JP6484125B2 - Temperature measuring apparatus and temperature measuring method - Google Patents

Temperature measuring apparatus and temperature measuring method Download PDF

Info

Publication number
JP6484125B2
JP6484125B2 JP2015127268A JP2015127268A JP6484125B2 JP 6484125 B2 JP6484125 B2 JP 6484125B2 JP 2015127268 A JP2015127268 A JP 2015127268A JP 2015127268 A JP2015127268 A JP 2015127268A JP 6484125 B2 JP6484125 B2 JP 6484125B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
wavelength
temperature
stokes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015127268A
Other languages
Japanese (ja)
Other versions
JP2017009509A5 (en
JP2017009509A (en
Inventor
大輔 新間
大輔 新間
昭 村田
昭 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2015127268A priority Critical patent/JP6484125B2/en
Publication of JP2017009509A publication Critical patent/JP2017009509A/en
Publication of JP2017009509A5 publication Critical patent/JP2017009509A5/ja
Application granted granted Critical
Publication of JP6484125B2 publication Critical patent/JP6484125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、光ファイバを用いた温度測定装置及び温度測定方法に関する。   The present invention relates to a temperature measuring device and a temperature measuring method using an optical fiber.

光ファイバは、通信用途に多用されているほか、温度測定などの測定用途にも用いられている。光ファイバを用いた温度測定方法としては、例えば、FBG(Fiber Bragg Grating)センサを用いた温度測定方式や、ラマン散乱光を用いた温度測定方式などが知られている。   Optical fibers are widely used for communication applications, and are also used for measurement applications such as temperature measurement. As a temperature measurement method using an optical fiber, for example, a temperature measurement method using an FBG (Fiber Bragg Grating) sensor, a temperature measurement method using Raman scattered light, and the like are known.

ラマン散乱光を用いた温度計測方式は、光ファイバにパルス状の単一波長光を入射した際に光ファイバ内で生じるラマン散乱光の2成分(アンチストークス光、ストークス光)の温度感受性が異なることを利用して温度測定を行うものであり、従来の熱電対や温度抵抗体を用いた方式とは違って、光ファイバが敷設された経路の温度分布を測定することができるという特徴がある。   The temperature measurement method using Raman scattered light differs in temperature sensitivity of two components (anti-Stokes light and Stokes light) of Raman scattered light generated in the optical fiber when pulsed single wavelength light is incident on the optical fiber. Unlike conventional methods using thermocouples or temperature resistors, the temperature distribution of the path in which the optical fiber is laid can be measured. .

しかしながら、ラマン散乱光を用いた温度計測方式では、例えば、光ファイバの劣化などのような温度変化以外の要因でラマン散乱光の検出強度が変化してしまうと、温度測定の精度が低下してしまう。   However, in the temperature measurement method using Raman scattered light, for example, if the detected intensity of Raman scattered light changes due to factors other than temperature change such as optical fiber deterioration, the accuracy of temperature measurement decreases. End up.

このような課題に対して、例えば、特許文献1(特開2011−209225号公報)には、光源から発した光パルスを光ファイバに入射し、光パルス光により生じた後方散乱光である、反ストークス光とストークス光の光強度分布比により光ファイバの長手方向での温度分布測定を行う測定装置であって、第1の光パルスを発振する第1の光源と、該第1の光パルスより発生する後方散乱の第1の反ストークス光と同じ波長の第2の光パルスを発振する第2の光源と、前記第1の光パルスより発生する後方散乱の第1のストークス光と同じ波長の第3の光パルスを発振する第3の光源と、前記第1の光源、第2の光源、第3の光源のいずれかを光パルスを発振させるように駆動選択する第1の駆動選択手段と、前記第2の光パルスと前記第3の光パルスの伝送損失の変化に応じて前記第1の反ストークス光と前記第1のストークス光の伝送損失の補正を行う補正手段とを備えることを特徴とする温度分布校正機能を有する温度分布測定装置が開示されている。   For such a problem, for example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2011-209225) discloses a backscattered light generated by the light pulse light incident on the optical fiber from the light source. A measuring device for measuring a temperature distribution in the longitudinal direction of an optical fiber by a light intensity distribution ratio of anti-Stokes light and Stokes light, a first light source that oscillates a first optical pulse, and the first optical pulse A second light source that oscillates a second light pulse having the same wavelength as the first anti-Stokes light of backscattering generated by the light source, and the same wavelength as the first Stokes light of backscattering generated from the first light pulse. A third light source that oscillates the third light pulse, and a first drive selection unit that selects and drives one of the first light source, the second light source, and the third light source to oscillate the light pulse. And the second light pulse and the second light pulse A temperature distribution having a temperature distribution calibration function, comprising: correction means for correcting transmission loss of the first anti-Stokes light and the first Stokes light in accordance with a change in transmission loss of the optical pulse of A measuring device is disclosed.

特開2011−209225号公報JP2011-209225A

上記従来技術においては、ラマン散乱におけるアンチストークス光及びストークス光に相当する波長の光を射出可能なレーザ光源を用いて伝送損失を測定している。しかしながら、入射光やラマン散乱光の波長は光ファイバでの伝搬損失を考慮して予め選定されるため、アンチストークス光及びストークス光と同一波長であって、かつ、十分な温度安定性やレーザ出力強度を持つレーザ光源については入手困難であることが予想される。   In the above prior art, the transmission loss is measured using an anti-Stokes light in Raman scattering and a laser light source capable of emitting light having a wavelength corresponding to the Stokes light. However, since the wavelengths of incident light and Raman scattered light are preliminarily selected in consideration of propagation loss in the optical fiber, they have the same wavelength as the anti-Stokes light and Stokes light, and have sufficient temperature stability and laser output. It is expected that a laser light source having an intensity is difficult to obtain.

本発明は上記に鑑みてなされたものであり、温度測定に使用するレーザ光源に求められる波長条件を緩和しつつ、測定精度を向上することができる温度測定装置及び温度測定方法を提供することを目的とする。   The present invention has been made in view of the above, and provides a temperature measuring apparatus and a temperature measuring method capable of improving measurement accuracy while relaxing wavelength conditions required for a laser light source used for temperature measurement. Objective.

