JPH0321837A - Distributed optical fiber temperature sensor and temperature measuring method - Google Patents

Distributed optical fiber temperature sensor and temperature measuring method

Info

Publication number
JPH0321837A
JPH0321837A JP1155786A JP15578689A JPH0321837A JP H0321837 A JPH0321837 A JP H0321837A JP 1155786 A JP1155786 A JP 1155786A JP 15578689 A JP15578689 A JP 15578689A JP H0321837 A JPH0321837 A JP H0321837A
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
measured
light
stokes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1155786A
Other languages
Japanese (ja)
Inventor
Koji Igawa
耕司 井川
Yuzuru Tanabe
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1155786A priority Critical patent/JPH0321837A/en
Publication of JPH0321837A publication Critical patent/JPH0321837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To easily reduce a drift error by providing a calibration part which measures an absolute temperature distribution from the temperature of an optical fiber to be measured at part of the optical fiber to be measured and comparing the intensity ratio of the regular and an anti-Stokes' light beam at the part with that at another part. CONSTITUTION:The calibration part consists of a light source part 1, a directional coupler 2, an optical fiber 3 for calibration, and a temperature sensor 4 and a measuring instrument consists of a spectroscope 7, photoelectric converters 8 and 9, amplifiers 10 and 11, and a signal processing part 12. The optical fiber 6 to be measured is connected by a connector 5 to the fiber 3 in series. Then laser pulses from the light source part 1 are made incident on the fiber 6 by the coupler 2 and the sensor 4 measures the temperature at the same time. Back ward scattered light generated with the laser pulses enters the measuring instrument again through the coupler 2 and is separated into the regular and anti-Stokes' light beams, which are converted into electric signals. The processing part 12 calculates the regular and anti-Stokes' signal ratio after S/N ratio improvement averaging, performs temperature conver sion processing, and adjusts an entire-area offset so that the calibration part temperature becomes as high as the measured temperature of the sensor 4. Consequently, the drift error is easily reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は分布型光ファイバー温度センサー及び温度測定
方法に係り、特に被測定光ファイバーのラマン散乱光に
含まれるストークス光と反ストークス光の強度比から絶
対的温度分布を測定する分布型光ファイバー温度センサ
ー及び温度測定方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a distributed optical fiber temperature sensor and a temperature measurement method, and in particular to a temperature measurement method based on the intensity ratio of Stokes light and anti-Stokes light contained in Raman scattered light of an optical fiber to be measured. The present invention relates to a distributed optical fiber temperature sensor that measures absolute temperature distribution and a temperature measurement method.

[従来の技術] 従来の分布型光ファイバー温度センサーのブロック図を
第2図に示す。
[Prior Art] A block diagram of a conventional distributed optical fiber temperature sensor is shown in FIG.

LD等の光源部l3から発振したレーザパルスは、光フ
ァイバーカブラーや音響光学素子等の光方向性結合器l
4を通過し、被測定用の光ファイバー15へ入射される
。光ファイバーl5からのラマン散乱光の一部は逆戻り
して光方向性結合器l4により測定装置へ導光される。
Laser pulses oscillated from a light source unit l3 such as an LD are sent to an optical directional coupler l such as an optical fiber coupler or an acousto-optic element.
4 and enters the optical fiber 15 to be measured. A part of the Raman scattered light from the optical fiber 15 returns and is guided to the measuring device by the optical directional coupler 14.

測定装置では以下の処理がなされる.ラマン散乱光に含
まれるストークス光と反ストークス光は光学フィルター
等の分光器16で分離されて、各々光電変換器17. 
18で検出される.更に増幅器19. 20で増幅され
た後、信号処理部2lで平均化処理あるいはストークス
光と反ストークス光の強度比から温度分布を算出する等
の処理がなされる。ストークス光と反ストークス光の強
度比が絶対温度のみの関数であることは従来から知られ
ていた.ストークス光強度を工.、反ストーク光強度を
工.、ν。を入射光波長、ν7をラマンシフト、Cを光
ファイバー中の光速、kをボルツマン定数、hをブラン
ク定数とすると、工.とI8の比は ・ ・ (1) で表わされる。上式において、 八=(ν0+ν.)’ / (νo−vR)4として両
辺の自然対数をとると、 hcy真 in(I . /I . ) =1nA− −− ・・
(ikT となり、左辺は絶対温度Tのみの関数となる。
The measurement device performs the following processing. Stokes light and anti-Stokes light contained in the Raman scattered light are separated by a spectrometer 16 such as an optical filter, and each is separated by a photoelectric converter 17.
Detected at 18. Furthermore, an amplifier 19. After being amplified in step 20, the signal processing unit 2l performs processing such as averaging processing or calculating temperature distribution from the intensity ratio of Stokes light and anti-Stokes light. It has long been known that the intensity ratio of Stokes light and anti-Stokes light is a function only of absolute temperature. Manipulating the Stokes light intensity. , the anti-Stokes light intensity is calculated. , ν. When is the incident light wavelength, ν7 is the Raman shift, C is the speed of light in the optical fiber, k is Boltzmann's constant, and h is Blank's constant, then F. The ratio of I8 and I8 is expressed as... (1). In the above equation, if we take the natural logarithm of both sides as 8=(ν0+ν.)'/(νo-vR)4, then hcy true in(I./I.) =1nA- --...
(ikT, and the left side is a function only of absolute temperature T.

