JPS6330739A - Method for measuring back scattering of optical fiber - Google Patents

Method for measuring back scattering of optical fiber

Info

Publication number
JPS6330739A
JPS6330739A JP17284086A JP17284086A JPS6330739A JP S6330739 A JPS6330739 A JP S6330739A JP 17284086 A JP17284086 A JP 17284086A JP 17284086 A JP17284086 A JP 17284086A JP S6330739 A JPS6330739 A JP S6330739A
Authority
JP
Japan
Prior art keywords
optical fiber
bending
wavelength
loss
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17284086A
Other languages
Japanese (ja)
Inventor
Toru Kuwabara
透 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP17284086A priority Critical patent/JPS6330739A/en
Publication of JPS6330739A publication Critical patent/JPS6330739A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To judge the presence of the bending radiation loss of an optical fiber and the bending position of said fiber, by a method wherein two or more kinds of lights mutually different in a wavelength are incident to the optical fiber and the difference between transmission losses obtained with respect to respective wavelengths is calculated. CONSTITUTION:A light source 1 has a light source 11 of a wavelength lambda1 and a light source 12 of a wavelength lambda2 and the lights 21 from the light source 1 pass through a transmission mirror 3 to be incident to an optical fiber 7 to be measured from the end surface thereof. The reflected lights 22 from the optical fiber 7 due to back scattering are detected by detectors 41, 42 corresponding to the wavelength thereof and subjected to data processing in an operational processing part 5 to be displayed on a display 6. When the plot of the difference between transmission loss coefficients of the optical fiber calculated by differentiation operation becomes a predetermined value or less, it can be judged that bending radiation loss is generated and, from the plot position to the graph thereof, a bending generating position is determined.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、光ファイバに曲げが存在するか否か及びその
曲げの位置を判定する光ファイバの後方散乱測定方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an optical fiber backscattering measurement method for determining whether a bend exists in an optical fiber and the location of the bend.

〈従来の技術〉 近年、通信用に広く用いられている光ファイバには多少
なりとも伝送損失がある。この伝送損失α(λ)は伝送
する光の波長λに依る値であり、次の弐で表すことがで
きる。
<Prior Art> Optical fibers that have been widely used for communications in recent years have some degree of transmission loss. This transmission loss α(λ) is a value depending on the wavelength λ of the transmitted light, and can be expressed as the following 2.

α(λ) −A −+B+C(λ)+D+E(λ)・・
・(1)λ 4 ここに、A:レーリー散乱係数 B:構造不完全性損失 C(λ):OH−基及び遷移金属等による吸収損失 D=マイクロベンディングを置火 E(λ):曲げ放射損失 ところで、光ファイバの被覆層による応力や被覆層上か
ら加わる側圧等により生ずるマイクロベンディング損失
り及びl/−り一敗乱係数A、構造不完全性損失B、吸
収)置火C(λ)は光ファイバの木質的理由による損失
であるが、曲げ放射田失已(λ)は例えばボビンに光フ
ァイバを巻取ったときに局部的な曲げが生じてしまった
場合のように光ファイバが小さな径に曲げられることに
より発生する損失である。このため、曲げ放射損失E(
λ)を含む伝送損失α(λ)により光ファイバの不良を
判定すべきではなく、曲げ放射を置火E(λ)の大小及
びその曲げ位置を判定して異常部分のみ処理すれば光フ
ァイバを存効に用いることができる。
α(λ) −A −+B+C(λ)+D+E(λ)...
・(1) λ 4 Here, A: Rayleigh scattering coefficient B: Structural imperfection loss C (λ): Absorption loss due to OH- groups and transition metals, etc. D = Microbending ignition E (λ): Bending radiation Loss By the way, microbending loss caused by stress due to the coating layer of the optical fiber, lateral pressure applied from above the coating layer, etc. is the loss due to the wood quality of the optical fiber, but the bending loss (λ) is the loss caused by the optical fiber being small, such as when a local bend occurs when winding the optical fiber onto a bobbin. This is the loss caused by bending to the radius. Therefore, the bending radiation loss E(
The defectiveness of the optical fiber should not be determined based on the transmission loss α(λ) including It can be used for any purpose.