上記目的を達成するために、本発明は、光ファイバに第1の波長の光パルスを入射する第1の光源と、前記光ファイバに前記第1の波長と異なる第2及び第3の波長の光パルスを入射する第2及び第3の光源と、前記第1、第2、及び第3の光源からの光パルスの入射によって前記光ファイバ内にそれぞれ生じる前記第1、第2、及び3の波長の散乱光の光強度に基づいて、二次関数の各項の係数を決定し、前記二次関数に基づいて、前記第1の波長の光パルスを入射した場合に前記光ファイバ内に生じるラマン散乱のアンチストークス光及びストークス光に相当する各波長における、予め定めた基準からの減衰の変化値を計算する損失計算部と、前記第1の光源からの光パルスの入射によって前記光ファイバ内に生じるラマン散乱のアンチストークス光及びストークス光の光強度に基づいて、前記光ファイバの温度を計算し、前記減衰の変化値の計算結果に基づいて、前記光ファイバの温度の計算結果を補正する温度計算部とを備えたものとする。   In order to achieve the above object, the present invention provides a first light source for injecting an optical pulse of a first wavelength into an optical fiber, and second and third wavelengths different from the first wavelength in the optical fiber. The first, second, and third light sources that are generated in the optical fiber by the incidence of light pulses from the first, second, and third light sources, and the second and third light sources that receive the light pulses, respectively. A coefficient of each term of the quadratic function is determined based on the light intensity of the scattered light having the wavelength, and is generated in the optical fiber when the light pulse having the first wavelength is incident based on the quadratic function. A loss calculation unit that calculates an attenuation change value from a predetermined reference at each wavelength corresponding to anti-Stokes light of Raman scattering and Stokes light, and an optical pulse generated by incidence of an optical pulse from the first light source. Of anti-Raman scattering A temperature calculation unit that calculates the temperature of the optical fiber based on the Stokes light and the light intensity of the Stokes light, and corrects the calculation result of the temperature of the optical fiber based on the calculation result of the change value of the attenuation. Shall be.

温度測定に使用するレーザ光源に求められる波長条件を緩和しつつ、測定精度を向上することができる。   Measurement accuracy can be improved while relaxing the wavelength conditions required for the laser light source used for temperature measurement.

温度測定装置の全体構成を概略的に示す図である。It is a figure which shows roughly the whole structure of a temperature measuring apparatus. 光ファイバを伝搬する光の波長と、各波長における基準からの伝搬損失の変化との関係を示す図である。It is a figure which shows the relationship between the wavelength of the light which propagates an optical fiber, and the change of the propagation loss from the reference | standard in each wavelength. 温度測定装置の処理を示すフローチャートである。It is a flowchart which shows the process of a temperature measurement apparatus.

以下、本発明の一実施の形態を図面を参照しつつ説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施の形態に係る温度測定装置の全体構成を概略的に示す図である。   FIG. 1 is a diagram schematically showing an overall configuration of a temperature measuring apparatus according to the present embodiment.

図1において、温度測定装置100は、温度測定用の光ファイバ6に波長λ0(第1の波長)の光パルスを入射するための半導体レーザ光源1(第1の光源)と、光ファイバ6に波長λ1(第2の波長)の光パルスを入射するための半導体レーザ光源2(第2の光源)と、光ファイバ6に波長λ2(第3の波長)の光パルスを入射するための半導体レーザ光源3(第3の光源)と、半導体レーザ光源1〜3から光ファイバ16a〜16cを介して入射される光パルスを結合して光ファイバ6側に射出する光結合器4と、光ファイバ6側からの波長λastの光を検出する光検出器8と、波長λstの光を検出する光検出器9と、波長λ0,λ1,λ2の光をそれぞれ検出する光検出器10,11,12と、光ファイバ6側からの光を光ファイバ17a〜17eを介して光検出器8〜12に分配する光スプリッタ13と、光結合器4から光ファイバ18を介して入射される光を光ファイバ6に入射するとともに、光ファイバ6側からの光を光ファイバ19を介して光スプリッタ13に入射する光サーキュレータ5と、光検出器10,11,12からの検出結果に基づいて光ファイバ6の基準(後述)からの減衰の変化値を計算する減衰計算処理を行う損失計算部15と、光検出器8,9からの検出結果に基づいて光ファイバ6の温度を計算する温度計算処理を行い、損失計算部15の減衰の変化値の計算結果に基づいて光ファイバ6の温度の計算結果を補正する温度補正処理を行う温度計算部14と、半導体レーザ光源1,2,3、及び光検出器8,9,10,11,12の動作タイミングを含む温度測定装置全体の動作を制御する制御処理部とから概略構成されている。   In FIG. 1, a temperature measuring apparatus 100 includes a semiconductor laser light source 1 (first light source) for making an optical pulse 6 having a wavelength λ 0 (first wavelength) incident on an optical fiber 6 for temperature measurement, and an optical fiber 6. A semiconductor laser light source 2 (second light source) for entering a light pulse of wavelength λ1 (second wavelength) and a semiconductor laser for entering a light pulse of wavelength λ2 (third wavelength) into the optical fiber 6 A light source 3 (third light source), an optical coupler 4 that couples light pulses incident from the semiconductor laser light sources 1 to 3 through the optical fibers 16a to 16c, and emits the light pulses to the optical fiber 6 side; A photodetector 8 for detecting light of wavelength λast from the side, a photodetector 9 for detecting light of wavelength λst, and photodetectors 10, 11, 12 for detecting light of wavelengths λ0, λ1, and λ2, respectively. , The optical fiber 17 The light splitter 13 that distributes to the photodetectors 8 to 12 through a to 17e and the light incident from the optical coupler 4 through the optical fiber 18 are incident on the optical fiber 6 and from the optical fiber 6 side. Based on the detection results from the optical circulator 5 and the optical detectors 10, 11, and 12 that make light incident on the optical splitter 13 through the optical fiber 19, the change in attenuation from the reference (described later) of the optical fiber 6 is calculated. A loss calculation unit 15 for performing attenuation calculation processing, and a temperature calculation processing for calculating the temperature of the optical fiber 6 based on the detection results from the photodetectors 8 and 9, and calculating the attenuation change value of the loss calculation unit 15. Operation of the temperature calculation unit 14 that performs temperature correction processing for correcting the calculation result of the temperature of the optical fiber 6 based on the result, and the operations of the semiconductor laser light sources 1, 2, 3 and the photodetectors 8, 9, 10, 11, 12 timing It is schematically composed of a control processing unit that controls the entire operation of the temperature measuring device comprising.

温度測定用の光ファイバ6は、例えば、石英ガラス(SiO2)により構成されており、その一端を温度測定装置100に接続した状態で、温度測定対象範囲に敷設されている。   The optical fiber 6 for temperature measurement is made of, for example, quartz glass (SiO 2), and is laid in the temperature measurement target range with one end connected to the temperature measurement device 100.

