JPH04134228A - Distribution type optical fiber sensor and signal treating method - Google Patents

Distribution type optical fiber sensor and signal treating method

Info

Publication number
JPH04134228A
JPH04134228A JP2255300A JP25530090A JPH04134228A JP H04134228 A JPH04134228 A JP H04134228A JP 2255300 A JP2255300 A JP 2255300A JP 25530090 A JP25530090 A JP 25530090A JP H04134228 A JPH04134228 A JP H04134228A
Authority
JP
Japan
Prior art keywords
optical fiber
measured
signal processing
light
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2255300A
Other languages
Japanese (ja)
Other versions
JP2900081B2 (en
Inventor
Koji Igawa
耕司 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2255300A priority Critical patent/JP2900081B2/en
Publication of JPH04134228A publication Critical patent/JPH04134228A/en
Application granted granted Critical
Publication of JP2900081B2 publication Critical patent/JP2900081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To improve the measuring distance and the temperature resolution of temperature distribution in a low or high temperature region by making the control of AOM used for an optical directional coupler and the sensitivity setting, synchronized with the control, of a detector, and effectively assigning a dynamic range of a device to a to-be-measured object. CONSTITUTION:A device is composed of a semiconductor laser generation part 1, acoustooptic modulator (hereinafter abbreviated to AOM) 2, to-be-measured optical fiber 3, spectroscope 4, detectors 5 and 6 using photoelectric converters, amplifiers 7 and 8, digital signal treatment part 9, computer 10, timing generator 11, and to-be- measured object 12. The timing generator 11 outputs the control signal of the AOM 2 besides a laser pulse trigger signal. The rise of the control signal and a trigger signal have a time difference corresponding to a distance to a boundary point. This guids Raman scattering light after the boundary point to the detectors gain-set conforming to the level. That is, a lower gain is set in a high temperature region and a higher gain is set in the measurement of a low temperature region, and the AOM is controlled so as to avoid the measurement of the boundary point. Thus temperature distribution can be measured over the overall length of an optical fiber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は分布型光ファイバー温度センサー及び温度測定
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distributed optical fiber temperature sensor and a temperature measurement method.

[従来の技術] 従来の分布型光ファイバー温度センサーのブロック図を
第4図に示す。光源部のレーザパルサー20から発振し
たレーザパルスは、被測定用ノ光ファイバー22へ入射
され、光ファイバー22中で発生したラマン散乱光が入
射端へ戻ってくる。該ラマン散乱光は光方向性結合器2
1により測定装置へ導光され、まずフィルター23によ
りラマン散乱光中のストークス光と反ストークス光が分
離検出され、各々光電変換部24.24’でその強度に
比例した電気信号に変換される。該電気信号は各々プリ
アンプ25.25’により増幅され、アベレージヤ−2
6にて所定回数平均化処理がなされる。平均化処理され
た信号は信号処理部27へ伝送され、ストークス光と反
ストークス光の信号の比をとり、信号の遅れ時間から距
離に関する温度分布への換算等の処理がなされる。
[Prior Art] A block diagram of a conventional distributed optical fiber temperature sensor is shown in FIG. A laser pulse oscillated from a laser pulser 20 in the light source section is input to an optical fiber 22 to be measured, and Raman scattered light generated in the optical fiber 22 returns to the input end. The Raman scattered light is transmitted to the optical directional coupler 2.
1, the light is guided to the measuring device, and first, the Stokes light and anti-Stokes light in the Raman scattered light are separated and detected by the filter 23, and each is converted into an electric signal proportional to the intensity by the photoelectric conversion unit 24, 24'. The electrical signals are amplified by preamplifiers 25 and 25' respectively, and averaged by 25 and 25'.
In step 6, averaging processing is performed a predetermined number of times. The averaged signal is transmitted to the signal processing section 27, where the ratio of the Stokes light and anti-Stokes light signals is calculated, and processing such as conversion from signal delay time to temperature distribution with respect to distance is performed.