従って、反ストークス光とストークス光の強度比を求め
ることにより絶対温度の測定が可能である。従来は、反
ストークス光とストークス光の二種類の検出光の出力電
気信号va .V*の比をとり、これが1./I.に等
しいとして(2)式に代入し温度を検出していた。
Therefore, absolute temperature can be measured by determining the intensity ratio of anti-Stokes light and Stokes light. Conventionally, output electric signals va. Take the ratio of V*, and this is 1. /I. The temperature was detected by substituting it into equation (2) as being equal to .

[発明の解決しようとする課題] 従来技術において、検出系は、ストークス光と反ストー
クス光の二種類の独立した検出器(光電変換器)と増幅
器から構成されており、各々は互いに異なるドリフトが
生じる。その結果、ドリフトの生じた出力電気信号比V
.′/v1はもはや反ストークス光とストークス光の真
の強度比には等しくなくなり、計測結果にエラーを生じ
ることになる. [作用] 本発明は、次のような方法によりドリフトを補償する。
[Problems to be Solved by the Invention] In the prior art, the detection system is composed of two types of independent detectors (photoelectric converters) for Stokes light and anti-Stokes light, and an amplifier, each of which has a different drift. arise. As a result, the output electric signal ratio V
.. '/v1 is no longer equal to the true intensity ratio of the anti-Stokes light and the Stokes light, causing an error in the measurement results. [Operation] The present invention compensates for drift by the following method.

理想状態での検出系の出力信号(真の値)をV @ %
 V Bとし、ドリフト後の出力信号なva’、v1と
する6 I a / I s =Va /Vm = gd(va
’/Vm’ )・ ・ ・ ・ (3) (2)式に代入して、 tlc’L’*    1 incd +ln( va’/vm’) =1nA+k
TT・ ・ ・ ・ (4) ・ ・ ・ ・ (5) 即ち、εdは距離にも温度にも依存しない、いわゆるオ
フセットエラーとして全測定領域のに一様に影響する。
The output signal (true value) of the detection system in the ideal state is V @ %
6 I a / I s = Va /Vm = gd (va
'/Vm')・・・・・(3) Substitute into equation (2) and get tlc'L'* 1 incd +ln(va'/vm') =1nA+k
TT (4) (5) That is, εd uniformly affects the entire measurement area as a so-called offset error that does not depend on distance or temperature.

そこで被測定光ファイバーの一部を校正部として、この
部分のファイバー温度を温度センサーで測定し、参照す
ることにより全測定領域のオフセットを補償する。
Therefore, a part of the optical fiber to be measured is used as a calibration part, and the fiber temperature of this part is measured with a temperature sensor and referenced to compensate for the offset of the entire measurement area.

[実施例] 第1図は実施例のブロック図であり、光源部lからレー
ザパルスは2の方向性結合器により被測定光ファイバー
6に入射される。3,4は校正用光ファイバー3と温度
センサー4からなる校正部であり、この部分の4度は例
えば、白金測温体、半導体トランスデューサー、サーミ
スタ等の温度センサー4によって同時に計測されている
。この校正用光ファイバー3は実際に測定に供される被
測定光ファイバー6とFCコネクタ等の接続部5で直列
に接続されている。
[Embodiment] FIG. 1 is a block diagram of an embodiment, in which a laser pulse from a light source section 1 is inputted into an optical fiber 6 to be measured through a directional coupler 2. In FIG. Reference numerals 3 and 4 indicate a calibration section consisting of a calibration optical fiber 3 and a temperature sensor 4, and the temperature of 4 degrees in this section is simultaneously measured by the temperature sensor 4 such as a platinum thermometer, a semiconductor transducer, a thermistor, or the like. This optical fiber 3 for calibration is connected in series with an optical fiber 6 to be measured which is actually used for measurement through a connecting portion 5 such as an FC connector.