半導体レーザ光源1から射出された波長λ0の光パルスは、光ファイバ16a、光結合器4、光ファイバ18、及び光サーキュレータ5を介して温度測定用の光ファイバ6に入射される。波長λ0は、光ファイバ6での伝搬損失を考慮して予め設定されている。また、半導体レーザ光源2,3から射出された波長λ1,λ2の光パルスは、光ファイバ16b,16c、光結合器4、光ファイバ18、及び光サーキュレータ5を介して温度測定用の光ファイバ6に入射される。   The light pulse having the wavelength λ0 emitted from the semiconductor laser light source 1 is incident on the temperature measuring optical fiber 6 through the optical fiber 16a, the optical coupler 4, the optical fiber 18, and the optical circulator 5. The wavelength λ0 is set in advance in consideration of the propagation loss in the optical fiber 6. In addition, optical pulses having wavelengths λ 1 and λ 2 emitted from the semiconductor laser light sources 2 and 3 are transmitted through the optical fibers 16 b and 16 c, the optical coupler 4, the optical fiber 18, and the optical circulator 5. Is incident on.

光検出器8,9には、光サーキュレータ5、光ファイバ19、光スプリッタ13、及び光ファイバ17a,17bを介して光ファイバ6側からの光が入射される。光検出器8は、波長λ0の光パルスによって光ファイバ6内に生じるラマン散乱光の光源側に戻る光(後方散乱光)のうちストークス光(波長λast、第1のアンチストークス光)を検出する。また、光検出器9は、波長λ0の光パルスによって光ファイバ6内に生じるラマン散乱光の光源側に戻る光のうちストークス光(波長λst、第1のアンチストークス光)を検出する。   Light from the optical fiber 6 side is incident on the photodetectors 8 and 9 through the optical circulator 5, the optical fiber 19, the optical splitter 13, and the optical fibers 17a and 17b. The photodetector 8 detects Stokes light (wavelength λast, first anti-Stokes light) among light (backscattered light) returning to the light source side of the Raman scattered light generated in the optical fiber 6 by the optical pulse of wavelength λ0. . Further, the photodetector 9 detects Stokes light (wavelength λst, first anti-Stokes light) out of the light returning to the light source side of the Raman scattered light generated in the optical fiber 6 by the light pulse having the wavelength λ0.

光検出器10,11,12には、光サーキュレータ5、光ファイバ19、光スプリッタ13、及び光ファイバ17c,17d,17eを介して光ファイバ6側からの光が入射される。光検出器10は、波長λ0の光パルスによって光ファイバ6内に生じる散乱光の光源側に戻る光のうち波長λ0の光(レイリー散乱光)を検出する。光検出器11は、波長λ1の光パルスによって光ファイバ6内に生じる散乱光の光源側に戻る光のうち波長λ1の光(レイリー散乱光)を検出する。また、光検出器12は、波長λ2の光パルスによって光ファイバ6内に生じる散乱光の光源側に戻る光のうち波長λ2の光(レイリー散乱光)を検出する。   Light from the optical fiber 6 side is incident on the photodetectors 10, 11, and 12 through the optical circulator 5, the optical fiber 19, the optical splitter 13, and the optical fibers 17 c, 17 d, and 17 e. The photodetector 10 detects light having a wavelength λ0 (Rayleigh scattered light) out of the light returning to the light source side of the scattered light generated in the optical fiber 6 by the light pulse having the wavelength λ0. The photodetector 11 detects light of wavelength λ1 (Rayleigh scattered light) out of light returning to the light source side of scattered light generated in the optical fiber 6 by an optical pulse of wavelength λ1. The light detector 12 detects light having a wavelength λ2 (Rayleigh scattered light) out of the light returning to the light source side of the scattered light generated in the optical fiber 6 by the light pulse having the wavelength λ2.

本願の温度測定装置100は、ラマン散乱光方式であり、光ファイバ6の一端に入射された波長λ0の光パルスが光ファイバ6内のコアを伝搬していく過程で光ファイバ6の構成材料の分子により生じるラマン散乱光の2成分(アンチストークス光、ストークス光)に温度依存性があり、また、アンチストークス光とストークス光とで温度感受性が異なることを利用して温度測定を行う。また、光ファイバ6の一端に光パルスを入射してからラマン散乱光が戻ってくるまでの時間から、そのラマン散乱光が生じた場所(光ファイバ6上における位置)を特定することにより、光ファイバ6に沿った温度分布を測定する。   The temperature measuring device 100 of the present application is a Raman scattered light method, and the optical pulse having a wavelength λ 0 incident on one end of the optical fiber 6 is propagated through the core in the optical fiber 6. Two components (anti-Stokes light and Stokes light) of Raman scattered light generated by molecules are temperature-dependent, and temperature measurement is performed by utilizing the difference in temperature sensitivity between anti-Stokes light and Stokes light. Further, by specifying the place (position on the optical fiber 6) where the Raman scattered light is generated from the time from when the light pulse is incident on one end of the optical fiber 6 until the Raman scattered light returns, the light The temperature distribution along the fiber 6 is measured.

ここで、損失計算部15における減衰計算処理と、温度計算部14における温度計算処理、及び温度補正処理について説明する。   Here, the attenuation calculation process in the loss calculation unit 15, the temperature calculation process in the temperature calculation unit 14, and the temperature correction process will be described.

減衰計算処理では、光ファイバ6の材料の劣化等によって減衰(伝搬損失)が変化する場合において、光ファイバ6を伝搬する光の波長と、各波長における基準からの伝搬損失の変化[dB]との関係が、ある波長の範囲においては二次関数によって表される(近似できる)という知見に基づき、光検出器10,11,12からの検出結果を用いて光ファイバ6の減衰の基準からの変化値を計算する。   In the attenuation calculation process, when attenuation (propagation loss) changes due to deterioration of the material of the optical fiber 6 or the like, the wavelength of light propagating through the optical fiber 6 and the change [dB] in propagation loss from the reference at each wavelength Is based on the knowledge that the relationship is expressed by a quadratic function in a certain wavelength range (can be approximated), using the detection results from the photodetectors 10, 11, and 12 based on the attenuation reference of the optical fiber 6. Calculate the change value.

ここで、減衰(伝搬損失)の基準とは、例えば、温度測定装置100の校正時の値など、温度測定用の光ファイバ6の減衰(伝搬損失)と測定結果の温度との対応が明確である時点でのものである。   Here, the standard of attenuation (propagation loss) is, for example, the correspondence between the attenuation (propagation loss) of the temperature measurement optical fiber 6 and the temperature of the measurement result, such as a value at the time of calibration of the temperature measuring device 100. At some point.

図2は、光ファイバを伝搬する光の波長と、各波長における基準からの伝搬損失の変化との関係を示す図であり、縦軸に伝搬損失の変化[dB]を、横軸に光の波長をそれぞれ示している。   FIG. 2 is a diagram showing the relationship between the wavelength of light propagating through an optical fiber and the change in propagation loss from the reference at each wavelength. The vertical axis represents the change in propagation loss [dB], and the horizontal axis represents the change in light loss. Each wavelength is shown.

