JPS63208731A - Measuring instrument for back raman scattered light of optical fiber - Google Patents

Measuring instrument for back raman scattered light of optical fiber

Info

Publication number
JPS63208731A
JPS63208731A JP4036787A JP4036787A JPS63208731A JP S63208731 A JPS63208731 A JP S63208731A JP 4036787 A JP4036787 A JP 4036787A JP 4036787 A JP4036787 A JP 4036787A JP S63208731 A JPS63208731 A JP S63208731A
Authority
JP
Japan
Prior art keywords
light
interference filter
optical fiber
transmitted
center wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4036787A
Other languages
Japanese (ja)
Inventor
Satoru Yamamoto
哲 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP4036787A priority Critical patent/JPS63208731A/en
Publication of JPS63208731A publication Critical patent/JPS63208731A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve measurement sensitivity and to decrease the number of components by employing an optical system which uses the same interference filters as a light splitting means and a wave-length selecting means. CONSTITUTION:Light from a light source such as a laser is made incident on a 1st interference filter 11 and an end surface of an optical fiber 4 is placed on the optical axis of light with center wavelength lambda0 which is transmitted through the filter. Back scattered light generated in the optical fiber 4 with the incident light is made incident on the 1st interference filter 11 in the opposite from the incident light and light with wavelength which is not nearby the Rayleigh scattered light with the same wavelength lambda0 with the incident light to the optical fiber 4 is reflected by the interference filter 11. A 2nd interference filter 12 is installed on the optical axis of this reflected light. Only anti-Stokes' light is transmitted through the 2nd interference filter 12 and is made incident on a photodetector 9. The photodetected light is converted into an electric signal. Its intensity is measured. Only Stocks' light is transmitted through a 3rd interference filter 13, and photodetected by a photodetector 7 and converted into an electric signal so that the intensity of the anti-Stokes' light is measured.

Description

【発明の詳細な説明】 〔産業上の利用分野コ 本発明は光ファイバに単色光を入射しその後方ラマン散
乱光を測定する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for inputting monochromatic light into an optical fiber and measuring its backward Raman scattered light.

[従来の技術] 単色光を物質に当てて散乱させると、散乱光にその物質
に固有な量だけ波長が変わった光が混ざるという現象が
ラマン効果として知られている。この現象は、光子のエ
ネルギの一部が物質に吸収されるか、あるいは物質のエ
ネルギが光子に加わって起こるもので、前者の場合、う
マン効果を受けた散乱光の波長は物質に当てた単色光の
波長λ。よりもλ、たけ長くなり(ストークス光)、後
者の場合、ラマン効果を受けた散乱光の波長はλ。より
もλ8だけ短くなる(アンチストークス光)。λ 、λ
8は物質に固有なmであり、固体の場合、光子とのエネ
ルギ授受により、格子撮動の変化等の現象が起こる。し
たがって、ラマン効果を受けた散乱光を知ることにより
物質の種類、物性、状態等を知ることができる。
[Prior Art] A phenomenon known as the Raman effect is that when monochromatic light is applied to a substance and is scattered, the scattered light is mixed with light whose wavelength has changed by an amount specific to that substance. This phenomenon occurs when part of the photon's energy is absorbed by the material, or when the material's energy is added to the photon. In the former case, the wavelength of the scattered light that has undergone the Umann effect is the same as that of the material. Wavelength λ of monochromatic light. (Stokes light), and in the latter case, the wavelength of the scattered light subjected to the Raman effect is λ. It becomes shorter by λ8 than (anti-Stokes light). λ, λ
8 is m that is specific to a substance, and in the case of a solid, phenomena such as changes in lattice imaging occur due to energy exchange with photons. Therefore, by knowing the scattered light subjected to the Raman effect, it is possible to know the type, physical properties, state, etc. of the substance.