校正用光ファイバー3の長さは、距離分解能1〜lom
の2.5倍以上の長さがあれば良く、2.5倍より小・
さいと測定精度の点で不十分である。
The length of the calibration optical fiber 3 has a distance resolution of 1 to 1 lom.
The length should be 2.5 times or more, and the length should be smaller than 2.5 times.
The measurement accuracy is insufficient.

入射されたレーザパルスにより発生した後方散乱光は、
光方向性結合器2を再び通って測定装置へ導かれる。測
定装置は分光器7、光電変換器8,9、増幅器10, 
11、信号処理部l2で構成されており、ストークス光
と反ストークス光が分離され、電気信号に変換される.
信号処理部12では、S/N比を改善するアベレージン
グの後、ストークス信号と反ストークス信号の比をとり
、温度に換算する処理が行なわれる。この時、校正部の
温度が温度センサー4で測定した温度に等しくなるよう
に全領域のオフセット値を調整する。
The backscattered light generated by the incident laser pulse is
The light passes through the optical directional coupler 2 again and is guided to the measuring device. The measuring device includes a spectrometer 7, photoelectric converters 8 and 9, an amplifier 10,
11. Consists of a signal processing unit l2, which separates Stokes light and anti-Stokes light and converts them into electrical signals.
In the signal processing unit 12, after averaging to improve the S/N ratio, a process is performed in which the ratio of the Stokes signal and the anti-Stokes signal is calculated and converted into temperature. At this time, the offset values of all regions are adjusted so that the temperature of the calibration section becomes equal to the temperature measured by the temperature sensor 4.

[発明の効果] 本発明は、測定装置自体の精度および安定性を高めるこ
となしに、簡易な手段でドリフトエラーを低減させると
いう優れた効果を有する.
[Effects of the Invention] The present invention has the excellent effect of reducing drift errors by simple means without increasing the accuracy and stability of the measuring device itself.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック図であり、第2
図は従来例を示すブロック図である。 3・ 4・ 6・ 12・ ・校正用光ファイバー ・温度センサー ・被測定光ファイバー ・信号処理部
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG.
The figure is a block diagram showing a conventional example. 3. 4. 6. 12. ・Optical fiber for calibration・Temperature sensor・Optical fiber to be measured・Signal processing section

Claims (2)

【特許請求の範囲】[Claims] (1)被測定光フアイバーへレーザパルスを入射する光
源部と、被測定光ファイバーからのラマン散乱光を測定
装置へ光路変換する光方向性結合器と、該ラマン散乱光
に含まれるストークス光と反ストークス光の強度比から
被測定光ファイバーの温度分布を測定する測定装置とか
らなる分布型光ファイバー温度センサーにおいて、該被
測定光ファイバーの1部にその温度から絶対的温度分布
を測定する校正部を設け、該校正部に温度センサーを配
置したことを特徴とする分布型光ファイバー温度センサ
ー。
(1) A light source unit that injects a laser pulse into the optical fiber to be measured, an optical directional coupler that converts the optical path of the Raman scattered light from the optical fiber to be measured, and a light directional coupler that converts the Stokes light contained in the Raman scattered light. A distributed optical fiber temperature sensor comprising a measuring device that measures the temperature distribution of an optical fiber to be measured from the intensity ratio of Stokes light, wherein a calibration part is provided in a part of the optical fiber to be measured to measure the absolute temperature distribution from the temperature, A distributed optical fiber temperature sensor characterized in that a temperature sensor is disposed in the calibration section.
(2)その一部に温度センサーを設けた被測定光ファイ
バーへ光源部より発振したレーザパルスを入射し、該被
測定光ファイバーからのラマン散乱光を光方向性結合器
により測定装置へ導光し、該測定装置によって該ラマン
散乱光に含まれるストークス光と反ストークス光の強度
比から被測定光ファイバーの温度分布を測定する温度測
定方法において、該温度センサーが設けられた部分を校
正部とし、該校正部のストークス光と反ストークス光の
強度比と、他の部分のストークス光と反ストークス光の
強度比を比較することにより被測定光ファイバーの絶対
的温度分布を測定することを特徴とする温度測定方法。
(2) Injecting a laser pulse oscillated from a light source into an optical fiber to be measured, a part of which is provided with a temperature sensor, and guiding the Raman scattered light from the optical fiber to be measured to a measuring device by an optical directional coupler; In the temperature measurement method in which the temperature distribution of the optical fiber to be measured is measured from the intensity ratio of Stokes light and anti-Stokes light contained in the Raman scattered light using the measurement device, a portion where the temperature sensor is provided is used as a calibration section, and the calibration is performed. A temperature measurement method characterized by measuring the absolute temperature distribution of an optical fiber to be measured by comparing the intensity ratio of Stokes light and anti-Stokes light in one part with the intensity ratio of Stokes light and anti-Stokes light in another part. .
JP1155786A 1989-06-20 1989-06-20 Distributed optical fiber temperature sensor and temperature measuring method Pending JPH0321837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1155786A JPH0321837A (en) 1989-06-20 1989-06-20 Distributed optical fiber temperature sensor and temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1155786A JPH0321837A (en) 1989-06-20 1989-06-20 Distributed optical fiber temperature sensor and temperature measuring method