図2に示すように、光ファイバ6を伝搬する光の波長と、各波長における基準からの伝搬損失の変化[dB]との関係は二次関数に近似できる。したがって、二次関数上の3点(すなわち3波長)の値がわかれば、二次関数の各項の係数を算出することができ、二次関数を決定することができる。   As shown in FIG. 2, the relationship between the wavelength of light propagating through the optical fiber 6 and the change [dB] in propagation loss from the reference at each wavelength can be approximated by a quadratic function. Therefore, if the values of three points (that is, three wavelengths) on the quadratic function are known, the coefficient of each term of the quadratic function can be calculated, and the quadratic function can be determined.

減衰計算処理において、損失計算部15は、まず、半導体レーザ光源1からの波長λ0の入射により光ファイバ6で生じるレイリー散乱光(波長λ0)の光強度の検出値と、半導体レーザ光源2からの波長λ1の入射により光ファイバ6で生じるレイリー散乱光(波長λ1)の光強度の検出値と、半導体レーザ光源3からの波長λ2の入射により光ファイバ6で生じるレイリー散乱光(波長λ2)の光強度の検出値とを光検出器10,11,12から取得し、各波長λ0,λ1,λ2における光ファイバ6の減衰の基準からの変化値を計算する。   In the attenuation calculation process, the loss calculation unit 15 first detects the detected value of the light intensity of the Rayleigh scattered light (wavelength λ 0) generated in the optical fiber 6 by the incidence of the wavelength λ 0 from the semiconductor laser light source 1, and the signal from the semiconductor laser light source 2. Light intensity detection value of Rayleigh scattered light (wavelength λ1) generated in the optical fiber 6 by the incidence of the wavelength λ1 and light of Rayleigh scattered light (wavelength λ2) generated in the optical fiber 6 by the incidence of the wavelength λ2 from the semiconductor laser light source 3 Intensity detection values are obtained from the photodetectors 10, 11, and 12, and the change values from the reference of attenuation of the optical fiber 6 at the wavelengths λ0, λ1, and λ2 are calculated.

続いて、減衰の変化値から伝搬損失の変化[dB]を算出し、各波長における基準からの伝搬損失の変化[dB]を表す二次関数の各項の係数を算出して二次関数を決定する。続いて、決定された二次関数を用いて、波長λast,λstの伝搬損失の変化[dB]を計算することにより推定し、その計算(推定)結果から減衰の変化値の真値を計算して温度計算部14に送信する。   Subsequently, the propagation loss change [dB] is calculated from the attenuation change value, the coefficient of each term of the quadratic function representing the propagation loss change [dB] from the reference at each wavelength is calculated, and the quadratic function is calculated. decide. Subsequently, using the determined quadratic function, the propagation loss change [dB] of the wavelengths λast and λst is estimated, and the true value of the attenuation change value is calculated from the calculation (estimation) result. To the temperature calculation unit 14.

なお、波長λ1,λ2は、光ファイバ6で伝搬される光の波長と伝搬損失との関係が、二次関数に近似できる範囲に設定される。言い換えると、波長λ1,λ2は、各波長における基準からの伝搬損失の変化[dB]の関係が急変する点(二次関数で表されない点、曲率が急激に変化する点、など)を含まない範囲であって、波長λ0を含む範囲に設定される。   The wavelengths λ1 and λ2 are set in a range in which the relationship between the wavelength of light propagated through the optical fiber 6 and the propagation loss can be approximated by a quadratic function. In other words, the wavelengths λ1 and λ2 do not include points at which the relationship of the propagation loss change [dB] from the reference at each wavelength changes suddenly (a point not represented by a quadratic function, a point at which the curvature changes abruptly, etc.). The range is set to include the wavelength λ0.

例えば、温度測定用の光ファイバ6が石英ガラス(SiO2)で形成された場合には、波長λ0を780nmとした場合、波長λastが760nm、波長λstが810nmとなる。このとき、波長λ1,λ2を760〜810nmの範囲に設定すると、各波長における基準からの伝搬損失の変化[dB]の関係が二次関数で表される範囲となる。また、例えば、波長λ1,λ2を650〜920nmといった範囲で設定してもよい。しかし、波長945nm付近は光ファイバに含まれる水に起因する吸収波長となり、また、波長630nm付近はケイ素と酸素の結合に起因する吸収波長となる場合が多く、各波長における基準からの伝搬損失の変化[dB]の関係が二次関数で表されない点(急変する点)になるため、これらの波長を範囲に含まないように波長λ1,λ2を設定する。   For example, when the temperature measuring optical fiber 6 is formed of quartz glass (SiO 2), when the wavelength λ 0 is 780 nm, the wavelength λast is 760 nm and the wavelength λst is 810 nm. At this time, if the wavelengths λ1 and λ2 are set in the range of 760 to 810 nm, the relationship of the propagation loss change [dB] from the reference at each wavelength becomes a range represented by a quadratic function. For example, the wavelengths λ1 and λ2 may be set in a range of 650 to 920 nm. However, the wavelength near 945 nm is an absorption wavelength due to water contained in the optical fiber, and the wavelength near 630 nm is often an absorption wavelength due to the bond between silicon and oxygen. Since the relationship of the change [dB] is a point that is not represented by a quadratic function (a point that changes suddenly), the wavelengths λ1 and λ2 are set so that these wavelengths are not included in the range.

なお、発明者は、特にこれらの吸収波長近傍では減衰の経時変化が大きく、これらの波長付近では、光ファイバ6を伝搬する光の波長と、各波長における基準からの伝搬損失の変化[dB]との関係が二次関数によく近似できるという知見を有している。   In addition, the inventor has a large attenuation change with time especially in the vicinity of these absorption wavelengths, and in the vicinity of these wavelengths, the wavelength of light propagating through the optical fiber 6 and the change in propagation loss from the reference at each wavelength [dB]. Has a knowledge that the relation to can be approximated to a quadratic function well.