従来の曲げ放射損失E(λ)の判定は伝送損失の波長特
性と1種類の光による後方散乱測定との2つの方法を併
用することにより行っていた。前者によれば、第4図に
示すように光ファイバに曲げが生じていない場合の特性
(図中a)と光ファイバに曲げが生じている場合の特性
(図中b)とを比較し、光ファイバに曲げ放射損失E(
λ)のあることを判定できる。但し、この方法では光フ
ァイバの長手方向のどの位置に曲げがあるかは判定でき
ない、一方、後者によれば、散乱光強度の光ファイバ長
による微分値である伝送損失係数(dB / kn+ 
)から曲げ位置を判定することができ、波長1.311
11の光を光ファイバに入射したときの後方散乱光強度
を表す第5図に示すように、散乱光強度の傾き(伝送損
失係数)が変化している位置(図中C点)から曲げ位置
を判定することができる。但し、この方法では伝送損失
係数の変化が曲げによるものが否かは判定できない。
Conventionally, bending radiation loss E(λ) has been determined by combining two methods: wavelength characteristics of transmission loss and backscattering measurement using one type of light. According to the former, as shown in FIG. 4, the characteristics when the optical fiber is not bent (a in the figure) are compared with the characteristics when the optical fiber is bent (b in the figure), Bending radiation loss E(
λ) can be determined. However, with this method it is not possible to determine where in the longitudinal direction the optical fiber is bent.On the other hand, according to the latter method, the transmission loss coefficient (dB/kn+), which is the differential value of the scattered light intensity with respect to the optical fiber length,
), the bending position can be determined from the wavelength 1.311
As shown in Figure 5, which shows the backscattered light intensity when light No. 11 is incident on the optical fiber, the bending position is measured from the position where the slope of the scattered light intensity (transmission loss coefficient) changes (point C in the figure). can be determined. However, with this method, it cannot be determined whether the change in the transmission loss coefficient is due to bending or not.

〈発明が解決しようとする問題点〉 従来では、伝送損失の波長特性の測定と後方散乱測定と
の2つの方法を併用することにより、曲げ放射損失E(
λ)の有無とその曲げ位置の判定を行っていたが、それ
ぞれの測定のために異なる装置を必要とすると共に作業
が煩雑で且つ作業時間が長くかかるという問題点があっ
た。
<Problems to be solved by the invention> Conventionally, the bending radiation loss E(
The presence or absence of λ) and its bending position were determined, but there were problems in that different devices were required for each measurement, and the work was complicated and took a long time.

本発明は上記従来の事情に鑑みなされたもので、上記問
題点を合理的に解決する後方散乱測定方法を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide a backscattering measurement method that rationally solves the above-mentioned problems.

く問題点を解決するための手段〉 本発明に係る光ファイバの後方散乱測定方法は、光ファ
イバに光を入射し、その後方散乱光強度の光ファイバ長
による微分値から該光ファイバの伝送損失の長手方向変
化を測定する光ファイバの後方散乱測定方法において、
前記光ファイバに互いに波長の異なる2種以上の光を入
射し、それぞれの波長について得られる伝送損失の差を
求め、該伝送損失の差から該光ファイバの曲げ放射損失
の有無及びその曲げ位置を判定することを特徴とする。
A method for measuring backscattering of an optical fiber according to the present invention involves injecting light into an optical fiber, and calculating the transmission loss of the optical fiber from the differential value of the intensity of the backscattered light with respect to the length of the optical fiber. In an optical fiber backscattering measurement method that measures changes in the longitudinal direction of
Two or more types of light having different wavelengths are incident on the optical fiber, the difference in transmission loss obtained for each wavelength is determined, and the presence or absence of bending radiation loss in the optical fiber and its bending position are determined from the difference in transmission loss. It is characterized by making a judgment.