例えばストークス光強度I3とアンチストークス光強度
I、はブランク定数を佑、ボルツマン定数をに、物質と
光との間で授受されるエネルギの振動数をω・とすると
、それぞれ ■ 1、oc1/(exp (fIω; /kT) −1)
1ac−c1/(1−exp(−fiω、 /kT))
と絶対温度Tの関数となり、またストークス光強度とア
ンチストークス光強度の比も Ia/l3 −((ω0+ω1)/(ω0−ω、))48″xp(−
Wω、 /kT)と絶対温度Tの関数となる。ただし、
ω0は入射光の撮動数である。したがってストークス光
強度とアンチストークス光強度のいずれか一方あるいは
両方を測定することにより、これらの散乱光を発生して
いる物質の温度を測定することができる。
For example, the Stokes light intensity I3 and the anti-Stokes light intensity I are respectively ■ 1 and oc1/( exp (fIω; /kT) −1)
1ac-c1/(1-exp(-fiω, /kT))
is a function of absolute temperature T, and the ratio of Stokes light intensity to anti-Stokes light intensity is also Ia/l3 − ((ω0+ω1)/(ω0−ω, ))48″xp(−
Wω, /kT) and absolute temperature T. however,
ω0 is the number of images of incident light. Therefore, by measuring either or both of the Stokes light intensity and the anti-Stokes light intensity, it is possible to measure the temperature of the substance that is generating these scattered lights.

この原理を応用すると、光ファイバに光を入射させ、光
フアイバ内で発生するラマン散乱光(ストークス光、ア
ンチストークス光)を測定することにより、光ファイバ
の温度を測定することができ、入射光をパルス状の光と
し、光フアイバ内で発生したうマン散乱光の後方散乱光
(入射光の進行方向と反対向きの光)の出射までに要す
る時間を測定することにより、光ファイバの長さ方向の
温度分布を測定することも考案されている(特願昭60
− 11359号)。
Applying this principle, the temperature of the optical fiber can be measured by injecting light into the optical fiber and measuring the Raman scattered light (Stokes light, anti-Stokes light) generated within the optical fiber. The length of the optical fiber can be determined by using pulsed light and measuring the time required for the backscattered light (light in the direction opposite to the traveling direction of the incident light) of the Bomann scattered light generated within the optical fiber to be emitted. It has also been devised to measure the temperature distribution in the direction (Patent application 1986).
- No. 11359).

従来の光ファイバへの入射光学系と後方散乱光測定のた
めの出射光学系の構成を第2図に示す。
FIG. 2 shows the configuration of a conventional optical fiber input optical system and an output optical system for measuring backscattered light.

入射光学系は光源1から出射した光を光学フィルタ2を
通し、特定波長λ。以外の光を取り除き、これを方向性
結合器3を通した後、光ファイバ4に入射させるもので
ある。出射光学系は光ファイバ4から出射された光を方
向性結合器3を通した後、ハーフミラ−5で二分し、一
方を光学フィルタ6と受光器7とからなるストークス光
強度測定系に導く共に、他方を光学フィルタ8と受光器
9とからなるアンチストークス光強度測定系に導くもの
である。
The input optical system passes the light emitted from the light source 1 through an optical filter 2 and filters it to a specific wavelength λ. The other light is removed, and after passing through the directional coupler 3, the light is made to enter the optical fiber 4. The output optical system passes the light emitted from the optical fiber 4 through the directional coupler 3, divides the light into two by a half mirror 5, and guides one side to a Stokes light intensity measurement system consisting of an optical filter 6 and a light receiver 7. , and the other is guided to an anti-Stokes light intensity measurement system consisting of an optical filter 8 and a light receiver 9.

[発明が解決しようとする問題点〕 このような測定系を用いれば、入射光波長λ。[Problem that the invention seeks to solve] If such a measurement system is used, the incident light wavelength λ.

