comprises:
3. The optical fiber strain measuring device according to claim 2, wherein the optical fiber strain measuring device emits the light by dividing it into a wavelength band including the Stokes light of the Raman scattered light and a wavelength band including the Brillouin scattered light.
前記第1の光フィルタが、
前記ラマン散乱光のストークス光を含む波長帯と前記ラマン散乱光のアンチストークス光及び前記ブリルアン散乱光を含む波長帯に分けてそれぞれ出射し、
前記第2の光フィルタが、
前記ラマン散乱光のアンチストークス光を含む波長帯と前記ブリルアン散乱光を含む波長帯に分けてそれぞれ出射することを特徴とする
請求項2記載の光ファイバ歪測定装置。
The first optical filter comprises:
Dividing into a wavelength band including the Stokes light of the Raman scattered light and an anti-Stokes light of the Raman scattered light and a wavelength band including the Brillouin scattered light, respectively,
The second optical filter comprises:
3. The optical fiber strain measuring apparatus according to claim 2, wherein the optical fiber strain measuring apparatus emits the light by dividing it into a wavelength band including the anti-Stokes light of the Raman scattered light and a wavelength band including the Brillouin scattered light.
前記第1及び前記第2の光フィルタが、
反射型、エタロン型、或いは、回折格子型の光フィルタであることを特徴とする
請求項2乃至請求項4のいずれかに記載の光ファイバ歪測定装置。
The first and second optical filters are
5. The optical fiber strain measuring device according to claim 2, wherein the optical fiber strain measuring device is a reflection type, etalon type, or diffraction grating type optical filter.
前記第1及び前記第2の光フィルタが、
ファイバカプラ型、或いは、空間光型の光フィルタであることを特徴とする
請求項2乃至請求項4のいずれかに記載の光ファイバ歪測定装置。
The first and second optical filters are
5. The optical fiber strain measuring apparatus according to claim 2, wherein the optical fiber strain measuring apparatus is a fiber coupler type or a spatial light type optical filter.
JP2006062186A 2006-03-08 2006-03-08 Apparatus for measuring optical fiber distortion Withdrawn JP2007240294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062186A JP2007240294A (en) 2006-03-08 2006-03-08 Apparatus for measuring optical fiber distortion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062186A JP2007240294A (en) 2006-03-08 2006-03-08 Apparatus for measuring optical fiber distortion

Publications (1)

Publication Number Publication Date
JP2007240294A true JP2007240294A (en) 2007-09-20

Family

ID=38585980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062186A Withdrawn JP2007240294A (en) 2006-03-08 2006-03-08 Apparatus for measuring optical fiber distortion

Country Status (1)

