JPS61270632A - Optical fiber type measuring instrument for temperature distribution - Google Patents

Optical fiber type measuring instrument for temperature distribution

Info

Publication number
JPS61270632A
JPS61270632A JP60111359A JP11135985A JPS61270632A JP S61270632 A JPS61270632 A JP S61270632A JP 60111359 A JP60111359 A JP 60111359A JP 11135985 A JP11135985 A JP 11135985A JP S61270632 A JPS61270632 A JP S61270632A
Authority
JP
Japan
Prior art keywords
optical fiber
light
temperature
detection system
stokes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60111359A
Other languages
Japanese (ja)
Other versions
JPH0364812B2 (en
Inventor
Hiroshi Kawakami
川神 裕志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP60111359A priority Critical patent/JPS61270632A/en
Publication of JPS61270632A publication Critical patent/JPS61270632A/en
Publication of JPH0364812B2 publication Critical patent/JPH0364812B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres

Abstract

PURPOSE:To measure the lengthwise temperature distribution of an optical fiber continuously and precisely by utilizing a temperature function of the intensity ratio of Stokes light and anti-Stokes light based upon the Raman scatter of the optical fiber itself. CONSTITUTION:Rayleigh scattered light and Raman scattered light generated in the optical fiber 7 return partially in the optical fiber 7 as back scattered light and are projected from an incidence end, and they are passed through a condenser lens 6, separated by a directional coupler 5, and sent to a detection system 13. The detection system 13 consists of a guide-in fiber 14, a half-mirror 15, optical filters 16 and 17, photodetecting elements 18 and 19, and an amplifier 21. Then, the intensity values of the Stokes light and anti-Stokes light inputted to a signal processing circuit 22 through the detection system 13 is corrected in consideration of wavelength characteristics of the loss of the optical fiber 7, transmission characteristics of the filters 16 and 17, gains of the photodetecting elements 18 and 19, etc., to obtain electric outputs. The ratio of them is calculated to find the temperature of the fiber 7 at a point (x) and the continuous lengthwise temperature distribution of the fiber 7 is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野1 この発明はラマン散乱によるストークス光と反ストーク
ス光どの強度比が温度の関数であることを利用した温度
計測装置であって、光ファイバの長さ方向の温度分布を
連続的に月つ高精反に計測することができる光ファイバ
形温度分布31測装置に関する。
Detailed Description of the Invention [Industrial Application Field 1] This invention is a temperature measuring device that utilizes the fact that the intensity ratio of Stokes light and anti-Stokes light due to Raman scattering is a function of temperature. The present invention relates to an optical fiber type temperature distribution 31 measuring device that can continuously measure the temperature distribution in the transverse direction with high accuracy every month.

[従来の技術] 従来の光ファイバを用いた温度計測装置を第5図に示す
[Prior Art] FIG. 5 shows a temperature measuring device using a conventional optical fiber.

パルス発生器1のパルス信号はパルスディレィ回路2を
経て光源駆動装置3に入力され、パルス信号に従う光源
駆動装置3の駆動により、パルス光が光源4から出射さ
れる。光源4より出射したパルス光は、方向性結合器5
、集光レンズ6を通って光ファイバ7に入射する。この
入射光は光ファイバ7でレイリー散乱を起こし、その後
方散乱光は光ファイバ7を逆行し、集光レンズ6を通り
方向性結合器5により分離されて受光素子8にて光電変
換され、更に増幅器9で増幅されて信号処理回路10に
入力される。また、信号処理回路10にはパルス発生器
1のパルス信号が入力されると共に信号処理回路10に
はその結果を表示する表示器11が接続されている。
A pulse signal from the pulse generator 1 is inputted to a light source driving device 3 via a pulse delay circuit 2, and pulsed light is emitted from a light source 4 by driving the light source driving device 3 in accordance with the pulse signal. The pulsed light emitted from the light source 4 is sent to the directional coupler 5
, passes through the condenser lens 6 and enters the optical fiber 7. This incident light causes Rayleigh scattering in the optical fiber 7, and the back scattered light travels backward through the optical fiber 7, passes through the condensing lens 6, is separated by the directional coupler 5, is photoelectrically converted by the light receiving element 8, and is further The signal is amplified by an amplifier 9 and input to a signal processing circuit 10 . Further, a pulse signal from the pulse generator 1 is input to the signal processing circuit 10, and a display 11 for displaying the result is connected to the signal processing circuit 10.

光ノア/イバ7の軸方向に沿った点a、h、c。Points a, h, and c along the axial direction of the optical noah/river 7.

・・・には温度変換器12が設(jられている。M瓜変
換器12は光)?イバ7にマイクロベントを与えるもの
ぐ、m1i−nどともに光ファイバ7のマイク[1ベン
ド損失を増加させる。従って、信号処理回路10に入力
される光ファイバ7からの後方散乱光の強度信号には、
第6図に示すJ、うに、温度変換器12が設置された各
点a 、 b 、 cに対応してマイクロベント損失に
よる減少が現われる。この後方散乱光強度の減少量から
、第7図に示すように各点a、b、cの温度が求まるこ
とになる。
... is equipped with a temperature converter 12. The temperature converter 12 is an optical one. Both m1i-n and m1i-n increase the microphone bend loss of the optical fiber 7. Therefore, the intensity signal of the backscattered light from the optical fiber 7 input to the signal processing circuit 10 is as follows:
At J shown in FIG. 6, a decrease due to microvent loss appears corresponding to each point a, b, and c where the temperature converter 12 is installed. From the amount of decrease in the backscattered light intensity, the temperatures at each point a, b, and c can be determined as shown in FIG.