〈実 施 例〉 本発明の一実施例を図面を参照して説明する。<Example> An embodiment of the present invention will be described with reference to the drawings.

第1図に本発明の方法を実施する多波長後方散乱測定装
置の概略構成を示す。光源1は波長λ1の光a11と波
長λ2の光源12とを存しており、光源1からの光21
は透過ミラー3を通して被測定光ファイバ7に端面から
入射される。そして、後方散乱による光ファイバ7から
の反射光22はその波長に応じたディテクタ41.42
により検出され、演算処理部5にてデータ処理した後、
ディスプレイ6に表示される。ここで、光a11と光源
12とからの光21は異なる周波数で変調して同時に光
ファイバ7に入射しても、光学的あるいは機械的な分岐
方式を用いて時分割で入射しても良い。また同様に、デ
ィテクタ41.42も同時に反射光22を入光して周波
数べん別処理を施したり、光学的あるいは機械的な分岐
方式を用いて時分割で検出することもできるゆ尚、光源
11と光源12との波長が近い場合には、ディテクタを
1つにして周波数べん別方式を用いることが可能である
FIG. 1 shows a schematic configuration of a multi-wavelength backscattering measuring device that implements the method of the present invention. The light source 1 includes a light a11 with a wavelength λ1 and a light source 12 with a wavelength λ2, and the light 21 from the light source 1
is incident on the optical fiber 7 to be measured from the end face through the transmission mirror 3. The reflected light 22 from the optical fiber 7 due to back scattering is transmitted to detectors 41 and 42 according to its wavelength.
After being detected by and processed by the arithmetic processing unit 5,
displayed on the display 6. Here, the light a11 and the light 21 from the light source 12 may be modulated at different frequencies and may enter the optical fiber 7 at the same time, or may be time-divisionally entered using an optical or mechanical branching method. Similarly, the detectors 41 and 42 can simultaneously receive the reflected light 22 and perform frequency classification processing, or can detect the light source in a time-division manner using an optical or mechanical branching method. When the wavelengths of the light source 11 and the light source 12 are close, it is possible to use one detector and use a frequency discrimination method.

次に、曲げによる放射損失E(λ)の評価原理について
説明する。
Next, the evaluation principle of radiation loss E(λ) due to bending will be explained.

通常の光ファイバの使用波長領域では、吸収損失C(λ
)はほとんど無視して良い程に小さい値であり、また、
被測定光ファイバ7の入射端面からの長手方向距離しに
対してのレーリー散乱係数A、構造不完全性損失B、マ
イクロベンディング損失01曲げ放射損失Eの依存性を
考慮すると、前掲の(1)式は次の(2)式となる。
In the wavelength range where normal optical fibers are used, absorption loss C(λ
) is so small that it can be almost ignored, and
Considering the dependence of the Rayleigh scattering coefficient A, structural imperfection loss B, microbending loss 01 and bending radiation loss E on the longitudinal distance from the input end face of the optical fiber 7 to be measured, the above (1) can be obtained. The formula is the following formula (2).

■ α(λ、L) = A(L) −+B(L)+D(L)
+E(λ、L)λ 4 ・・・・・・(2) ここに、α(λ、L):波長λ及び入射端面からの距M
Lにおける光 ファイバの伝送損失 A(L):入射端面からの距ML におけるレーリー散乱 係数(μ4・dB/に+a) B(L) :入射端面からの距#L における構造不完全性 損失 D(L) :入射端面からの距NIL におけるマイクロベン ディング損失 E(λ、L)二波長λ及び入射端面か らの距jillLにおける曲 げ放射損失 上記の(2)式において、波長λ1及び波長λ2の2種
類の光で後方散乱を測定して、両者の差をとると次の(
3)式が得られる。
■ α(λ,L) = A(L) −+B(L)+D(L)
+E (λ, L) λ 4 (2) Here, α (λ, L): wavelength λ and distance M from the incident end surface
Transmission loss of the optical fiber at L A(L): Rayleigh scattering coefficient (μ4・dB/+a) at distance ML from the input end face B(L): Structural imperfection loss D(at distance #L from the input end face) L): Microbending loss E(λ, L) at a distance NIL from the input end face Bending radiation loss at two wavelengths λ and a distance jillL from the entrance end face In the above equation (2), two types of wavelength λ1 and wavelength λ2 are By measuring the backscattering with light and taking the difference between the two, we get the following (
3) Equation is obtained.