Publications (1)

Publication Number Publication Date
JPH0321837A true JPH0321837A (en) 1991-01-30

Family

ID=15613391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1155786A Pending JPH0321837A (en) 1989-06-20 1989-06-20 Distributed optical fiber temperature sensor and temperature measuring method

Country Status (1)

Country Link
JP (1) JPH0321837A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180704A (en) * 1992-01-07 1993-07-23 Tokyo Electric Power Co Inc:The Temperature distribution measuring method utilizing optical fiber
US8794828B1 (en) * 2013-07-19 2014-08-05 Beijing Information Science & Technology University Method for measuring temperature of object using longitudinal mode output of short cavity fiber laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126522A (en) * 1987-11-12 1989-05-18 Hitachi Cable Ltd Optical fiber linear temperature distribution measuring device
JPH02145933A (en) * 1988-11-28 1990-06-05 Hitachi Cable Ltd Optical fiber linear temperature distribution measuring system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126522A (en) * 1987-11-12 1989-05-18 Hitachi Cable Ltd Optical fiber linear temperature distribution measuring device
JPH02145933A (en) * 1988-11-28 1990-06-05 Hitachi Cable Ltd Optical fiber linear temperature distribution measuring system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180704A (en) * 1992-01-07 1993-07-23 Tokyo Electric Power Co Inc:The Temperature distribution measuring method utilizing optical fiber
US8794828B1 (en) * 2013-07-19 2014-08-05 Beijing Information Science & Technology University Method for measuring temperature of object using longitudinal mode output of short cavity fiber laser

Similar Documents

Publication Publication Date Title
EP2400284B1 (en) Optical fiber temperature distribution measuring device
JPH0364812B2 (en)
JPH03108627A (en) Temperature measurement and distributed type optical fiber temperature sensor
US20160003687A1 (en) Optical fiber temperature distribution measuring device
CN111307324B (en) Method for compensating APD temperature drift in Raman distributed optical fiber temperature measurement system
JPH0321837A (en) Distributed optical fiber temperature sensor and temperature measuring method
CN108120461B (en) Fiber Bragg grating demodulation method and device based on chaotic light source
JP2897389B2 (en) Temperature measuring method and distributed optical fiber temperature sensor
JPH04332835A (en) Corrective processing method of distributed temperature data
JP3377067B2 (en) Brillouin frequency shift distribution measuring method and apparatus
JPH03185322A (en) Optical-fiber type temperature-distribution measuring apparatus
JPH01235834A (en) Signal processing system of laser system gas sensor
JP2645173B2 (en) Temperature distribution measurement type optical fiber sensor
JPS6190024A (en) Radiation thermometer
JP3106443B2 (en) Temperature distribution measuring method and device therefor
JP2885980B2 (en) Temperature distribution detector
JPH02306131A (en) Measuring method for temperature distribution of optical fiber
JPH05172657A (en) Optical fiber distributed temperature sensor
RU1616318C (en) Method of determining structural characteristic of fluctuation of atmosphere index of refraction
JPH0113527B2 (en)
JPH02145933A (en) Optical fiber linear temperature distribution measuring system
JPH04134228A (en) Distribution type optical fiber sensor and signal treating method
JPS625605Y2 (en)
JPS623609A (en) Range finder
JPH03135743A (en) Distribution type optical fiber sensor