まlζ、光源4から出射したパルス光が受光素子8に到
達づるまでの時間1rは、tr= 2 R(X ) /
c(ここでで(×)は光ファイバ7の入射端からその後
1j散乱を生じた地点までの光フIイバ7の長さ、Cは
光フアイバ7中での光速度である)と表わされるので、
信号処理回路10でパルスf@ ;l器1からのパルス
信号と受光素子8からの検出信号どの時間差から時間1
rをh1測することにJ、す、後方散乱光を牛じた位置
を標定Jることができる。
The time 1r required for the pulsed light emitted from the light source 4 to reach the light receiving element 8 is tr= 2 R(X ) /
c (where (x) is the length of the optical fiber 7 from the input end of the optical fiber 7 to the point where 1j scattering occurs, and C is the speed of light in the optical fiber 7). So,
In the signal processing circuit 10, the pulse signal from the device 1 and the detection signal from the light-receiving element 8 are determined from which time difference to the time 1.
By measuring r by h1, it is possible to locate the position based on the backscattered light.

[発明が解決l)ようとする問題点1 ところが温度変換器12を用い後方散乱光強度の減少量
から光ファイバ7に沿った多点での調度計測を行なう1
配の方法では、温度変換器12を通過する毎に光強爪が
減衰するため、温度計測点の数が制限される。また、温
度変化に対する温度変換器12の損失を小さりLノで多
数点の温度h1測を行なおうとすると、測定温度精度が
悪化してしまうという難点があった。
[Problem to be Solved by the Invention 1] However, the temperature is measured at multiple points along the optical fiber 7 from the amount of decrease in the backscattered light intensity using the temperature converter 12.
In the second method, the number of temperature measurement points is limited because the light intensity is attenuated each time it passes through the temperature converter 12. Furthermore, if an attempt is made to measure the temperature h1 at multiple points with L to reduce the loss of the temperature converter 12 due to temperature changes, there is a problem in that the accuracy of the measured temperature deteriorates.

[発明の目的] この発明は以−1の従来技術の問題点を解消すべく創案
されたものであり、この発明は光ファイバの良さ方向の
温度分布を連続的にしかも精度よくg1測することがで
きる光ファイバ形温度分布泪測装置を提供することを目
的とする。
[Object of the Invention] This invention was devised to solve the problem of the prior art described in -1 below, and the present invention is to continuously and accurately measure g1 of the temperature distribution in the longitudinal direction of an optical fiber. The purpose of the present invention is to provide an optical fiber type temperature distribution measurement device that can measure temperature distribution.

[発明の概要1 この発明は、測定温度領域に配設される光ファイバと、
光ファムにその入射端よりパルス光を入射するための光
源と、光ファイバの入射端から出射される一1記パルス
尤の後方散乱光のうらラマン散乱によるスト−クス光お
よび反ストークス光の強度を検出する検出系と、検出系
が検出したストークス光と反ストークス光との強度比J
ζり光ファイバの温石を求めるとバに、上記光源からパ
ルス光が出射され(から検出系がラマン散乱光を検出す
るまでの時間より、光ファイバの温度測定位置を求める
信号処理回路とを備えてなるものである。
[Summary of the Invention 1 This invention provides an optical fiber disposed in a measurement temperature region;
A light source for inputting pulsed light into an optical fiber from its input end, and the intensity of Stokes light and anti-Stokes light due to Raman scattering of the backscattered light of the 11th pulse emitted from the input end of the optical fiber. and the intensity ratio J of the Stokes light and anti-Stokes light detected by the detection system.
When determining the temperature of the optical fiber, the pulsed light is emitted from the light source and a signal processing circuit is provided to determine the temperature measurement position of the optical fiber from the time from when the detection system detects the Raman scattered light. That's what happens.

この発明は、後方散乱光のラマン散乱(誘導ラマン散乱
を含む)によるスト−クス光と反ストークス光どの強度
比が温度の関数であることを利用【ノて温度S1測を行
なうことを特徴とする。
This invention is characterized by performing temperature S1 measurement by utilizing the fact that the intensity ratio of Stokes light and anti-Stokes light due to Raman scattering (including stimulated Raman scattering) of backscattered light is a function of temperature. do.