とλ および−λ、だけ波長の異なる光ファイバ内で発
生したストークス光およびアンチストークス光の測定を
行なうことができる。しかしなが−ら、上記測定系では
測定の効率が小さい。
It is possible to measure Stokes light and anti-Stokes light generated in an optical fiber having different wavelengths by λ and -λ. However, the measurement efficiency of the above measurement system is low.

まず、光フアイバ4内への入射光強度■INを考える。First, consider the intensity of light incident on the optical fiber 4 IN.

光源1より出射される波長λ。の光強度をIo、光学フ
ィルタ2の透過率をρ2、方向性結合器3の理論的効率
をρ3(−0,5> 、方向性結合器3の過剰損失をρ
31、光源1の広がりと光フフイバ4の入射口径等を考
慮した空間的な結合効率ρ、1とすると、光ファイバ4
への入射光強度■■には、 IIN”ρ2×ρ3×ρ31Xρ、X ■o−(1)と
なる。また、受光器7へ入射される中心波長λ0+λ、
の光強度’saは、光学ファイバ4より出射される被測
定光(中心波長λ。+λ、のストークス光)の強度をI
  、方向性結合器3の理LITa 論的効率をρ3、方向性結合器3の過剰損失をρ  、
ハーフミラ−5の理論効率をρ52a (= 0.5) 、ハーフミラ−5の過剰損失をρ5a
、光学フィルタ6の透過前率をρ6a1光ファイバ出射
光の空間的広がりや受光器7の受光面積等に起因する空
間的な結合効率をρ  とすると、2a ’sa″″ρ3xρ32axρ5xρ5axρ6a×ρ
s2a ×l0UTa        ”’  (2:
Jとなり、方向性結合器3とハーフミラ−5の理論効率
がいずれも0,5であることを考慮すると、(1)式、
 +21式はそれぞれ 1、N−0,5xρ2Xρ31Xρsl×IO−(:1
)ISa= 0.25 Xρ32.×ρ5.×ρ6a×
ρs2a ×l0UTa        ・・’  ”
となる。IINと’saは光学フィルタ6.8や方向性
結合器3等の光学的透過効率と光源1と受光器7.9間
の空間的結合効率の他に、方向性結合器3とハーフミラ
−5の理論効率に影響されており、これらの理論効率は
総合で0.125と非常に小ざいものであった。
Wavelength λ emitted from light source 1. The optical intensity of the optical filter 2 is Io, the transmittance of the optical filter 2 is ρ2, the theoretical efficiency of the directional coupler 3 is ρ3(-0,5>, the excess loss of the directional coupler 3 is ρ)
31. If the spatial coupling efficiency ρ is 1 considering the spread of the light source 1 and the incident aperture of the optical fiber 4, then the optical fiber 4
The intensity of the incident light on the receiver 7 is IIN”ρ2×ρ3×ρ31Xρ,
The light intensity 'sa is the intensity of the measured light (Stokes light with a center wavelength λ.+λ) emitted from the optical fiber 4.
, the theoretical efficiency of the directional coupler 3 is ρ3, the excess loss of the directional coupler 3 is ρ,
The theoretical efficiency of half mirror 5 is ρ52a (= 0.5), and the excess loss of half mirror 5 is ρ5a.
, the transmission rate of the optical filter 6 is ρ6a1, and the spatial coupling efficiency due to the spatial spread of the optical fiber output light, the light receiving area of the light receiver 7, etc. is ρ, then 2a 'sa''''ρ3xρ32axρ5xρ5axρ6a×ρ
s2a ×l0UTa ”' (2:
J, and considering that the theoretical efficiencies of the directional coupler 3 and half mirror 5 are both 0.5, equation (1),
+21 formulas are respectively 1, N-0, 5xρ2Xρ31XρslxIO-(:1
)ISa=0.25Xρ32. ×ρ5. ×ρ6a×
ρs2a ×l0UTa...' ”
becomes. IIN and 'sa are not only the optical transmission efficiency of the optical filter 6.8 and the directional coupler 3, but also the spatial coupling efficiency between the light source 1 and the light receiver 7.9, as well as the directional coupler 3 and the half mirror 5. These theoretical efficiencies were very small, totaling 0.125.