温度計算処理では、光検出器8,9からの検出結果に基づいて光ファイバ6の温度を計算する。すなわち、光ファイバ6の一端に入射された波長λ0の光パルスにより生じるラマン散乱光のアンチストークス光及びストークス光に温度依存性があり、また、アンチストークス光とストークス光とで温度感受性が異なることを利用し、予め求めておいたアンチストークス光及びストークス光の光強度や、それらの差と光ファイバ6の温度との関係に基づいて、光ファイバ6の温度を算出する。また、温度計算処理では、光ファイバ6の一端に光パルスを入射してからラマン散乱光が戻ってくるまでの時間から、そのラマン散乱光が生じた場所(光ファイバ6上における位置)を特定することにより、光ファイバ6に沿った温度分布を測定する。   In the temperature calculation process, the temperature of the optical fiber 6 is calculated based on the detection results from the photodetectors 8 and 9. That is, the anti-Stokes light and the Stokes light of the Raman scattered light generated by the light pulse having the wavelength λ0 incident on one end of the optical fiber 6 are temperature dependent, and the temperature sensitivity is different between the anti-Stokes light and the Stokes light. Is used to calculate the temperature of the optical fiber 6 based on the light intensity of anti-Stokes light and Stokes light obtained in advance and the relationship between the difference between them and the temperature of the optical fiber 6. Further, in the temperature calculation process, the location (position on the optical fiber 6) where the Raman scattered light is generated is determined from the time from when the light pulse is incident on one end of the optical fiber 6 until the Raman scattered light returns. Thus, the temperature distribution along the optical fiber 6 is measured.

温度補正処理は、損失計算部15の減衰の変化値の計算結果に基づいて光ファイバ6の温度の計算結果を補正する処理であり、下記(式1)に基づいて、温度計算処理に組み込まれて行われる。   The temperature correction process is a process for correcting the calculation result of the temperature of the optical fiber 6 based on the calculation result of the attenuation change value of the loss calculation unit 15, and is incorporated into the temperature calculation process based on the following (Equation 1). Done.

Figure 0006484125
Figure 0006484125

なお、上記式1において、アンチストークス光及びストークス光の減衰の変化値は、減衰計算処理で得られた真値を用いる。   In the above equation 1, the true value obtained by the attenuation calculation process is used as the change value of the attenuation of the anti-Stokes light and the Stokes light.

温度測定用の光ファイバ6の温度はアンチストークス光及びストークス光の光強度の比で決定されており、上記(式1)のように、アンチストークス光強度をアンチストークス光波長の減衰の変化値で除すことで、光ファイバ6の経時的な減衰の変化でアンチストークス光の検出値が減少した分を補正することができ、減衰の変化が無い状態と同等のアンチストークス光強度として計算することができる。また、ストークス光強度についても同様であり、ストークス光強度をストークス光波長の減衰の変化値で除すことで光ファイバ6の径時的な減衰の変化でストークス光の検出値が減少した分を補正することができ、減衰の変化が無い状態と同等のストークス光強度として計算することができる。   The temperature of the optical fiber 6 for temperature measurement is determined by the ratio of the light intensity of the anti-Stokes light and the Stokes light. As shown in the above (Equation 1), the anti-Stokes light intensity is changed by the attenuation of the anti-Stokes light wavelength The amount of decrease in the detected value of the anti-Stokes light due to the change in attenuation of the optical fiber 6 over time can be corrected, and the anti-Stokes light intensity equivalent to the state without the change in attenuation is calculated. be able to. The same applies to the Stokes light intensity. By dividing the Stokes light intensity by the change in attenuation of the Stokes light wavelength, the amount of decrease in the detected value of Stokes light due to the change in attenuation over time of the optical fiber 6 can be obtained. It can be corrected and can be calculated as the Stokes light intensity equivalent to the state where there is no change in attenuation.

図3は、温度測定装置の処理を示すフローチャートである。   FIG. 3 is a flowchart showing processing of the temperature measuring device.

図3において、温度測定装置100は、まず、半導体レーザ光源1から波長λ0のパルス光を射出して温度測定用の光ファイバ6に入射し、光ファイバ6側からの波長λ0,λast,λstの光を光検出器8,9,10で受光して光強度を計測し(ステップS10)、光検出器8,9での波長λast,λstの光の計測値を温度計算部14に出力し(ステップS20)、光検出器10での波長λ0の光の計測値を損失計算部15に出力する(ステップS30)。   In FIG. 3, the temperature measuring apparatus 100 first emits pulsed light of wavelength λ0 from the semiconductor laser light source 1 and enters the optical fiber 6 for temperature measurement, and has wavelengths λ0, λast, and λst from the optical fiber 6 side. The light is received by the photodetectors 8, 9, and 10 to measure the light intensity (step S10), and the measured values of the light with the wavelengths λast and λst at the photodetectors 8 and 9 are output to the temperature calculator 14 ( In step S20), the measured value of the light having the wavelength λ0 in the photodetector 10 is output to the loss calculator 15 (step S30).

次に、半導体レーザ光源2から波長λ1のパルス光を射出して温度測定用の光ファイバ6に入射し、光ファイバ6側からの波長λ1の光を光検出器11で受光して光強度を計測し(ステップS40)、光検出器11での波長λ1の光の計測値を損失計算部15に出力し(ステップS50)、半導体レーザ光源3から波長λ2のパルス光を射出して温度測定用の光ファイバ6に入射し、光ファイバ6側からの波長λ2の光を光検出器12で受光して光強度を計測し(ステップS60)、光検出器12での波長λ2の光の計測値を損失計算部15に出力する(ステップS70)。   Next, pulsed light of wavelength λ1 is emitted from the semiconductor laser light source 2 and enters the optical fiber 6 for temperature measurement. The light of wavelength λ1 from the optical fiber 6 side is received by the photodetector 11 and the light intensity is increased. Measure (Step S40), output the measured value of the light of wavelength λ1 at the photodetector 11 to the loss calculator 15 (Step S50), emit the pulsed light of wavelength λ2 from the semiconductor laser light source 3, and measure the temperature The light having the wavelength λ2 from the optical fiber 6 side is received by the photodetector 12 and the light intensity is measured (step S60), and the measured value of the light having the wavelength λ2 by the photodetector 12 is measured. Is output to the loss calculator 15 (step S70).

続いて、損失計算部15で波長λast,λstの光の減衰の変化値(真値)を計算することにより推測し、計算結果を温度計算部14に出力する(ステップS80)。   Subsequently, the loss calculation unit 15 estimates by calculating a change value (true value) of the attenuation of the light of the wavelengths λast and λst, and outputs the calculation result to the temperature calculation unit 14 (step S80).

続いて、温度計算部14で、温度測定用の光ファイバ6の温度を計算しつつ補正し、温度の計算結果を外部の図示しない表示装置や他の装置に出力し(ステップS90)、処理を終了する。   Subsequently, the temperature calculation unit 14 corrects the temperature of the optical fiber 6 for temperature measurement while calculating the temperature, and outputs the temperature calculation result to an external display device (not shown) or another device (step S90). finish.