[実施例1 以下に、この発明の実施例を添付図面に従って詳述する
[Embodiment 1] Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図において、7は光ファイバであり、光ファイバ7
は測定しようとする温度領域に配設される。光)7フイ
バ7の入射端側には集光レンズ6を介して方向性結合器
5が設けられると共に、方向性結合器5の一方のボート
には光源4が、他方のポートには後方散乱光の検出系1
3が設けられている。光源4には光源駆動装@3、パル
スディ1ノイ回路2、パルス発生器1が接続されている
。パルス発生器1から出力された信号はそのまま信号処
理回路22に入力される一方、パルスディレィ回路2で
所定時間だけ遅らされたパルス信号が光源駆動装置3に
入力される。光源駆動装置3はこの入力されたパルス信
号にしたがって光源4を駆動し、光源4からはパルス光
が出射される。光源4からのパルス光は方向性結合器5
、集光レンズ6を通って光ファイバ7に入射される。光
ファイバ7に入射されるパルス光のエネルギーを106
W/C1112以上で1つ光ファイバ7に光損傷を生じ
ない程度に大きく覆ると、光ファイバ7ではレイリー散
乱の外に、ラマン散乱が生じストークス光および反スト
ークス光が発生する(第2図参照)。
In FIG. 1, 7 is an optical fiber, and the optical fiber 7
is placed in the temperature range to be measured. A directional coupler 5 is provided on the incident end side of the optical fiber 7 through a condensing lens 6, and a light source 4 is provided in one port of the directional coupler 5, and a backscattering source 4 is provided in the other port of the directional coupler 5. Light detection system 1
3 is provided. The light source 4 is connected to a light source driver @3, a pulse dino circuit 2, and a pulse generator 1. The signal output from the pulse generator 1 is input as is to the signal processing circuit 22, while the pulse signal delayed by a predetermined time by the pulse delay circuit 2 is input to the light source driving device 3. The light source driving device 3 drives the light source 4 according to the input pulse signal, and the light source 4 emits pulsed light. The pulsed light from the light source 4 is passed through the directional coupler 5
, passes through the condenser lens 6 and enters the optical fiber 7. The energy of the pulsed light incident on the optical fiber 7 is 106
If the optical fiber 7 is covered with W/C1112 or more to an extent that does not cause optical damage, Raman scattering will occur in the optical fiber 7 in addition to Rayleigh scattering, and Stokes light and anti-Stokes light will be generated (see Figure 2). ).

今、入射パルス光の周波数をωo1光ファイバ7のコア
材質によって定まる物質固有の周波数をωfとするど、
ストークス光は入射パルス光により物質が基底状態から
励起状態に遷移する過程で−〇− 発り()、その周波数ωSはθ)S−ω0−ω[である
、、l−1ニアご、反ス1−−−クス光は励起状態にあ
る物質にパルス光が照口・1ε)れυ基底状態に遷移−
4ろ過程rli+;、その周波数(1) aはωa−ω
o 1ωtである。(なJi 、  般にはストークス
光、反スト−クス光どもにn次の光が発生16が、l 
ii+、では1次の光のみについて述べた。) 光−ツノ・でバフて・(1したしfり一敗乱尤およびラ
マン散乱光の一部は後方散乱光として光7)・イバ7を
戻り入射端から出射され、集光レンズ6を経てh向If
結合器5で分離されて検出糸133へと送らねる。検出
系13は、方向tIItI!1合器51こJ、り取り出
された後方散乱光を導く導入ツノ・イバ14と、導入−
ノア・イバ14から出射されノ、:光を25″)−Jる
ハーフミラ−15ど、ハーフミラ−15の透過側に69
【ノられ7.T光学−ノイルタ16、受光素子1Bおよ
び増幅j?li20と、ハーフミラ−15の反射側に設
()られた光学フィルタ17、受光素子19および増幅
器21どからイ蒙る。光学フrルタ16には周波数θ)
0−ωtの1次のストークス光のみを透過するものが使
用され、−h、光学フィルタ17には周波数θ)a+ω
[の1次の艮ス(−一りス光のみを透過覆るものが使用
される。従って、受光素118では光ファイバ7からの
後方散乱光のうち1次のス1〜−クス光の強度が検出さ
れ、受光素子1つでは1次の反ストークス光の強度が検
出される。受光素子18.19の出力は増幅器20゜2
1でぞれぞれ11幅された後、信号処理回路22に入力
される。なお、23は表示器(゛ある。
Now, let us assume that the frequency of the incident pulsed light is ωo1, and the unique frequency of the substance determined by the core material of the optical fiber 7 is ωf.
Stokes light is emitted during the transition of matter from the ground state to the excited state by the incident pulsed light (), and its frequency ωS is θ)S-ω0-ω[, , l-1 near and opposite. (1ε) When pulsed light illuminates a substance in an excited state, it transitions to the υ ground state.
4 filter process rli+;, its frequency (1) a is ωa-ω
o 1ωt. (In general, n-order light is generated in Stokes light and anti-Stokes light16, but l
In ii+, only the first-order light was described. ) The light is buffed with an antler (1 moment, then a part of the Raman scattered light is backscattered light as light 7), returns to the fiber 7, is emitted from the input end, and passes through the condenser lens 6. Afterwards h direction If
It is separated by the coupler 5 and cannot be sent to the detection thread 133. The detection system 13 detects the direction tIItI! 1 combiner 51, an introduction horn 14 that guides the extracted backscattered light, and an introduction
The light emitted from Noah Iba 14 is 25") - J half mirror 15, 69 on the transmission side of half mirror 15.
[Nore 7. T optics - Noirta 16, light receiving element 1B and amplification j? li 20, an optical filter 17 provided on the reflection side of the half mirror 15, a light receiving element 19, an amplifier 21, etc. The optical filter 16 has a frequency θ)
A filter that transmits only the first-order Stokes light of 0-ωt is used, -h, and the optical filter 17 has a frequency θ)a+ω
A device is used that transmits only the first order light (-1). Therefore, in the light receiving element 118, the intensity of the first order light (1 - -1) of the backscattered light from the optical fiber 7 is used. is detected, and one light receiving element detects the intensity of the first-order anti-Stokes light.The outputs of the light receiving elements 18 and 19 are sent to the amplifier 20°2.
After each signal is multiplied by 11 by 1, it is input to the signal processing circuit 22. In addition, 23 is a display device.