C発明の解決しようとする問題点コ 光ファイバー以外の装置は動作保証温度範囲内の温度環
境におかれており、光ファイバーの一端はここに接続さ
れている。一方著しく高温又は低温の測定対象物は一般
に常温領域と断熱されている事が多(、必然的に光ファ
イバーに極端な温度勾配を有する点が少なくとも一カ所
は生じる。例えば電気炉内温度分布計測等に於いては数
cmで200〜500℃の温度勾配が生じる。この様な
温度境界点に於ける損失は3〜10dBあり、ダイナミ
ックレンジを著しく浪費し、測定距離や温度分解能を劣
化させてしまう。
C Problems to be Solved by the Invention C Devices other than optical fibers are placed in a temperature environment within the guaranteed operating temperature range, and one end of the optical fiber is connected here. On the other hand, objects to be measured at extremely high or low temperatures are generally insulated from the room temperature range (and inevitably there will be at least one point in the optical fiber with an extreme temperature gradient. For example, measurement of temperature distribution in an electric furnace, etc.) A temperature gradient of 200 to 500 degrees Celsius occurs over a few cm.The loss at such temperature boundary points is 3 to 10 dB, which significantly wastes the dynamic range and degrades the measurement distance and temperature resolution. .

又、温度境界点以降の信号レベルに合わせてゲイン設定
すると、境界点手前の信号によって検出器が飽和してし
まうという問題があった。
Furthermore, if the gain is set in accordance with the signal level after the temperature boundary point, there is a problem in that the detector is saturated by the signal before the boundary point.

[問題点を解決するための手段] 本発明は前述の問題点を解決すべくなされたものであり
、被測定用の光ファイバーヘレーザパルスを入射する光
源と、該光ファイバーからの戻り光を検出器へ導光する
音響光学変調器と、該戻り光を電気信号へ光電変換する
検出器と、該電気信号より該光ファイバーの距離に関す
る物理量分布を算出する信号処理部とを備えた分布型光
ファイバーセンサーにおいて、急峻な物理量の勾配が発
生した境界点によって区分される複数の測定領域を各々
異なる利得で測定することを特徴とする分布型光ファイ
バーセンサー、および、光源より被測定用の光ファイバ
ーヘレーザパルスを入射し、該光ファイバーからの戻り
光を光電変換し、光電変換された電気信号を信号処理部
で処理して該光ファイバーの距離に関する物理量分布を
算出する信号処理方法において、急峻な物理量の勾配が
発生した境界点によって区分される複数の測定領域を各
々異なる利得で測定することを特徴とした信号処理方法
を提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and includes a light source that enters a laser pulse into an optical fiber to be measured, and a detector that detects the return light from the optical fiber. In a distributed optical fiber sensor comprising an acousto-optic modulator that guides light to the optical fiber, a detector that photoelectrically converts the returned light into an electrical signal, and a signal processing unit that calculates a physical quantity distribution regarding the distance of the optical fiber from the electrical signal. , a distributed optical fiber sensor that measures multiple measurement areas divided by boundary points where steep gradients of physical quantities occur, each with a different gain, and a laser pulse input from a light source into an optical fiber to be measured. However, in a signal processing method that photoelectrically converts the return light from the optical fiber and processes the photoelectrically converted electrical signal in a signal processing unit to calculate a physical quantity distribution regarding the distance of the optical fiber, a steep gradient of the physical quantity occurs. The present invention provides a signal processing method characterized in that a plurality of measurement regions divided by boundary points are measured with different gains.

第2図は従来の装置に於ける検出信号であり、I3はレ
ーザパルストリガー信号、14はラマン散乱信号である
。14は局所的な損失により、ダイナミックレンジ不足
が生じている。第1図は実施例であり、1は半導体レー
ザ等のレーザ発生部、2は音響光学変調器(以下AOM
と略す)、3は被測定光ファイバー、4は分光器、5.
6はフォトダイオード等の光電変換器を用いた検出器、
7.8は増幅器、9はディジタル信号処理部、10はコ
ンピュータ、11はタイミングジェネレータ、12は測
定対象である。タイミングジェネレータ11はレーザパ
ルストリガー信号の他にAOM2の制御信号を出力する
。この制御信号の立上りとトリガー信号は、境界点まで
の距離に相当する時間差を有している。これにより、境
界点以降のラマン敗乱光が、このレベルに合わせてゲイ
ン設定された検出器へ導光される。
FIG. 2 shows detection signals in a conventional device, where I3 is a laser pulse trigger signal and 14 is a Raman scattering signal. In No. 14, the dynamic range is insufficient due to local loss. FIG. 1 shows an embodiment, where 1 is a laser generator such as a semiconductor laser, 2 is an acousto-optic modulator (hereinafter referred to as AOM), and 2 is an acousto-optic modulator (hereinafter referred to as AOM).
), 3 is an optical fiber to be measured, 4 is a spectrometer, 5.
6 is a detector using a photoelectric converter such as a photodiode;
7.8 is an amplifier, 9 is a digital signal processing unit, 10 is a computer, 11 is a timing generator, and 12 is an object to be measured. The timing generator 11 outputs a control signal for the AOM 2 in addition to the laser pulse trigger signal. The rise of this control signal and the trigger signal have a time difference corresponding to the distance to the boundary point. As a result, the Raman scattered light after the boundary point is guided to a detector whose gain is set according to this level.