第2図の方向性結合器3の代わりに光スィッチを用いる
場合、光スィッチの理論効率は1であり、総合の理論効
率は0.5となるが、測定感度を上げるためには、さら
に理論効率の小さいことが望ましく、また、光スィッチ
を用いる場合、光スイツチ駆動用の高速電気回路が必要
であり、また、過剰損失が方向性結合器よりも大きいと
いう欠点があった。
When an optical switch is used in place of the directional coupler 3 in Fig. 2, the theoretical efficiency of the optical switch is 1, and the total theoretical efficiency is 0.5. Low efficiency is desirable, and when an optical switch is used, a high-speed electrical circuit is required to drive the optical switch, and the excess loss is greater than that of a directional coupler.

本発明の目的は、前記した従来技術の欠点を解消し、理
論効率が大きく、しかも、光スイツチ駆動用の高速電気
回路等を必要としない新規な光ファイバの後方ラマン散
乱光測定装置を提供することにある。
An object of the present invention is to provide a novel optical fiber back Raman scattering light measurement device that eliminates the drawbacks of the prior art described above, has high theoretical efficiency, and does not require a high-speed electric circuit for driving an optical switch. There is a particular thing.

[問題点を解決するための手段] 本発明は、光源より出射された光を中心波長λ0の光を
選択的に透過または反射する第1の干渉フィルタに入射
させ、第1の干渉フィルタから透過または反射された中
心波長λ。の光を受光すべく光ファイバの端面を配設し
、この端面より出射してくる光ファイバからの後方散乱
光を第1の干渉フィルタに逆方向に入射させ、第1の干
渉フィルタで反射または透過された光を受光して中心波
長λ1の光を選択的に透過または反射する第2の干渉フ
ィルタを設けると共に、第2の干渉フィルタの透過側ま
たは反射側に第2の干渉フィルタで透過または反射され
た中心波長λ1の光を受光する受光器を設けたものであ
る。
[Means for Solving the Problems] The present invention allows light emitted from a light source to enter a first interference filter that selectively transmits or reflects light with a center wavelength λ0. or the reflected center wavelength λ. An end face of an optical fiber is arranged to receive the light of A second interference filter is provided that receives the transmitted light and selectively transmits or reflects the light with the center wavelength λ1, and the second interference filter transmits or reflects the light with the center wavelength λ1 on the transmission side or the reflection side of the second interference filter. A light receiver is provided to receive reflected light having a center wavelength λ1.

[作 用] 光源より出射された光は、第1の干渉フィルタを透過(
または反射)して中心波長λ。の単色光に選別され光フ
ァイバに入射する。光ファイバから出射された後方散乱
光のうち中心波長λ。のレイリー散乱光は第1の干渉フ
ィルタを透過(または反射)しそれ以外の波長域の光は
第1の干渉フィルタで反射(または透過)して第2の干
渉フィルタに入射する。第2の干渉フィルタに入射した
後方散乱光のうち中心波長λ1の光は第2の干渉フィル
タを透過(または反射)して受光器に入射する。第2の
干渉フィルタの透過(または反射)中心波長λ1をスト
ークス光あるいはアンチストークス光の波長域にするこ
とにより、ストークス光あるいはアンチストークス光の
強度が受光器にて測定される。
[Function] The light emitted from the light source passes through the first interference filter (
or reflection) and the center wavelength λ. It is sorted into monochromatic light and enters an optical fiber. The center wavelength λ of the backscattered light emitted from the optical fiber. Rayleigh scattered light is transmitted (or reflected) by the first interference filter, and light in other wavelength ranges is reflected (or transmitted) by the first interference filter and enters the second interference filter. Of the backscattered light incident on the second interference filter, light with a center wavelength λ1 is transmitted (or reflected) through the second interference filter and enters the light receiver. By setting the transmission (or reflection) center wavelength λ1 of the second interference filter to be in the Stokes light or anti-Stokes light wavelength range, the intensity of the Stokes light or anti-Stokes light is measured by the light receiver.