温度T(K)において基底状態にある物質の数に対す励
起状態にある物質の数の割合はexp(−hωr7′2
πkT)で表わされる。ここで、hはブランク定数、k
 i、Lボルツマン定数rある。従ってスI・−ウス光
の強度1sと反ストークス光の強痘Iaとの比率はIa
 /Is =exp  (−h tof /2πに丁)
となり、コアの物質が定まれば温度のみの関数となる。
At temperature T (K), the ratio of the number of substances in the excited state to the number of substances in the ground state is exp(-hωr7'2
πkT). Here, h is a blank constant, k
i, L Boltzmann's constant r. Therefore, the ratio of the intensity 1s of the S I -us light to the intensity Ia of the anti-Stokes light is Ia
/Is =exp (-h tof /2π to)
Once the core material is determined, it becomes a function only of temperature.

ぞこで、光源4から出射(−7、光−ノアイバフの入t
A端から距離×の地点で発生し、fir(X)時間後に
受光素子18.19にぞれぞれ入射し、更に増幅i!!
i20.21で増幅されてず8月処理回路22に入力さ
れたス1〜−クス光と反スト−クス光の強度を、光フッ
・−イバ7の損失の波長特性、光学フィルタ16.17
の透過特性、受光素子18.19のゲインなどを4慮し
て補正を加えて電気出力ES。
At this point, light is emitted from light source 4 (-7, light - Noa buff input t
It is generated at a point distance x from the A end, enters the light receiving elements 18 and 19 after fir (X) time, and is further amplified i! !
The intensities of the Stokes light and the anti-Stokes light that have not been amplified by i20.21 and are input to the August processing circuit 22 are determined by the wavelength characteristics of the loss of the optical fiber 7, and the optical filter 16.17.
Electrical output ES is calculated by making corrections taking into consideration the transmission characteristics of , the gain of the light receiving elements 18 and 19, etc.

[’T aを4ηて、これらの比をとれば[a/[S、
ズexp(−hωt/2πに丁)どなる。これより光フ
ァイバ7の×地点での温度Tを求めることがでさ゛、第
3図に示4如く光ファイバ7の長さ方向に沿・〕だ連続
的な温度分布が得られる。なお、距離×は、信号処理回
路22に入力されるパルス発生器1 h’ l)のパル
ス伏目と受光素子18.10からのラマン散乱光の検出
信号との時間差に旦づき決定される。
['Ta 4η and take these ratios, [a/[S,
Zu exp (-hωt/2π ni) roars. From this, the temperature T at point X of the optical fiber 7 can be determined, and a continuous temperature distribution along the length of the optical fiber 7 can be obtained as shown in FIG. 3. Note that the distance x is determined based on the time difference between the pulse offset of the pulse generator 1h'l) input to the signal processing circuit 22 and the detection signal of the Raman scattered light from the light receiving element 18.10.

従来の温度H1測点に温度変換器12を設置−J ’1
人射光のレイリー散乱による後方散乱光の強度変化から
i [ii!測する方法では、光ファイバ7を伝播する
光が温度h11慮を通過する毎に減食するので、多点片
1測が困ガであった。しかし、光ファイバ7に温度変換
器12などを設けず光ファイバ7自体−〇− のラマン散乱から温度計測を行なう本発明では、入射光
が光ファイバ7の固有の伝送損失以外の原因で減衰する
ことはなく、連続計測に近い多点計測が可能である。更
に、スト−クス光と反ストークス光の2波長における強
度の比率から温度を求めているため、光源4の強度の変
動等の影響を受けることがなく、高精度の温度g1測が
できる。
Temperature converter 12 installed at conventional temperature H1 measuring point-J'1
From the change in the intensity of backscattered light due to Rayleigh scattering of human light, i [ii! In the measuring method, it is difficult to measure one multi-point piece because the light propagating through the optical fiber 7 is attenuated each time it passes through the temperature h11. However, in the present invention, in which the temperature is measured from Raman scattering of the optical fiber 7 itself without providing the temperature converter 12 or the like in the optical fiber 7, the incident light is attenuated due to causes other than the inherent transmission loss of the optical fiber 7. Multi-point measurement, which is close to continuous measurement, is possible. Furthermore, since the temperature is determined from the ratio of the intensity of the Stokes light and the anti-Stokes light at two wavelengths, the temperature g1 can be measured with high precision without being affected by variations in the intensity of the light source 4.