[イ乍用] 第3図は実施例に於けるタイミングチャートであり、1
5はレーザパルストリガー信号、16はAOM制御信号
、17はラマン散乱信号である。AOM制御信号16に
より、急激な温度勾配を有する境界点を含んで連続して
測定しないように、境界点と境界点の間の区間をその区
間毎にゲイン設定して、各々個別に測定する。第3図は
、その1区間のみを測定するように制御したものである
。即ち、高温領域においては低めのゲインを設定し、低
温領域の測定には高めのゲインを設定して、その境界点
の測定は回避するようAOMを制御する。
[For use] Figure 3 is a timing chart in the embodiment, and 1
5 is a laser pulse trigger signal, 16 is an AOM control signal, and 17 is a Raman scattering signal. Using the AOM control signal 16, a gain is set for each section between the boundary points so that continuous measurements including boundary points having a steep temperature gradient are not performed, and each section is individually measured. FIG. 3 shows control so that only one section is measured. That is, a lower gain is set in the high temperature region, a higher gain is set for measurement in the low temperature region, and the AOM is controlled so as to avoid measurements at the boundary points.

本発明において、測定対象の物理量としては温度、圧力
、破断点等が測定される。
In the present invention, temperature, pressure, breaking point, etc. are measured as physical quantities to be measured.

[実施例] 測定距離2kmの被測定用の光ファイバーを用い、トラ
ンスインピーダンスを4MΩにして温度分布を測定した
。光源であるパルス型半導体レーザからの距離60(1
mの地点で室温23℃からの急激な温度降下1000°
C/mにより約4dBのロスが発生し一120℃の部分
が検出され、それ以降の測定がダイナミックレンジ不足
のため不可能となった。
[Example] Using an optical fiber to be measured with a measurement distance of 2 km, temperature distribution was measured with the transimpedance set to 4 MΩ. The distance from the pulsed semiconductor laser that is the light source is 60 (1
Rapid temperature drop of 1000° from room temperature 23°C at point m
A loss of approximately 4 dB occurred due to C/m, and a portion of -120° C. was detected, making subsequent measurements impossible due to insufficient dynamic range.

そこで、距離600mの地点以降の部分の測定に対して
はトランスインピーダンスをIOMΩに設定し、600
mの地点を含む前後±30m(±0.3μsec )は
AOM制御により測定を回避し再度測定を行ったところ
、光ファイバーの全長にわたって温度分布が測定可能と
なった。
Therefore, for the measurement of the part after the distance of 600 m, the transimpedance was set to IOMΩ, and the
Measurement was avoided for ±30 m (±0.3 μsec) before and after the point m by AOM control, and the measurement was performed again, and it became possible to measure the temperature distribution over the entire length of the optical fiber.

本発明において、数百’C/ mの急激な温度変化で3
〜6dBの損失が発生した場合に本発明方法を適用する
のが好ましい。
In the present invention, a rapid temperature change of several hundred'C/m
Preferably, the method of the invention is applied when a loss of ~6 dB occurs.