[実施例] 以下に本発明の実施例を第1図に基づき説明する。図示
するように、この実施例では、透過中心波長λ。の第1
の干渉フィルタ11と、透過中心波長λ。−λ8の第2
の干渉フィルタ12と、透過中心波長λ。+λ、の第3
の干渉フィルタ13との3つの干渉フィルタからなる光
学系に特長がある。
[Example] An example of the present invention will be described below with reference to FIG. As shown in the figure, in this example, the transmission center wavelength λ. the first of
interference filter 11 and a transmission center wavelength λ. - second of λ8
interference filter 12 and a transmission center wavelength λ. +λ, the third
The optical system is characterized by an optical system consisting of three interference filters, including the interference filter 13.

レーザー等の光源1から出射された光を第1の干渉フィ
ルタ11に入射させ、これを透過した中心波長λ。の光
の光軸上に光ファイバ4の端面を置き、光ファイバ4に
この中心波長λ。の光を入射させるようにする。この入
射光により光フアイバ4内で発生した後方散乱光は入射
光と逆向きに光ファイバ4の端面から出射され、第1の
干渉フィルタ11に光a1からの光とは逆方向に入射す
る。
The center wavelength λ of light emitted from a light source 1 such as a laser is made incident on the first interference filter 11 and transmitted through the first interference filter 11. The end face of the optical fiber 4 is placed on the optical axis of the light, and the optical fiber 4 has this center wavelength λ. so that the light is incident. Backscattered light generated within the optical fiber 4 by this incident light is emitted from the end face of the optical fiber 4 in the opposite direction to the incident light, and enters the first interference filter 11 in the opposite direction to the light from the light a1.

第1の干渉フィルタ11に入射した後方散乱光のうち、
光ファイバ4への入射光と同一波長λ。
Of the backscattered light incident on the first interference filter 11,
The wavelength λ is the same as that of the light incident on the optical fiber 4.

のレイリー散乱光は第1の干渉フィルタ11を透過する
が、λ。近傍以外の波長の光は第1の干渉フィルタ11
で反射される。この反射光の光軸上に第2の干渉フィル
タ12を設置し、反射光を第2の干渉フィルタ12に入
射させる。第2の干渉フィルタ12の透過光の中心波長
はアンチストークス光の中心波長と同じλ。−λ、に選
んであるので、光フアイバ4内で発生した後方散乱光の
うち、アンチストークス光のみが第2の干渉フィルタ1
2を透過して、透過光の光軸上に置かれた受光器9に入
射する。受光器9で受光されたアンチストークス光は電
気信号に変換され、その強度が測定される。
The Rayleigh scattered light of λ is transmitted through the first interference filter 11. Light with wavelengths other than those in the vicinity is filtered through the first interference filter 11.
reflected. A second interference filter 12 is installed on the optical axis of this reflected light, and the reflected light is made to enter the second interference filter 12. The center wavelength of the light transmitted through the second interference filter 12 is λ, which is the same as the center wavelength of the anti-Stokes light. -λ, of the backscattered light generated within the optical fiber 4, only the anti-Stokes light is transmitted to the second interference filter 1.
2 and enters a light receiver 9 placed on the optical axis of the transmitted light. The anti-Stokes light received by the light receiver 9 is converted into an electrical signal, and its intensity is measured.