なお、光ファイバ7の入射端から過大な後方散乱光が受
光素子18.19に入射することを避GJるために、第
4図に示すように、上記第1図の方向性結合器5に代え
て、音響光学素子24を設け、これをパルス−コントロ
ーラー251こより制御された音響光学素子駆動装置2
6によって駆動するようにしてもよい。音響光学素子2
4には音響光学素子駆動装置26の駆動により超音波に
よる位相格子が形成され、この位相格子により光ファイ
バ7からの後方散乱は回折され強度変調される。音響光
学素子24により回折された後方散乱光は導入ファイバ
14によりハーフミラ−15に導かれる。音響光学素子
24の駆動は、パルス発生器1及びパルスディレィ回路
2からなる光源4のパルス駆動回路と連#J] 1ノで
行なわれる。また後方散乱光が微弱な場合には、ボック
スカー・j′ベレージト−で平均化処理するのが」:0
゜ ’Jお、上記実施例にお1ノる温痘d]測用の光ファイ
バ7としては、通常のガラスファイバやプラス・fツク
ファイバの池、液体ニ11ファイバを用いるようにして
もよい。更に、光フッフィバ7どしで、偏波面保存ファ
イバを用いイの巾−一波面を利用することにより、通常
の甲−モード光フj・イバに比し、J、り効率J、くラ
マン散乱4L!1じさせることができる。また、光ファ
イバ7の]ア径は、ラマン散乱を@I !II!的にイ
1じさせるために、なるべく小ざい方がよい。なお、」
−記実施例では、ハーフミラ−15)と光学フィルタ1
6.17とを用いて検出系13を構成したが、分光器な
どを用いて構成し−(もJ、い。
In order to prevent excessive backscattered light from entering the light receiving element 18.19 from the input end of the optical fiber 7, as shown in FIG. 4, the directional coupler 5 of FIG. Instead, an acousto-optic element 24 is provided, and the acousto-optic element driving device 2 is controlled by a pulse controller 251.
6 may be used. Acousto-optic element 2
4, a phase grating is formed by ultrasonic waves by driving the acousto-optic element driving device 26, and backscattering from the optical fiber 7 is diffracted and intensity-modulated by this phase grating. The backscattered light diffracted by the acousto-optic element 24 is guided to the half mirror 15 by the introduction fiber 14. The acousto-optic element 24 is driven by a pulse drive circuit of the light source 4, which is composed of a pulse generator 1 and a pulse delay circuit 2. In addition, if the backscattered light is weak, it is best to average it using a boxcar j′ veraget.
゜ 'J, as an optical fiber 7 for measuring 1 of the above -mentioned embodiment, you may use a normal glass fiber, a plus Futsukufibar pond, and a liquid eni 11 fiber. . Furthermore, by using polarization-maintaining fibers between the optical fibers 7 and using a wavefront with a width of A, J, the efficiency of 4L! 1. Also, the diameter of the optical fiber 7 allows Raman scattering to be @I! II! It is better to make it as small as possible to make it more appealing to the target. In addition,"
- In the above embodiment, the half mirror 15) and the optical filter 1
Although the detection system 13 was constructed using 6.17, it could also be constructed using a spectrometer or the like.

[発明の効果] 以−I−要づるにこの発明によれば、光フアイバ自体の
ラマン散乱によるス1〜−クス光と反ス]〜−クス光ど
の強度化が温1m関数である(−とを利用して淘1α泪
測を行イ1う0のC゛あるl、−め、入射光が光ファイ
バ固イ1の伝送損失IスAの膣内(゛減衰されることし
イ1く、連続的<r多白目測合実施でさると共に、光源
の強痘変動等の影響を受(jることb <K < 、精
度のJ、いt1測がでさる竹の優れlこ効果を発揮する
ことがrきる。
[Effects of the Invention] In summary, according to the present invention, the intensity of the S1~-x light and the anti-Sx light due to Raman scattering of the optical fiber itself is a function of temperature 1m (- 1α measurement is carried out using The advantage of bamboo is that it is not only possible to carry out continuous <r multiplicity measurements, but also to be affected by changes in the light source, etc. It is possible to demonstrate the following.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明1こ係るill測其置装一実施例を示4
構成図、第2図は光ノシ・イム中ぐ生じるシマン散乱尤
の一例を示1グラ−]、第33図は本発明に」、り得ら
れた濡i分布の古1測結宋を示づグラ−7、第4図は本
発明に係る1yyiの他の実施例を承り構成図、第5図
(,1従来の渇I健81測装置を示tI4成図、第6図
は同削測KlにJ、り検出される後方散乱光の強度変化
を示Jグラフ、第7図は第6図の後方散乱光の強rq変
化から求められた温度分布を承りグラフで・ある。 図中、1はパルス発(1−器、2はパルスディレィ回路
、3は光源駆動装置、4は光源、5は方向性結合器、6
(1集光レンズ、7は光ファイバ、8は受光素f、1)
は増幅器、10は伯号姶I11回路、′11は表示器、
12は温度変換器、13は検出系、11は導入ノアイバ
、15はハーフミラ−116゜17LU光学フイルタ、
18.19は受光素f、2(1,21iま増幅器、22
は信目すl Jjlj回路、23は表示器、24 tJ
音響光学素子、25はパルスコント【1−カー、26は
合響光学索了駆動)装置で−ある。 特許出願人   ロi1’l¥i線株式会ン1代即人弁
理士  絹  谷  信  雄=13− 四侭に ゲ倒≦小R置憾
FIG. 1 shows an embodiment of an ill measuring device according to the present invention 4.
Fig. 2 shows an example of the Simann scattering that occurs during light production, and Fig. 33 shows the results of the first measurement of the distribution of wetness obtained in accordance with the present invention. Figure 4 shows a configuration diagram of another embodiment of the 1yyi according to the present invention, Figure 5 shows a conventional thirst measuring device, Figure 6 shows the same diagram. Figure 7 is a graph showing the change in the intensity of the backscattered light detected by the measured Kl, and Figure 7 is a graph showing the temperature distribution determined from the intensity change of the backscattered light in Figure 6. , 1 is a pulse generator (1-device, 2 is a pulse delay circuit, 3 is a light source driver, 4 is a light source, 5 is a directional coupler, 6
(1 condenser lens, 7 optical fiber, 8 light receiving element f, 1)
is the amplifier, 10 is the Hakugo I11 circuit, '11 is the display,
12 is a temperature converter, 13 is a detection system, 11 is an introduction Noah bar, 15 is a half mirror 116° 17LU optical filter,
18.19 is the photodetector f, 2 (1, 21i amplifier, 22
is the circuit, 23 is the display, 24 tJ
The acousto-optic element 25 is a pulse control device (1-car, 26 is a synphonic optical cable driving) device. Patent Applicant Roi1'l\i-sen Co., Ltd.'s 1st generation patent attorney Nobuo Kinuya = 13- Four people are angry ≦ Small R setting