[発明の効果] 本発明は、光方向性結合器に用いたAOMの制御とそれ
に同期した検出器の感度設定を行ない、装置の有するダ
イナミックレンジを有効に計測対象に割り当てる事によ
り、低温又は高温領域の温度分布の測定距離及び温度分
解能を改善するという優れた効果を有する。
[Effect of the invention] The present invention controls the AOM used in the optical directional coupler and sets the sensitivity of the detector in synchronization with the AOM, and effectively allocates the dynamic range of the device to the measurement target. It has the excellent effect of improving the measurement distance and temperature resolution of the temperature distribution in the area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第3図は本発明の実施例を示し、第1図は分布
型光ファイバー温度センサーのブロック図であり、第3
図は一タイミングチャートであり、第2図は従来例のタ
イミングチャートであり、第4図は従来の分布型光ファ
イバー温度センサーのブロック図である。 2・・・AOM 11・・・タイミングジェネレータ 第2図
1 and 3 show embodiments of the present invention, FIG. 1 is a block diagram of a distributed optical fiber temperature sensor, and FIG. 3 is a block diagram of a distributed optical fiber temperature sensor.
This figure is a timing chart, FIG. 2 is a timing chart of a conventional example, and FIG. 4 is a block diagram of a conventional distributed optical fiber temperature sensor. 2...AOM 11...Timing generator Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)被測定用の光ファイバーへレーザパルスを入射す
る光源と、該光ファイバーからの戻り光を検出器へ導光
する音響光学変調器と、 該戻り光を電気信号へ光電変換する検出器と、該電気信
号より該光ファイバーの距離に関する物理量分布を算出
する信号処理部とを備えた分布型光ファイバーセンサー
において、急峻な物理量の勾配が発生した境界点によっ
て区分される複数の測定領域を各々異なる利得で測定す
ることを特徴とする分布型光ファイバーセンサー。
(1) a light source that injects a laser pulse into an optical fiber to be measured; an acousto-optic modulator that guides the return light from the optical fiber to a detector; a detector that photoelectrically converts the return light into an electrical signal; In a distributed optical fiber sensor equipped with a signal processing unit that calculates a physical quantity distribution related to the distance of the optical fiber from the electric signal, a plurality of measurement areas divided by boundary points where a steep gradient of the physical quantity has occurred are each measured with a different gain. A distributed optical fiber sensor that measures
(2)光源より被測定用の光ファイバーへレーザパルス
を入射し、該光ファイバーからの戻り光を光電変換し、
光電変換された電気信号を信号処理部で処理して該光フ
ァイバーの距離に関する物理量分布を算出する信号処理
方法において、急峻な物理量の勾配が発生した境界点に
よって区分される複数の測定領域を各々異なる利得で測
定することを特徴とした信号処理方法。
(2) Injecting a laser pulse from a light source into an optical fiber to be measured, photoelectrically converting the return light from the optical fiber,
In a signal processing method in which a photoelectrically converted electrical signal is processed by a signal processing unit to calculate a physical quantity distribution related to the distance of the optical fiber, a plurality of measurement areas divided by boundary points where a steep gradient of the physical quantity occurs is divided into different measurement areas. A signal processing method characterized by measurement by gain.
(3)被測定用の光ファイバーへレーザパルスを入射す
る光源と、該光ファイバーからの後方ラマン散乱光を検
出器へ導光する音響光学変調器と、該後方ラマン散乱光
中に含まれるストークス光と反ストークス光を各々を電
気信号へ光電変換する検出器と、該電気信号より該光フ
ァイバーの距離に関する温度分布を算出する信号処理部
とを備えた分布型光ファイバー温度センサーにおいて、
急峻な温度勾配が発生した境界点によって区分される複
数の測定領域を各々異なる利得で測定する分布型光ファ
イバー温度センサー。
(3) A light source that injects a laser pulse into the optical fiber to be measured, an acousto-optic modulator that guides the backward Raman scattered light from the optical fiber to the detector, and a Stokes light contained in the backward Raman scattered light. A distributed optical fiber temperature sensor comprising a detector that photoelectrically converts each anti-Stokes light into an electric signal, and a signal processing unit that calculates a temperature distribution with respect to the distance of the optical fiber from the electric signal,
A distributed optical fiber temperature sensor that measures multiple measurement areas, each with a different gain, divided by boundary points where steep temperature gradients occur.
(4)光源より被測定用の光ファイバーへレーザパルス
を入射し、該光ファイバーからの後方ラマン散乱光中に
含まれるストークス光と反ストークス光を光電変換し、
光電変換された電気信号を信号処理部で処理して該光フ
ァイバーの距離に関する温度分布を算出する信号処理方
法において、急峻な温度勾配が発生した境界点によって
区分される複数の測定領域を各々異なる利得で測定する
信号処理方法。
(4) Injecting a laser pulse from a light source into an optical fiber to be measured, photoelectrically converting Stokes light and anti-Stokes light contained in the backward Raman scattered light from the optical fiber,
In a signal processing method in which a photoelectrically converted electrical signal is processed by a signal processing unit to calculate the temperature distribution with respect to the distance of the optical fiber, a plurality of measurement regions divided by boundary points where a steep temperature gradient occurs are each processed with different gains. signal processing method to measure.
JP2255300A 1990-09-27 1990-09-27 Distributed optical fiber sensor, distributed optical fiber temperature sensor, and signal processing method Expired - Lifetime JP2900081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2255300A JP2900081B2 (en) 1990-09-27 1990-09-27 Distributed optical fiber sensor, distributed optical fiber temperature sensor, and signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2255300A JP2900081B2 (en) 1990-09-27 1990-09-27 Distributed optical fiber sensor, distributed optical fiber temperature sensor, and signal processing method