なお、本実施の形態では、温度測定装置の処理をステップS10〜S90の順に実行する場合を例示して説明したが、互いに影響しない処理ステップであれば同時に実行したり、処理の順番を入れ替えたりすることが可能である。例えば、ステップS40とステップS50の処理、或いは、ステップS60とステップS70の処理は同時に実行しても良い。また、光結合器4や光サーキュレータ5、光スプリッタ13等において他の波長の光への影響が無いのであれば、ステップS10〜S30の一連の処理と、ステップS40,S50の一連の処理と、ステップS60,S70の一連の処理との実行の順番を入れ替えることが可能であり、さらに、ステップS10〜S70の処理を同時に実行することも可能である。   In the present embodiment, the case where the processing of the temperature measuring device is executed in the order of steps S10 to S90 has been described as an example. However, if the processing steps do not affect each other, they are executed at the same time, or the processing order is changed. Is possible. For example, the processing of step S40 and step S50, or the processing of step S60 and step S70 may be executed simultaneously. Further, if there is no influence on the light of other wavelengths in the optical coupler 4, the optical circulator 5, the optical splitter 13, etc., a series of processes in steps S10 to S30, a series of processes in steps S40 and S50, The order of execution of the series of processes in steps S60 and S70 can be changed, and the processes in steps S10 to S70 can be performed simultaneously.

以上のように構成した本実施の形態の効果を説明する。   The effect of the present embodiment configured as described above will be described.

ラマン散乱光を用いた温度計測方式は、光ファイバにパルス状の単一波長光を入射した際に光ファイバ内で生じるラマン散乱光の2成分(アンチストークス光、ストークス光)の温度感受性が異なることを利用して温度測定を行うものである。したがって、例えば、光ファイバの劣化などのような温度変化以外の要因でラマン散乱光の検出強度が変化してしまうと、温度測定の精度が低下してしまうという問題がある。   The temperature measurement method using Raman scattered light differs in temperature sensitivity of two components (anti-Stokes light and Stokes light) of Raman scattered light generated in the optical fiber when pulsed single wavelength light is incident on the optical fiber. Is used to measure temperature. Therefore, for example, if the detection intensity of Raman scattered light changes due to factors other than temperature change such as degradation of the optical fiber, there is a problem that the accuracy of temperature measurement is lowered.

従来技術においては、ラマン散乱におけるアンチストークス光及びストークス光に相当する波長の光を射出可能な半導体レーザ光源を用いて伝送損失を測定するものもある。   In some conventional techniques, transmission loss is measured using a semiconductor laser light source capable of emitting light having a wavelength corresponding to anti-Stokes light and Stokes light in Raman scattering.

しかしなら、アンチストークス光やストークス光の波長は、半導体レーザ光源の発光波長と温度測定用の光ファイバの主材料との関係で決定されるものであり、光ファイバでの伝搬損失などを考慮して予め選定されるため、アンチストークス光及びストークス光と同一波長であって、かつ、十分な温度安定性やレーザ出力強度を持つレーザ光源については入手困難であることが予想される。   However, the wavelength of anti-Stokes light or Stokes light is determined by the relationship between the emission wavelength of the semiconductor laser light source and the main material of the optical fiber for temperature measurement, taking into account the propagation loss in the optical fiber. Therefore, it is expected that it is difficult to obtain a laser light source having the same wavelength as the anti-Stokes light and the Stokes light, and having sufficient temperature stability and laser output intensity.

これに対して本実施の形態においては、光ファイバ6に波長λ0の光パルスを入射し、光ファイバ6に波長λ0と異なる波長λ1,λ2の光パルスを入射し、波長λ0,λ1,λ2の光パルスの入射によって光ファイバ6内にそれぞれ生じる波長λ0,λ1,λ2の散乱光の光強度に基づいて、二次関数の各項の係数を決定し、二次関数に基づいて、波長λ0の光パルスを入射した場合に光ファイバ6内に生じるラマン散乱のアンチストークス光及びストークス光の各波長λast,λstにおける、予め定めた基準からの減衰の変化値を計算し、波長λ0の光パルスの入射によって光ファイバ6内に生じるラマン散乱のアンチストークス光及びストークス光の光強度に基づいて、光ファイバ6の温度を計算し、減衰の変化値の計算結果に基づいて、光ファイバ6の温度の計算結果を補正するように構成したので、使用するレーザ光源に求められる波長条件を緩和しつつ、測定精度を向上することができる。   On the other hand, in the present embodiment, an optical pulse having a wavelength λ0 is incident on the optical fiber 6, and optical pulses having wavelengths λ1 and λ2 different from the wavelength λ0 are incident on the optical fiber 6, and the wavelengths λ0, λ1, and λ2 are incident. The coefficient of each term of the quadratic function is determined based on the light intensity of the scattered light having the wavelengths λ0, λ1, and λ2 generated in the optical fiber 6 by the incidence of the optical pulse. A change in attenuation from a predetermined reference at each wavelength λast, λst of Raman scattering anti-Stokes light and Stokes light generated in the optical fiber 6 when an optical pulse is incident is calculated, and the optical pulse of wavelength λ0 is calculated. The temperature of the optical fiber 6 is calculated based on the anti-Stokes light of Raman scattering generated in the optical fiber 6 upon incidence and the light intensity of the Stokes light, and the light is calculated based on the calculation result of the attenuation change value. Since the calculation result of the temperature of the fiber 6 is corrected, the measurement accuracy can be improved while relaxing the wavelength condition required for the laser light source to be used.

すなわち、入手が困難な半導体レーザ光源を用いる必要が無く、入手がより容易な、或いは安価な光源を用いることができるため、温度測定装置の価格を低減することができる。   That is, it is not necessary to use a semiconductor laser light source that is difficult to obtain, and a light source that is easier to obtain or cheap can be used, so that the price of the temperature measuring device can be reduced.

なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。すなわち、上記した実施の形態は本願発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。   In addition, this invention is not limited to above-described embodiment, Various modifications are included. That is, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.

例えば、本実施の形態では、波長λ1,λ2を上記のように設定したが、光ファイバを伝搬する光の波長と、各波長における基準からの伝搬損失の変化[dB]との関係が二次関数に近似できる範囲に設定されれば良く、波長λ1,λ2を、アンチストークス光の波長λastとストークス光の波長λstの間の範囲に設定しても良い。この場合においても、本実施の形態と同様の効果を得ることができる。   For example, in this embodiment, the wavelengths λ1 and λ2 are set as described above, but the relationship between the wavelength of light propagating through the optical fiber and the change in propagation loss [dB] from the reference at each wavelength is secondary. The wavelength λ1 and λ2 may be set to a range between the wavelength λast of the anti-Stokes light and the wavelength λst of the Stokes light. Even in this case, the same effect as the present embodiment can be obtained.