Claims (1)

【特許請求の範囲】[Claims] 測定温度領域に配設される光ファイバと、光ファイバに
その入射端よりパルス光を入射するための光源と、光フ
ァイバの入射端から出射される上記パルス光の後方散乱
光のうちラマン散乱によるストークス光および反ストー
クス光の強度を検出する検出系と、検出系が検出したス
トークス光と反ストークス光との強度比より光ファイバ
の温度を求めると共に上記光源からパルス光が出射され
てから検出系がラマン散乱光を検出するまでの時間より
光ファイバの温度測定位置を求める信号処理回路とを備
えたことを特徴とする光ファイバ形温度分布計測装置。
An optical fiber disposed in the measurement temperature region, a light source for inputting pulsed light into the optical fiber from its input end, and a light source for transmitting backscattered light of the pulsed light emitted from the input end of the optical fiber due to Raman scattering. A detection system that detects the intensity of Stokes light and anti-Stokes light, and a detection system that determines the temperature of the optical fiber from the intensity ratio of the Stokes light and anti-Stokes light detected by the detection system, and detects the temperature of the optical fiber after pulsed light is emitted from the light source. 1. An optical fiber type temperature distribution measuring device, comprising: a signal processing circuit that determines a temperature measurement position of an optical fiber from the time it takes for the optical fiber to detect Raman scattered light.
JP60111359A 1985-05-25 1985-05-25 Optical fiber type measuring instrument for temperature distribution Granted JPS61270632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60111359A JPS61270632A (en) 1985-05-25 1985-05-25 Optical fiber type measuring instrument for temperature distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60111359A JPS61270632A (en) 1985-05-25 1985-05-25 Optical fiber type measuring instrument for temperature distribution

Publications (2)

Publication Number Publication Date
JPS61270632A true JPS61270632A (en) 1986-11-29
JPH0364812B2 JPH0364812B2 (en) 1991-10-08

Family

ID=14559197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60111359A Granted JPS61270632A (en) 1985-05-25 1985-05-25 Optical fiber type measuring instrument for temperature distribution

Country Status (1)