第2の干渉フィルタ12を透過せずに反射した光は、反
射光の光軸上に置かれた第3の干渉フィルタ13に入射
する。第3の干渉フィルタ13の透過光の中心波長はス
トークス光の中心波長と同じλ0+λ、に選んであるの
で、光フアイバ4内で発生した後方散乱光のうち、スト
ークス光のみが第3の干渉フィルタ13を透過して、透
過光の光軸上に置かれた受光器7により電気信号に変換
され、アンチストークス光強度が測定される。
The light reflected without passing through the second interference filter 12 enters the third interference filter 13 placed on the optical axis of the reflected light. Since the center wavelength of the transmitted light of the third interference filter 13 is selected to be λ0+λ, which is the same as the center wavelength of the Stokes light, only the Stokes light of the backscattered light generated within the optical fiber 4 passes through the third interference filter. 13, it is converted into an electrical signal by a light receiver 7 placed on the optical axis of the transmitted light, and the anti-Stokes light intensity is measured.

なお、上記実施例では、光源の広がりや光ファイバの入
射口径の寸法等から決まる空間的結合効率はあまり良く
ないが、これを改善するためにはレンズの使用が考えら
れる。例えば、光源1と第1の干渉フィルタ11の間に
光源1から出射される光を平行光線になおすレンズを挿
入し、光ファイバ4と第1の干渉フィルタ11の間に平
行光線を集光するレンズを置き、また、受光器7および
9の前面にも集光用のレンズを置けばよい。
Note that in the above embodiment, the spatial coupling efficiency determined by the spread of the light source, the dimensions of the entrance aperture of the optical fiber, etc. is not very good, but in order to improve this, it is possible to use a lens. For example, a lens that transforms the light emitted from the light source 1 into parallel rays is inserted between the light source 1 and the first interference filter 11, and the parallel rays are focused between the optical fiber 4 and the first interference filter 11. In addition, a lens for condensing light may be placed in front of the light receivers 7 and 9.

また上記実施例において、干渉フィルタ11゜12.1
3の透過光の中心波長を適宜変えて、光源1と受光器9
の設定位置を交換したり、あるいは光ff11と受光器
7の設定位置を交換したりしても、上記と同様な測定が
できる。
Further, in the above embodiment, the interference filter 11°12.1
By appropriately changing the center wavelength of the transmitted light of 3, the light source 1 and the light receiver 9
Even if the setting positions of the light ff11 and the light receiver 7 are exchanged, the same measurement as described above can be performed.

また、干渉フィルタ12.13の透過光中心波長を変え
ることにより、アンチストークス光を受光器7で、スト
ークス光を受光器って測定することも可能である。更に
、上記実施例の干渉フィルタ11,12.13は特定波
長領域の光のみを選択的に透過する透過型の干渉フィル
タであったが、特定波長領域の光のみ選択的に反射する
反射型の干渉フィルタを用いて光学系を構成するように
してもよい。
Furthermore, by changing the center wavelength of the transmitted light of the interference filters 12 and 13, it is also possible to measure the anti-Stokes light with the light receiver 7 and the Stokes light with the light receiver. Furthermore, the interference filters 11, 12, and 13 in the above embodiments were transmission type interference filters that selectively transmitted only light in a specific wavelength range, but reflective type interference filters that selectively reflected only light in a specific wavelength range were used. The optical system may be configured using an interference filter.

[発明の効果] 以上型するに本発明によれば次のような効果を発揮する
ことができる。
[Effects of the Invention] To summarize, according to the present invention, the following effects can be achieved.

(1)  本発明では、従来用いられていた方向性結合
器やハーフミラ−の代わりに干渉フィルタを用いた光学
系としたことにより、理論効率を従来の方法では実現で
きなかった1とすることができ、測定感度を向上するこ
とができる。
(1) In the present invention, by using an optical system that uses interference filters instead of conventionally used directional couplers and half mirrors, it is possible to increase the theoretical efficiency to 1, which could not be achieved with conventional methods. It is possible to improve measurement sensitivity.