Publications (2)

Publication Number Publication Date
JPH04134228A true JPH04134228A (en) 1992-05-08
JP2900081B2 JP2900081B2 (en) 1999-06-02

Family

ID=17276863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2255300A Expired - Lifetime JP2900081B2 (en) 1990-09-27 1990-09-27 Distributed optical fiber sensor, distributed optical fiber temperature sensor, and signal processing method

Country Status (1)

Country Link
JP (1) JP2900081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710150A1 (en) * 1993-09-17 1995-03-24 Cortaillod Cables Sa Method for measuring the Brillouin scattering in an optical fibre and device for implementing this method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015103139B3 (en) * 2015-03-04 2016-08-11 Aiq Dienstleistungen Ug (Haftungsbeschränkt) Distributed optical measuring devices and methods for performing a measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710150A1 (en) * 1993-09-17 1995-03-24 Cortaillod Cables Sa Method for measuring the Brillouin scattering in an optical fibre and device for implementing this method

Also Published As

Publication number Publication date
JP2900081B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
KR970705742A (en) AUTOMATIC GAIN CONTROL FOR INFRARED RADIATION PYROMETER
US20210116311A1 (en) Self-calibration detection device and temperature demodulation method oriented to fiber raman temperature sensing system
JPH0364812B2 (en)
CN112378430B (en) Distributed optical fiber Raman sensing device and method based on chaotic laser
KR20130099353A (en) Distributed optical fiber sensor and sensing method using simultaneous sensing of brillouin gain and loss
JP3094917B2 (en) Optical fiber strain measurement device
JPH04134228A (en) Distribution type optical fiber sensor and signal treating method
CN112880865B (en) Ultra-long-distance high-spatial-resolution Raman optical fiber dual-parameter sensing system and method
CN211602216U (en) Distributed optical fiber system for rapidly monitoring temperature of superconductor
JP2023131864A (en) Optical fiber sensor and method for measuring brillouin frequency shift
CN108120461B (en) Fiber Bragg grating demodulation method and device based on chaotic light source
Wakami et al. 1.55-um long-span fiber optic distributed temperature sensor
CN110987231A (en) Distributed optical fiber system for rapidly monitoring temperature of superconductor
JPH01267428A (en) Optical fiber type sensor for temperature distribution
JPH02201233A (en) Distribution type optical fiber temperature sensor and its method of temperature measurement
JP3065833B2 (en) Temperature distribution detector
JPH02206737A (en) Distribution type optical fiber temperature sensor and temperature measuring method
KR102178795B1 (en) device for High speed SIGNAL PROCESSIng of OFDR(OPtical Freqeuncy Domain Reflectometry) optical fiber sensor
JP6338154B2 (en) Brillouin scattering measuring apparatus and Brillouin scattering measuring method
JPH0321837A (en) Distributed optical fiber temperature sensor and temperature measuring method
JP3614491B2 (en) Optical fiber temperature distribution measuring method and apparatus
RU2801071C1 (en) Device for monitoring vibroacoustic characteristics of extended object with recognition system based on machine learning and neural networks
JPH02145933A (en) Optical fiber linear temperature distribution measuring system
CN107246847A (en) A kind of strain sensing system detected based on the flight time and its method for sensing
JPH05172657A (en) Optical fiber distributed temperature sensor