また、本実施の形態では、レーザ光源として半導体レーザ光源を用いる場合を例示して示したがこれに限られず、半導体以外のレーザ媒質を用いたレーザ光源も用いても良い。   In this embodiment, the case where a semiconductor laser light source is used as an example of the laser light source has been described. However, the present invention is not limited to this, and a laser light source using a laser medium other than a semiconductor may be used.

また、波長λ1,λ2は、半導体レーザ光源1から光ファイバ6に入射される波長λ0の光パルスによって光ファイバ6内に生じるラマン散乱のアンチストークス光の波長(λast)及びストークス光の波長(λst)と少なくとも一方が異なるように設定しても良い。   The wavelengths λ1 and λ2 are the Raman scattering anti-Stokes light wavelength (λast) and the Stokes light wavelength (λst) generated in the optical fiber 6 by the optical pulse of wavelength λ0 incident on the optical fiber 6 from the semiconductor laser light source 1. ) And at least one of them may be set differently.

1 半導体レーザ光源(第1の光源)
2 半導体レーザ光源(第2の光源)
3 半導体レーザ光源(第3の光源)
4 光結合器
5 光サーキュレータ
6 温度測定用の光ファイバ
7 制御処理部
8〜12 光検出器
13 スプリッタ
14 温度計算部
15 損失計算部
16a〜16c,17a〜17e,18,19 光ファイバ
100 温度測定装置
1 Semiconductor laser light source (first light source)
2 Semiconductor laser light source (second light source)
3 Semiconductor laser light source (third light source)
4 Optical coupler 5 Optical circulator 6 Temperature measurement optical fiber 7 Control processing unit 8-12 Photo detector 13 Splitter 14 Temperature calculation unit 15 Loss calculation unit 16a-16c, 17a-17e, 18, 19 Optical fiber 100 Temperature measurement apparatus

Claims (6)

光ファイバに第1の波長の光パルスを入射する第1の光源と、
前記光ファイバに前記第1の波長と異なる第2及び第3の波長の光パルスを入射する第2及び第3の光源と、
前記第1、第2、及び第3の光源からの光パルスの入射によって前記光ファイバ内にそれぞれ生じる前記第1、第2、及び3の波長の散乱光の光強度に基づいて、二次関数の各項の係数を決定し、前記二次関数に基づいて、前記第1の波長の光パルスを入射した場合に前記光ファイバ内に生じるラマン散乱のアンチストークス光及びストークス光に相当する各波長における、予め定めた基準からの減衰の変化値を計算する損失計算部と、
前記第1の光源からの光パルスの入射によって前記光ファイバ内に生じるラマン散乱のアンチストークス光及びストークス光の光強度に基づいて、前記光ファイバの温度を計算し、前記減衰の変化値の計算結果に基づいて、前記光ファイバの温度の計算結果を補正する温度計算部と
を備えたことを特徴とする温度測定装置。
A first light source for injecting a light pulse of a first wavelength into the optical fiber;
Second and third light sources for injecting optical pulses of second and third wavelengths different from the first wavelength into the optical fiber;
Based on the light intensity of the scattered light of the first, second, and third wavelengths generated in the optical fiber by the incidence of light pulses from the first, second, and third light sources, respectively, a quadratic function And a wavelength corresponding to anti-Stokes light and Stokes light of Raman scattering generated in the optical fiber when an optical pulse of the first wavelength is incident on the basis of the quadratic function. A loss calculator for calculating a change in attenuation from a predetermined reference in
The temperature of the optical fiber is calculated based on the anti-Stokes light of Raman scattering and the light intensity of the Stokes light generated in the optical fiber by the incidence of the light pulse from the first light source, and the change value of the attenuation is calculated. A temperature measurement device comprising: a temperature calculation unit that corrects a calculation result of the temperature of the optical fiber based on the result.
光ファイバに第1の波長の光パルスを入射する第1の光源と、
前記第1の波長の光パルスの入射によって前記光ファイバ内に生じるラマン散乱のアンチストークス光及びストークス光の各波長と少なくとも一方が異なる第2及び第3の波長の光パルスを前記光ファイバに入射する第2及び第3の光源と、
前記第1、第2、及び第3の光源からの光パルスの入射によって前記光ファイバ内にそれぞれ生じる前記第1、第2、及び3の波長の散乱光の光強度に基づいて、前記光ファイバの前記アンチストークス光及びストークス光の各波長における、予め定めた基準からの減衰の変化値を計算する損失計算部と、
前記第1の光源からの光パルスの入射によって前記光ファイバ内に生じるラマン散乱のアンチストークス光及びストークス光の光強度に基づいて、前記光ファイバの温度を計算し、前記減衰の変化値の計算結果に基づいて、前記光ファイバの温度の計算結果を補正する温度計算部とを備え、
前記損失計算部は、前記第1、第2、及び第3の光源からの光パルスの入射によって前記光ファイバ内にそれぞれ生じる前記第1、第2、及び3の波長の散乱光の光強度に基づいて、二次関数の各項の係数を決定し、前記二次関数に基づいて、前記光ファイバの前記アンチストークス光及びストークス光の各波長における、予め定めた基準からの前記減衰の変化値を計算することを特徴とする温度測定装置。
A first light source for injecting a light pulse of a first wavelength into the optical fiber;
Second and third wavelength light pulses that are different from at least one of the wavelengths of anti-Stokes light and Stokes light of Raman scattering generated in the optical fiber upon incidence of the light pulse of the first wavelength are incident on the optical fiber. Second and third light sources to
The optical fiber based on the intensity of the scattered light having the first, second, and third wavelengths generated in the optical fiber by the incidence of light pulses from the first, second, and third light sources, respectively. A loss calculation unit that calculates a change in attenuation from a predetermined reference at each wavelength of the anti-Stokes light and the Stokes light;
The temperature of the optical fiber is calculated based on the anti-Stokes light of Raman scattering and the light intensity of the Stokes light generated in the optical fiber by the incidence of the light pulse from the first light source, and the change value of the attenuation is calculated. A temperature calculation unit for correcting the calculation result of the temperature of the optical fiber based on the result,
The loss calculation unit adjusts the light intensity of the scattered light having the first, second, and third wavelengths generated in the optical fiber by incidence of light pulses from the first, second, and third light sources, respectively. Based on the quadratic function, the coefficient of each term of the quadratic function is determined, and based on the quadratic function, the attenuation change value from the predetermined reference at each wavelength of the anti-Stokes light and the Stokes light of the optical fiber. A temperature measuring device characterized by calculating
請求項記載の温度測定装置において、
前記第2及び第3の波長は、前記光ファイバで伝搬される光の波長と伝搬損失との関係が前記二次関数に近似できる範囲であって、前記第1の波長を含む範囲に設定されることを特徴とする温度測定装置。
The temperature measuring device according to claim 2 , wherein
The second and third wavelengths are set in a range in which the relationship between the wavelength of light propagating through the optical fiber and the propagation loss can be approximated to the quadratic function, and includes the first wavelength. A temperature measuring device.
請求項記載の温度測定装置において、
前記第2及び第3の波長は、前記光ファイバで伝搬される光の波長と伝搬損失との関係が急変する点を含まない範囲であって、前記第1の波長を含む範囲に設定されることを特徴とする温度測定装置。
The temperature measuring device according to claim 2 , wherein
The second and third wavelengths are set in a range that does not include a point where the relationship between the wavelength of light propagated through the optical fiber and the propagation loss changes suddenly, and includes the first wavelength. A temperature measuring device characterized by that.
請求項1記載の温度測定装置において、
前記第2及び第3の波長は、前記アンチストークス光の波長とストークス光の波長の間の範囲に設定されることを特徴とする温度測定装置。
In the temperature measuring device according to claim 1 Symbol placement,
The temperature measuring device, wherein the second and third wavelengths are set in a range between the wavelength of the anti-Stokes light and the wavelength of the Stokes light.
光ファイバに第1の波長の光パルスを入射する工程と、
前記光ファイバに前記第1の波長と異なる第2及び第3の波長の光パルスを入射する工程と、
前記第1、第2、及び第3の波長の光パルスの入射によって前記光ファイバ内にそれぞれ生じる前記第1、第2、及び3の波長の散乱光の光強度に基づいて、二次関数の各項の係数を決定し、前記二次関数に基づいて、前記第1の波長の光パルスを入射した場合に前記光ファイバ内に生じるラマン散乱のアンチストークス光及びストークス光の各波長における、予め定めた基準からの減衰の変化値を計算する工程と、
前記第1の波長の光パルスの入射によって前記光ファイバ内に生じるラマン散乱の前記アンチストークス光及びストークス光の光強度に基づいて、前記光ファイバの温度を計算し、前記減衰の変化値の計算結果に基づいて、前記光ファイバの温度の計算結果を補正する工程と
を有することを特徴とする温度測定方法。
Injecting an optical pulse of a first wavelength into the optical fiber;
Injecting optical pulses of second and third wavelengths different from the first wavelength into the optical fiber;
Based on the light intensity of the scattered light of the first, second, and third wavelengths generated in the optical fiber by the incidence of the light pulses of the first, second, and third wavelengths, respectively, a quadratic function The coefficient of each term is determined, and based on the quadratic function, the Raman scattering anti-Stokes light generated in the optical fiber when the light pulse of the first wavelength is incident and the Stokes light at each wavelength in advance. Calculating a change in attenuation from a set standard;
The temperature of the optical fiber is calculated based on the light intensity of the anti-Stokes light and the Stokes light of Raman scattering generated in the optical fiber by the incidence of the optical pulse of the first wavelength, and the change value of the attenuation is calculated. And a step of correcting a calculation result of the temperature of the optical fiber based on the result.
JP2015127268A 2015-06-25 2015-06-25 Temperature measuring apparatus and temperature measuring method Active JP6484125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015127268A JP6484125B2 (en) 2015-06-25 2015-06-25 Temperature measuring apparatus and temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015127268A JP6484125B2 (en) 2015-06-25 2015-06-25 Temperature measuring apparatus and temperature measuring method