(2)  同一の干渉フィルタを光分離手段および波長
選択手段として働かせているため、構成部品点数を削減
できると共に各部品間で必要となる光軸調整の箇所を少
なくすることができ、コスト低減ならびにコンパクト化
を実現できる。
(2) Since the same interference filter is used as the optical separation means and the wavelength selection means, the number of component parts can be reduced and the number of optical axis adjustments required between each part can be reduced, reducing costs and reducing costs. It can be made more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光ファイバの後方ラマン敗乱光測
定装置の一実施例を示す構成図、第2図は従来の後方ラ
マン散乱光測定装置を示す構成図である。 図中、1は光源、2.6.8は光学フィルタ、3は方向
性結合器、4は光ファイバ、5はハーフミラ−17,9
は受光器、11は第1の干渉フィルタ、12は第2の干
渉フィルタ、13は第3の干渉フィルタである。
FIG. 1 is a block diagram showing an embodiment of an apparatus for measuring backward Raman scattered light of an optical fiber according to the present invention, and FIG. 2 is a block diagram showing a conventional backward Raman scattered light measuring apparatus. In the figure, 1 is a light source, 2, 6, 8 is an optical filter, 3 is a directional coupler, 4 is an optical fiber, 5 is a half mirror 17, 9
11 is a first interference filter, 12 is a second interference filter, and 13 is a third interference filter.

Claims (2)

【特許請求の範囲】[Claims] (1)光源より出射された光を中心波長λ_0の光を選
択的に透過または反射する第1の干渉フィルタに入射さ
せ、第1の干渉フィルタから透過または反射された中心
波長λ_0の光を受光すべく光ファイバの端面を配設し
、この端面より出射してくる光ファイバからの後方散乱
光を第1の干渉フィルタに逆方向に入射させ、第1の干
渉フィルタで反射または透過された光を受光して中心波
長λ_1の光を選択的に透過または反射する第2の干渉
フィルタを設けると共に、第2の干渉フィルタの透過側
または反射側に第2の干渉フィルタで透過または反射さ
れた中心波長λ_1の光を受光する受光器を設けたこと
を特徴とする光ファイバの後方ラマン散乱光測定装置。
(1) The light emitted from the light source is made incident on the first interference filter that selectively transmits or reflects the light with the center wavelength λ_0, and the light with the center wavelength λ_0 that is transmitted or reflected from the first interference filter is received. The backscattered light from the optical fiber that is emitted from this end face is made to enter the first interference filter in the opposite direction, and the light reflected or transmitted by the first interference filter is A second interference filter is provided that receives the light and selectively transmits or reflects the light with the center wavelength λ_1. 1. An optical fiber back Raman scattering light measuring device, characterized in that it is provided with a light receiver that receives light of wavelength λ_1.
(2)上記第2の干渉フィルタの反射側または透過側に
第2の干渉フィルタで反射または透過された光を受光し
て中心波長λ_2の光を選択的に透過または反射する第
3の干渉フィルタが設けられると共に第3の干渉フィル
タにより透過または反射された中心波長λ_2の光を受
光する受光器が設けられていることを特徴とする特許請
求の範囲第1項記載の光ファイバの後方ラマン散乱光測
定装置。
(2) A third interference filter that receives the light reflected or transmitted by the second interference filter on the reflection side or the transmission side of the second interference filter and selectively transmits or reflects the light with the center wavelength λ_2. Back Raman scattering of an optical fiber according to claim 1, further comprising a light receiver for receiving the light having the center wavelength λ_2 transmitted or reflected by the third interference filter. Light measurement device.
JP4036787A 1987-02-25 1987-02-25 Measuring instrument for back raman scattered light of optical fiber Pending JPS63208731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4036787A JPS63208731A (en) 1987-02-25 1987-02-25 Measuring instrument for back raman scattered light of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4036787A JPS63208731A (en) 1987-02-25 1987-02-25 Measuring instrument for back raman scattered light of optical fiber