Country Link
JP (1) JPS61270632A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208731A (en) * 1987-02-25 1988-08-30 Hitachi Cable Ltd Measuring instrument for back raman scattered light of optical fiber
JPH01140031A (en) * 1987-11-26 1989-06-01 Tokyo Electric Power Co Inc:The Measuring system of linear temperature distribution
JPH01240828A (en) * 1988-03-22 1989-09-26 Hitachi Cable Ltd Optical fiber type temperature distribution measuring apparatus
JPH0235323A (en) * 1988-07-25 1990-02-05 Sumitomo Electric Ind Ltd Optical fiber temperature sensor
JPH02145932A (en) * 1988-11-28 1990-06-05 Hitachi Cable Ltd Measurement with optical fiber type distributive thermometer
JPH02171628A (en) * 1988-12-26 1990-07-03 Toshiba Corp Measuring apparatus
JPH02201132A (en) * 1989-01-30 1990-08-09 Tokyo Electric Power Co Inc:The Optical fiber system distribution type temperature sensor
JPH02201133A (en) * 1989-01-30 1990-08-09 Tokyo Electric Power Co Inc:The Sensing method of distribution type optical fiber sensor
JPH02201131A (en) * 1989-01-30 1990-08-09 Tokyo Electric Power Co Inc:The Optical fiber system distribution type temperature sensor
JPH02240533A (en) * 1989-03-14 1990-09-25 Furuno Electric Co Ltd Method for measuring underwater temperature
JPH02281112A (en) * 1989-04-21 1990-11-16 Tokyo Electric Power Co Inc:The Optical-fiber type distributed temperature measuring apparatus
JPH03683A (en) * 1989-05-17 1991-01-07 Nakanishi Gijiyutsushi Jimusho:Kk Fire detector for floating roof tank
JPH0310133A (en) * 1989-06-08 1991-01-17 Asahi Glass Co Ltd Temperature measuring method and distribution type optical fiber temperature sensor
JPH0368825A (en) * 1989-08-08 1991-03-25 Fujikura Ltd Distribution type strain sensor
JPH03237313A (en) * 1990-02-14 1991-10-23 Tokyo Electric Power Co Inc:The Optical fiber distribution type physical quantity detector
JPH045136A (en) * 1990-04-23 1992-01-09 Hitachi Cable Ltd Optical fiber compound trolley wire, abnormal exothermicity detecting system for trolley line using such trolley wire and optical fiber compound trolley wire stringing method
JPH04286873A (en) * 1991-03-14 1992-10-12 Ngk Insulators Ltd Detection of failed cell
EP0898151A2 (en) * 1997-08-22 1999-02-24 Felten &amp; Guilleaume AG Method and arrangement for configuring a measuring device
GB2426331A (en) * 2002-06-21 2006-11-22 Schlumberger Holdings Method for measuring using optical fibre distributed sensor
CN102031732A (en) * 2010-12-28 2011-04-27 中国科学院半导体研究所 Intelligent fiber fishplate
CN102080954A (en) * 2010-11-26 2011-06-01 中国计量学院 Ultra-long range 100km decentralized optical fiber Rayleigh and Raman scattering sensor
CN102121213A (en) * 2010-12-28 2011-07-13 中国科学院半导体研究所 Steel rail capable of monitoring cracks and deformation
CN103115696A (en) * 2013-01-22 2013-05-22 山东大学 Distribution type optical fiber Raman temperature measurement system and distribution type optical fiber Raman temperature measurement method capable of eliminating Rayleigh light crosstalk
JP2013545101A (en) * 2010-11-15 2013-12-19 シーメンス エナジー インコーポレイテッド Sensor device for detecting and monitoring cracks entering structures
CN104596670A (en) * 2015-02-05 2015-05-06 吉林大学 Method for solving temperature drift of distributed optical fiber Raman temperature sensing system
CN105157872A (en) * 2015-05-08 2015-12-16 广州岭南电缆股份有限公司 Cable temperature monitoring method and device
CN106404217A (en) * 2016-11-17 2017-02-15 太原理工大学 Novel temperature demodulation method based on distributed optical fiber Raman temperature measurement
CN110307920A (en) * 2019-06-12 2019-10-08 太原理工大学 Based on noise-modulated fiber optic temperature, stress sensing system and measurement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691959B2 (en) * 2004-11-04 2011-06-01 横河電機株式会社 Temperature measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773633A (en) * 1980-10-27 1982-05-08 Nippon Telegr & Teleph Corp <Ntt> Light pulse testing device
JPS59634A (en) * 1982-06-28 1984-01-05 Hitachi Cable Ltd Temperature measuring method using optical fiber preserving polarized wave surface
GB2140554A (en) * 1983-05-26 1984-11-28 Plessey Co Plc Temperature measuring arrangement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773633A (en) * 1980-10-27 1982-05-08 Nippon Telegr & Teleph Corp <Ntt> Light pulse testing device
JPS59634A (en) * 1982-06-28 1984-01-05 Hitachi Cable Ltd Temperature measuring method using optical fiber preserving polarized wave surface
GB2140554A (en) * 1983-05-26 1984-11-28 Plessey Co Plc Temperature measuring arrangement