Country Link
JP (1) JP2007240294A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2446285A (en) * 2007-01-31 2008-08-06 Weatherford Lamb Distributed temperature sensing using Brillouin and Raman scattering
WO2011048374A1 (en) * 2009-10-21 2011-04-28 Halliburton Energy Services, Inc. Downhole monitoring with distributed optical density, temperature and/or strain sensing
WO2012018214A2 (en) * 2010-08-05 2012-02-09 Korea Research Institute Of Standards And Science Optic fiber distributed temperature sensor system with self-correction function and temperature measuring method using thereof
US9823373B2 (en) 2012-11-08 2017-11-21 Halliburton Energy Services, Inc. Acoustic telemetry with distributed acoustic sensing system
JP2019066343A (en) * 2017-10-02 2019-04-25 オムロン株式会社 Confocal measuring device
CN112098310A (en) * 2020-09-07 2020-12-18 深圳大学 Corrosion monitoring sensing element, interference sensor and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248426A (en) * 1991-02-04 1992-09-03 Hitachi Cable Ltd Apparatus for measuring strain distribution of optical fiber
JPH05172657A (en) * 1991-12-25 1993-07-09 Asahi Glass Co Ltd Optical fiber distributed temperature sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248426A (en) * 1991-02-04 1992-09-03 Hitachi Cable Ltd Apparatus for measuring strain distribution of optical fiber
JPH05172657A (en) * 1991-12-25 1993-07-09 Asahi Glass Co Ltd Optical fiber distributed temperature sensor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2446285A (en) * 2007-01-31 2008-08-06 Weatherford Lamb Distributed temperature sensing using Brillouin and Raman scattering
US7529434B2 (en) 2007-01-31 2009-05-05 Weatherford/Lamb, Inc. Brillouin distributed temperature sensing calibrated in-situ with Raman distributed temperature sensing
GB2446285B (en) * 2007-01-31 2011-11-30 Weatherford Lamb Brillouin distributed temperature sensing calibrated in-situ with raman distributed temperature sensing
WO2011048374A1 (en) * 2009-10-21 2011-04-28 Halliburton Energy Services, Inc. Downhole monitoring with distributed optical density, temperature and/or strain sensing
WO2012018214A2 (en) * 2010-08-05 2012-02-09 Korea Research Institute Of Standards And Science Optic fiber distributed temperature sensor system with self-correction function and temperature measuring method using thereof
WO2012018214A3 (en) * 2010-08-05 2012-05-24 Korea Research Institute Of Standards And Science Optic fiber distributed temperature sensor system with self-correction function and temperature measuring method using thereof
CN103180702A (en) * 2010-08-05 2013-06-26 韩国标准科学研究院 Optic fiber distributed temperature sensor system with self- correction function and temperature measuring method using thereof
US9322721B2 (en) 2010-08-05 2016-04-26 Korea Research Institute Of Standards And Science Optic fiber distributed temperature sensor system with self-correction function and temperature measuring method using thereof
US9823373B2 (en) 2012-11-08 2017-11-21 Halliburton Energy Services, Inc. Acoustic telemetry with distributed acoustic sensing system
JP2019066343A (en) * 2017-10-02 2019-04-25 オムロン株式会社 Confocal measuring device
CN112098310A (en) * 2020-09-07 2020-12-18 深圳大学 Corrosion monitoring sensing element, interference sensor and method

Similar Documents

Publication Publication Date Title
US9228890B2 (en) Method of measuring acoustic distribution and distributed acoustic sensor
US7284903B2 (en) Distributed optical fibre measurements
RU2413188C2 (en) Fibre-optic device for measuring temperature distribution (versions)
WO2009011766A1 (en) Dual source auto-correction in distributed temperature systems
KR20090001405A (en) Distributed optical fiber sensor system
WO2003042652A1 (en) Wavelength dispersion probing system
JP2007240294A (en) Apparatus for measuring optical fiber distortion
CA2661471A1 (en) Device and method for calibrating a fiber-optic temperature measuring system
JP5000443B2 (en) Method and apparatus for measuring backward Brillouin scattered light of optical fiber
RU2552222C1 (en) Method of measuring temperature distribution and device for realising said method
CA2646312A1 (en) Dual source calibration for distributed temperature systems
JP2008268542A (en) Optical wavelength filter module and optical fiber temperature measuring apparatus
JP7188593B2 (en) Light intensity distribution measuring method and light intensity distribution measuring device
KR20130126150A (en) A raman sensor system for fiber distributed temperature measurment
JP6097712B2 (en) Apparatus and method for measuring propagation constant of optical fiber
JP5053120B2 (en) Method and apparatus for measuring backward Brillouin scattered light of optical fiber
JP6602689B2 (en) Optical line characteristic analyzer and signal processing method
JP4910867B2 (en) Optical fiber temperature sensor device
JP6484125B2 (en) Temperature measuring apparatus and temperature measuring method
JP2008185422A (en) Brillouin frequency shift measurement method and apparatus
CN104111127B (en) Optical wavelength division multiplexer bandwidth selecting device
RU2701182C1 (en) Sensitive element polling device
RU192122U1 (en) Sensor interrogator
WO2021245826A1 (en) Optical fiber testing method and optical fiber testing device
RU192121U1 (en) Sensor interrogator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081118

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20110808

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20110822

Free format text: JAPANESE INTERMEDIATE CODE: A761