α(λ、L)−α(λ2.し) ・・・・・・(3) ところで、レーリー散乱係数A (L)は主にガラスの
組成に依存するものであり、光ファイバの素材であるガ
ラス組成が同一であればレーリー散乱係数A (L)は
ほとんど変わらない。例えば、クラフトがSiO□で、
コアがGe0tとSiO□から成り、コアとクラッドと
の屈折率差が0.27%〜0.33%のシングルモード
光ファイバのレーリー散乱係数は0.91〜0.97の
範囲にある。よって、曲げ放射損失E(λ、L)が無く
且つ波長λ1.λ2がそれぞれ1.3I量、1.55−
の場合は、(3)式より次の関係が得られる。
α(λ,L)−α(λ2.shi)・・・・・・(3) By the way, the Rayleigh scattering coefficient A(L) mainly depends on the composition of the glass, and the material of the optical fiber. If the glass composition is the same, the Rayleigh scattering coefficient A (L) will hardly change. For example, if the craft is SiO□,
The Rayleigh scattering coefficient of a single mode optical fiber whose core is made of GeOt and SiO□ and whose refractive index difference between the core and cladding is 0.27% to 0.33% is in the range of 0.91 to 0.97. Therefore, there is no bending radiation loss E(λ, L) and the wavelength λ1. λ2 is 1.3I amount, 1.55-
In this case, the following relationship is obtained from equation (3).

0.16(dB/km)≦ (a (1,3,L) −
a (1,55,L) ’t≦0.17(dB/km)
              ・・・・・・(4)ここ
で、曲げ放射損失E(λ、L)はλ1くλ2の場合、E
(λI、L) <E (λ2.L)の関係がある。従っ
て、この関係と(3)式及び(42式より、曲げ放射損
失E(λ、L)のある場合はα(1,3,L)−cx 
(1,55,L) < 0.16 (dB/ km )
の関係が成立つ。
0.16 (dB/km)≦(a (1,3,L) −
a (1,55,L) 't≦0.17 (dB/km)
......(4) Here, the bending radiation loss E (λ, L) is λ1 less λ2, then E
There is a relationship of (λI,L) <E (λ2.L). Therefore, from this relationship and equations (3) and (42), if there is bending radiation loss E(λ, L), α(1,3,L)−cx
(1,55,L) < 0.16 (dB/km)
The relationship holds true.

次に、曲げ放射損失E(λ、L)の有無及びその曲げ位
置を判定する方法の具体例を説明する。
Next, a specific example of a method for determining the presence or absence of bending radiation loss E(λ, L) and its bending position will be described.

第2図に示すグラフにおいて、曲線d、  eはそれぞ
れ波長1.3/II、1.55μの光を入射したときの
後方散乱光強度の測定値を示している。また、この図に
おいて、プロットfは曲線d及びeから光フアイバ長1
00m毎に微分演算した光ファイバの伝送損失係数の差
を示している。すなわち、図に示すように、fの値がほ
ぼO,l 6 (dB/km)以上であることから、こ
の光ファイバに曲げ放射損失E(λ。
In the graph shown in FIG. 2, curves d and e indicate the measured values of the backscattered light intensity when light with a wavelength of 1.3/II and 1.55μ is incident, respectively. Also, in this figure, the plot f is derived from the optical fiber length 1 from the curves d and e.
It shows the difference in the transmission loss coefficient of the optical fiber calculated every 00 m. That is, as shown in the figure, since the value of f is approximately O,l 6 (dB/km) or more, this optical fiber has a bending radiation loss E(λ.