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208731A (en) * 1987-02-25 1988-08-30 Hitachi Cable Ltd Measuring instrument for back raman scattered light of optical fiber
JPH01140031A (en) * 1987-11-26 1989-06-01 Tokyo Electric Power Co Inc:The Measuring system of linear temperature distribution
JPH01240828A (en) * 1988-03-22 1989-09-26 Hitachi Cable Ltd Optical fiber type temperature distribution measuring apparatus
JPH0235323A (en) * 1988-07-25 1990-02-05 Sumitomo Electric Ind Ltd Optical fiber temperature sensor
JPH02145932A (en) * 1988-11-28 1990-06-05 Hitachi Cable Ltd Measurement with optical fiber type distributive thermometer
JPH02171628A (en) * 1988-12-26 1990-07-03 Toshiba Corp Measuring apparatus
JPH0711458B2 (en) * 1989-01-30 1995-02-08 東京電力株式会社 Optical fiber distributed temperature sensor
JPH02201132A (en) * 1989-01-30 1990-08-09 Tokyo Electric Power Co Inc:The Optical fiber system distribution type temperature sensor
JPH02201133A (en) * 1989-01-30 1990-08-09 Tokyo Electric Power Co Inc:The Sensing method of distribution type optical fiber sensor
JPH02201131A (en) * 1989-01-30 1990-08-09 Tokyo Electric Power Co Inc:The Optical fiber system distribution type temperature sensor
JPH0786436B2 (en) * 1989-01-30 1995-09-20 東京電力株式会社 Sensing method of distributed optical fiber sensor
JPH0715413B2 (en) * 1989-01-30 1995-02-22 東京電力株式会社 Optical fiber distributed temperature sensor
JPH02240533A (en) * 1989-03-14 1990-09-25 Furuno Electric Co Ltd Method for measuring underwater temperature
JPH02281112A (en) * 1989-04-21 1990-11-16 Tokyo Electric Power Co Inc:The Optical-fiber type distributed temperature measuring apparatus
JPH0610030B2 (en) * 1989-05-17 1994-02-09 有限会社中西技術士事務所 Fire detection device for floating roof tank
JPH03683A (en) * 1989-05-17 1991-01-07 Nakanishi Gijiyutsushi Jimusho:Kk Fire detector for floating roof tank
JPH0310133A (en) * 1989-06-08 1991-01-17 Asahi Glass Co Ltd Temperature measuring method and distribution type optical fiber temperature sensor
JPH0769222B2 (en) * 1989-06-08 1995-07-26 旭硝子株式会社 Temperature measurement method and distributed optical fiber temperature sensor
JPH0368825A (en) * 1989-08-08 1991-03-25 Fujikura Ltd Distribution type strain sensor
JPH03237313A (en) * 1990-02-14 1991-10-23 Tokyo Electric Power Co Inc:The Optical fiber distribution type physical quantity detector
JPH045136A (en) * 1990-04-23 1992-01-09 Hitachi Cable Ltd Optical fiber compound trolley wire, abnormal exothermicity detecting system for trolley line using such trolley wire and optical fiber compound trolley wire stringing method
JPH04286873A (en) * 1991-03-14 1992-10-12 Ngk Insulators Ltd Detection of failed cell
EP0898151A3 (en) * 1997-08-22 1999-04-07 Felten &amp; Guilleaume AG Method and arrangement for configuring a measuring device
EP0898151A2 (en) * 1997-08-22 1999-02-24 Felten &amp; Guilleaume AG Method and arrangement for configuring a measuring device
US6490538B1 (en) 1997-08-22 2002-12-03 Lios Technology Gmbh Procedure and means for configuring a measuring device
GB2426331A (en) * 2002-06-21 2006-11-22 Schlumberger Holdings Method for measuring using optical fibre distributed sensor
GB2426331B (en) * 2002-06-21 2007-01-17 Schlumberger Holdings Method for measuring using optical fiber distributed sensor
JP2013545101A (en) * 2010-11-15 2013-12-19 シーメンス エナジー インコーポレイテッド Sensor device for detecting and monitoring cracks entering structures
CN102080954A (en) * 2010-11-26 2011-06-01 中国计量学院 Ultra-long range 100km decentralized optical fiber Rayleigh and Raman scattering sensor
CN102121213A (en) * 2010-12-28 2011-07-13 中国科学院半导体研究所 Steel rail capable of monitoring cracks and deformation
CN102031732A (en) * 2010-12-28 2011-04-27 中国科学院半导体研究所 Intelligent fiber fishplate
CN103115696A (en) * 2013-01-22 2013-05-22 山东大学 Distribution type optical fiber Raman temperature measurement system and distribution type optical fiber Raman temperature measurement method capable of eliminating Rayleigh light crosstalk
CN104596670A (en) * 2015-02-05 2015-05-06 吉林大学 Method for solving temperature drift of distributed optical fiber Raman temperature sensing system
CN105157872A (en) * 2015-05-08 2015-12-16 广州岭南电缆股份有限公司 Cable temperature monitoring method and device
CN106404217A (en) * 2016-11-17 2017-02-15 太原理工大学 Novel temperature demodulation method based on distributed optical fiber Raman temperature measurement
CN110307920A (en) * 2019-06-12 2019-10-08 太原理工大学 Based on noise-modulated fiber optic temperature, stress sensing system and measurement method

Also Published As

Publication number Publication date
JPH0364812B2 (en) 1991-10-08

Similar Documents

Publication Publication Date Title
JPS61270632A (en) Optical fiber type measuring instrument for temperature distribution
EP0250194B1 (en) Sensing strain and temperature
WO2020196689A1 (en) Light source device for optical measurement, spectroscopic measurement device, and spectroscopic measurement method
AU2013100784A4 (en) An optical refractive index measuring system based on speckel correlation
CN106066203A (en) Distributed highly sensitive vibration-detection system based on ultrashort optical fiber optical grating array and method
JPS62207927A (en) Optical fiber measuring instrument
US20050088652A1 (en) Optical wavelength splitter
JP4862594B2 (en) Optical fiber sensor
JPS6330739A (en) Method for measuring back scattering of optical fiber
JP2002243589A (en) Measuring device and method for wavelength dispersion distribution
CN205449326U (en) Device based on laser beat frequency temperature measurement is realized in optic fibre FP chamber
JP2577199B2 (en) Optical fiber distributed temperature sensor
JPH10142076A (en) Optical fiber type temperature distribution measuring device
JPS5915841A (en) Refractive index measuring apparatus
JPH06221930A (en) Distribution type temperature sensor
JPS59226832A (en) Optical ic sensor
JP7238541B2 (en) Spectroscopic measurement device and spectroscopic measurement method
JP2885980B2 (en) Temperature distribution detector
JPH09304536A (en) Optical fiber temperature and radiation measuring instrument
JPH05172657A (en) Optical fiber distributed temperature sensor
JP2565046B2 (en) Physical quantity distribution detection sensor using optical fiber
JP2885979B2 (en) Temperature distribution detector
JP2669883B2 (en) Optical fiber backscattered light measuring device
JPH05241030A (en) Distribution type optical fiber sensor
JPS5872027A (en) Measuring device for loss wavelength characteristic of optical fiber