Publications (3)

Publication Number Publication Date
JP2017009509A JP2017009509A (en) 2017-01-12
JP2017009509A5 JP2017009509A5 (en) 2018-03-15
JP6484125B2 true JP6484125B2 (en) 2019-03-13

Family

ID=57763688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015127268A Active JP6484125B2 (en) 2015-06-25 2015-06-25 Temperature measuring apparatus and temperature measuring method

Country Status (1)

Country Link
JP (1) JP6484125B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033573B (en) * 2020-09-10 2022-04-08 长江师范学院 Dual-wavelength temperature measurement method based on long-period fiber grating

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315026A (en) * 1991-04-12 1992-11-06 Nippon Telegr & Teleph Corp <Ntt> Method for estimating loss wavelength characteristic of optical fiber
JP2012127779A (en) * 2010-12-15 2012-07-05 Yokogawa Electric Corp Optical fiber distribution type measuring apparatus

Also Published As

Publication number Publication date
JP2017009509A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
US7585107B2 (en) Corrected DTS measurements based on Raman-Stokes signals
TWI384209B (en) Temperature sensor, and temperature measurement method
CA2692804C (en) Dual source auto-correction in distributed temperature systems
EP2966426B1 (en) Optical fiber temperature distribution measuring device
WO2008035784A1 (en) Optical fiber temperature distribution measuring apparatus, optical fiber temperature distribution measuring method and optical fiber temperature distribution measuring system
JP5743200B2 (en) Optical fiber temperature distribution measuring device
US20160258808A1 (en) Distributed optical sensing devices and methods performing a measurement
CN103278185A (en) Cavity ring-down fiber grating sensing demodulating device based on calibrated fiber grating
JP2008249515A (en) Temperature distribution measuring system and temperature distribution measuring method
JP6561747B2 (en) Temperature measuring device, temperature measuring method and temperature measuring program
JP6018429B2 (en) Optical fiber analyzing apparatus and optical fiber analyzing method
JP6484125B2 (en) Temperature measuring apparatus and temperature measuring method
JP2007240294A (en) Apparatus for measuring optical fiber distortion
JP6791374B2 (en) Temperature measuring device, temperature measuring method and temperature measuring program
JP4944005B2 (en) Temperature sensor and temperature measurement method
JP2006023260A (en) Method and instrument for measuring temperature distribution in optical fiber
JP4910867B2 (en) Optical fiber temperature sensor device
JP7192626B2 (en) Temperature measuring device, temperature measuring method and temperature measuring program
JP6314678B2 (en) Optical fiber temperature distribution measuring device
KR101559151B1 (en) distributed temperature sensor based on a V-grooved single mode optical fiber
JP2011209225A (en) Device for measuring temperature distribution having temperature distribution calibrating function and method for calibrating temperature distribution
JP2009276287A (en) Raman gain efficiency measurement method and device
JP2019052925A (en) Dryness measuring device and dryness measurement method
JPH04318432A (en) Distribution temperature measuring method by optical fiber sensor
JP2021162478A (en) Temperature measuring device, temperature measuring method, and temperature measuring program

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190215

R150 Certificate of patent or registration of utility model

Ref document number: 6484125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150