L)が生じていないことが判定できる。It can be determined that L) has not occurred.

一方、第3図に示すグラフにおいて、曲線d1. 、 
e/はそれぞれ波長1.3 All 、  1.55 
pmの光を曲げ放射損失のある光ファイバに入射したと
きの後方散乱強度の測定値を示し、プロットr/は上記
と同様に微分演算した光ファイバの伝送損失係数の差を
示している。すなわち、図に示すように、gの位置でf
′の値が0.16dB/km以下となり、曲げ放射損失
E(λ、L)が生じていることが判ると共に曲げがこの
位置gに生じていることが判る。
On the other hand, in the graph shown in FIG. 3, the curve d1. ,
e/ is wavelength 1.3 All, 1.55 respectively
The plot r/ shows the difference in the transmission loss coefficient of the optical fiber, which was differentially calculated in the same way as above. That is, as shown in the figure, f at position g
' value is 0.16 dB/km or less, which indicates that bending radiation loss E (λ, L) has occurred and that bending has occurred at this position g.

〈発明の効果〉 本発明によれば、1種類の測定装置により短時間且つ容
易な作業で光ファイバの曲げ放射損失とその曲げ位置を
判定することができ、光ファイバを有効に活用すること
ができる。
<Effects of the Invention> According to the present invention, the bending radiation loss of an optical fiber and its bending position can be determined in a short time and with ease using one type of measuring device, and the optical fiber can be used effectively. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を実施する後方散乱測定装置
を表す概略構成図、第2図、第3図はそれぞれ本発明の
一実施例による測定例を表すグラフ、第4図は光ファイ
バの損失の波長特性を表すグラフ、第5図は光ファイバ
の後方散乱強度を表すグラフである。 図面中、 1.11.12は光源、 41.42はディテクタ、 5は演算処理部、 6はディスプレイ、 7は光ファイバである。
FIG. 1 is a schematic configuration diagram showing a backscattering measurement device implementing an embodiment of the present invention, FIGS. 2 and 3 are graphs each representing a measurement example according to an embodiment of the present invention, and FIG. FIG. 5 is a graph showing the wavelength characteristic of fiber loss, and FIG. 5 is a graph showing the backscattered intensity of the optical fiber. In the drawings, 1, 11 and 12 are light sources, 41 and 42 are detectors, 5 is an arithmetic processing unit, 6 is a display, and 7 is an optical fiber.

Claims (1)

【特許請求の範囲】[Claims] 光ファイバに光を入射し、その後方散乱光強度の光ファ
イバ長による微分値から該光ファイバの伝送損失の長手
方向変化を測定する光ファイバの後方散乱測定方法にお
いて、前記光ファイバに互いに波長の異なる2種以上の
光を入射し、それぞれの波長について得られる伝送損失
の差を求め、該伝送損失の差から該光ファイバの曲げ放
射損失の有無及びその曲げ位置を判定することを特徴と
する光ファイバの後方散乱測定方法。
In an optical fiber backscattering measurement method in which light is incident on an optical fiber and the longitudinal change in transmission loss of the optical fiber is measured from the differential value of the backscattered light intensity with respect to the optical fiber length, the optical fibers are The method is characterized in that two or more different types of light are incident, the difference in transmission loss obtained for each wavelength is determined, and the presence or absence of bending radiation loss in the optical fiber and its bending position are determined from the difference in transmission loss. Optical fiber backscatter measurement method.
JP17284086A 1986-07-24 1986-07-24 Method for measuring back scattering of optical fiber Pending JPS6330739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17284086A JPS6330739A (en) 1986-07-24 1986-07-24 Method for measuring back scattering of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17284086A JPS6330739A (en) 1986-07-24 1986-07-24 Method for measuring back scattering of optical fiber