Publications (1)

Publication Number Publication Date
JPS63208731A true JPS63208731A (en) 1988-08-30

Family

ID=12578669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4036787A Pending JPS63208731A (en) 1987-02-25 1987-02-25 Measuring instrument for back raman scattered light of optical fiber

Country Status (1)

Country Link
JP (1) JPS63208731A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201131A (en) * 1989-01-30 1990-08-09 Tokyo Electric Power Co Inc:The Optical fiber system distribution type temperature sensor
JPH02276932A (en) * 1989-01-30 1990-11-13 Tokyo Electric Power Co Inc:The Optical fiber distribution type temperature sensor
CN102346145A (en) * 2010-07-22 2012-02-08 索尼公司 Fine particle measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3207910A (en) * 1959-03-12 1965-09-21 Int Standard Electric Corp Photosensitive arrangement for scanning fluorescing identifications
JPS51131374A (en) * 1975-05-12 1976-11-15 Hitachi Ltd Filter photometer for multi-wave length
JPS61270632A (en) * 1985-05-25 1986-11-29 Hitachi Cable Ltd Optical fiber type measuring instrument for temperature distribution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3207910A (en) * 1959-03-12 1965-09-21 Int Standard Electric Corp Photosensitive arrangement for scanning fluorescing identifications
JPS51131374A (en) * 1975-05-12 1976-11-15 Hitachi Ltd Filter photometer for multi-wave length
JPS61270632A (en) * 1985-05-25 1986-11-29 Hitachi Cable Ltd Optical fiber type measuring instrument for temperature distribution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201131A (en) * 1989-01-30 1990-08-09 Tokyo Electric Power Co Inc:The Optical fiber system distribution type temperature sensor
JPH02276932A (en) * 1989-01-30 1990-11-13 Tokyo Electric Power Co Inc:The Optical fiber distribution type temperature sensor
JPH0711458B2 (en) * 1989-01-30 1995-02-08 東京電力株式会社 Optical fiber distributed temperature sensor
CN102346145A (en) * 2010-07-22 2012-02-08 索尼公司 Fine particle measuring device

Similar Documents

Publication Publication Date Title
JP7115387B2 (en) Light source device for light measurement, spectroscopic measurement device and spectroscopic measurement method
JPS6091203A (en) Multispindle measuring instrument
JPH0364812B2 (en)
JPH0120371B2 (en)
JPS63208731A (en) Measuring instrument for back raman scattered light of optical fiber
JPH0549057B2 (en)
JPS63132130A (en) Back raman scattered light measuring instrument for optical fiber
JPS599526A (en) Temperature measuring device
JPS63208730A (en) Method for measuring back raman scattered light of optical fiber
JP7238541B2 (en) Spectroscopic measurement device and spectroscopic measurement method
WO2022049986A1 (en) Pulse spectroscopy device and multi-fiber radiation unit
JPS633236A (en) Wavelength dispersion measuring instrument for optical fiber
JP2577199B2 (en) Optical fiber distributed temperature sensor
RU1805347C (en) Photometer-fluorimeter-nephelometer
JPS6144334A (en) Temperature measuring device
JPS59114432A (en) Method of measuring cutoff wavelength of primary and higher mode of optical fiber
JPS63222232A (en) Wavelength sensor
JP4713769B2 (en) High-frequency superposition operation inspection system for semiconductor laser
JPH0990140A (en) Two input fiber and two input fiber-type light-receiving device
JPS61138144A (en) Spectrophotometer for continuous measurement
JPH01140030A (en) Measuring apparatus of temperature of distribution-type optical fiber
SU1352202A1 (en) Device for checking roughness of surface
JPS6150037A (en) Light splitting circuit
JPH10142076A (en) Optical fiber type temperature distribution measuring device
JPH06123661A (en) Optical fiber distribution type temperature sensor and apparatus for generating two wavelength light