Publications (1)

Publication Number Publication Date
JPS6330739A true JPS6330739A (en) 1988-02-09

Family

ID=15949306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17284086A Pending JPS6330739A (en) 1986-07-24 1986-07-24 Method for measuring back scattering of optical fiber

Country Status (1)

Country Link
JP (1) JPS6330739A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02651U (en) * 1988-06-13 1990-01-05
JPH0449015U (en) * 1990-06-23 1992-04-24
JPH0449016U (en) * 1990-06-23 1992-04-24
JPH04125827U (en) * 1990-06-23 1992-11-17 ネスコベンデイング株式会社 Fluid storage container for hydration reaction heat
JP2007057328A (en) * 2005-08-23 2007-03-08 Sumitomo Electric Ind Ltd Optical fiber determination method, method for evaluating loss wavelength characteristics of optical fiber, and optical fiber shipping method
JP2011038785A (en) * 2009-08-06 2011-02-24 Sumitomo Electric Ind Ltd Otdr waveform determination method
JP2011047914A (en) * 2009-07-28 2011-03-10 Softbank Telecom Corp Measuring apparatus, measuring method, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02651U (en) * 1988-06-13 1990-01-05
JPH0449015U (en) * 1990-06-23 1992-04-24
JPH0449016U (en) * 1990-06-23 1992-04-24
JPH04125827U (en) * 1990-06-23 1992-11-17 ネスコベンデイング株式会社 Fluid storage container for hydration reaction heat
JP2007057328A (en) * 2005-08-23 2007-03-08 Sumitomo Electric Ind Ltd Optical fiber determination method, method for evaluating loss wavelength characteristics of optical fiber, and optical fiber shipping method
JP2011047914A (en) * 2009-07-28 2011-03-10 Softbank Telecom Corp Measuring apparatus, measuring method, and program
JP2011038785A (en) * 2009-08-06 2011-02-24 Sumitomo Electric Ind Ltd Otdr waveform determination method

Similar Documents

Publication Publication Date Title
JP2008180736A (en) Method and apparatus for measuring optical and physical thickness of optically transparent target
JPS61270632A (en) Optical fiber type measuring instrument for temperature distribution
US4727254A (en) Dual wavelength microbend sensor
US4714829A (en) Fibre optic sensing device and method
US4380394A (en) Fiber optic interferometer
CN210981350U (en) Distributed optical fiber humidity and temperature simultaneous detection device
JPS6330739A (en) Method for measuring back scattering of optical fiber
CN108957209B (en) Automatic broken line detection device for communication optical fiber cable production
Medhat et al. Application of fringes of equal chromatic order for investigating the effect of temperature on optical parameters of a GRIN optical fibre
GB2122337A (en) Fibre optic sensing device
JPH0549057B2 (en)
JP3388496B2 (en) Characteristic evaluation method of single mode optical fiber
JP3257197B2 (en) Method and apparatus for evaluating single mode optical fiber characteristics
Imai et al. Speckle-pattern contrast of semiconductor laser propagating in a multimode optical fiber
CN205449326U (en) Device based on laser beat frequency temperature measurement is realized in optic fibre FP chamber
KR20210106218A (en) optical fiber temperature sensor and temperature measurement apparatus using the same
CN110873701A (en) Optical fiber humidity sensor based on Mach-Zehnder interferometer
JP2511999B2 (en) Liquid detection optical fiber and liquid detection system using the same
JPH076862B2 (en) Optical fiber pressure sensor
JPH0510833A (en) Fiber for temperature sensor
JPS5915841A (en) Refractive index measuring apparatus
JPH05272920A (en) Optical-fiber displacement gage
JP2897389B2 (en) Temperature measuring method and distributed optical fiber temperature sensor
JPH10160636A (en) Method for evaluating characteristic of optical fiber constituted of a plurality of single-mode optical fibers
JPH05107150A (en) Method for measuring dispersion of high-dispersion optical fiber