JP2004271537A - Method for measuring temperature of molten slag - Google Patents

Method for measuring temperature of molten slag Download PDF

Info

Publication number
JP2004271537A
JP2004271537A JP2004137021A JP2004137021A JP2004271537A JP 2004271537 A JP2004271537 A JP 2004271537A JP 2004137021 A JP2004137021 A JP 2004137021A JP 2004137021 A JP2004137021 A JP 2004137021A JP 2004271537 A JP2004271537 A JP 2004271537A
Authority
JP
Japan
Prior art keywords
molten slag
light
temperature
furnace
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004137021A
Other languages
Japanese (ja)
Other versions
JP2004271537A5 (en
JP3820259B2 (en
Inventor
Ichiro Yamashita
一郎 山下
Akira Noma
彰 野間
Susumu Nishikawa
進 西川
Minoru Ike
稔 池
Keita Inoue
敬太 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004137021A priority Critical patent/JP3820259B2/en
Publication of JP2004271537A publication Critical patent/JP2004271537A/en
Publication of JP2004271537A5 publication Critical patent/JP2004271537A5/ja
Application granted granted Critical
Publication of JP3820259B2 publication Critical patent/JP3820259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring the temperature of a molten slag which can surely measure the liquid level temperature of the molten slag even in a furnace having a high smoke dust concentration. <P>SOLUTION: A method for measuring the temperature of the molten slag includes the steps of condensing a plurality of the radiant beams of light 8 having a wavelength region of 2-20 μm of the radiant beams of the light 8 radiated from the liquid level 5a of the molten slag 5 contained in the furnace, generating the output voltage having an amplitude in response to the intensity of the incident radiant beam of the light 8 from a pyroelectric element 28 by intermittently radiating the radiant beams of the light 8 to the pyroelectric element 28, and estimating the liquid level temperature of the molten slag 5 from this output voltage value and a Planck's radiation law. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、煤塵濃度が高い炉内においても溶融スラグの液面温度を確実に測定することができる温度計測方法に関する。   The present invention relates to a temperature measurement method capable of reliably measuring a liquid surface temperature of molten slag even in a furnace having a high dust concentration.

従来、炉内に収容された溶融スラグの液面温度を測定するには、この液面から放射される、1〜2μm程度の波長を有する近赤外域輻射光の強度や、異なる波長を有する2種類以上の輻射光の強度比から、スラグ液面5aの温度を推定している。
しかし、炉内の煤塵は、径が1〜2μm程度で上記近赤外域の輻射光の波長とほぼ同一寸法であるため、炉内の煤塵濃度が非常に高い炉、例えばプラズマ灰溶融炉においては、溶融スラグの近赤外域輻射光は煤塵によって散乱してしまう。このため、炉の天井に配設した窓まで該近赤外域輻射光が到達せず、スラグ液面の温度を推定することができない。
従って、プラズマ灰溶融炉では、炉の出滓口から排出される溶融スラグの温度を熱電対等によって測定し、この測定値によって炉内温度を推定している。しかし、この方法では、溶融スラグの液面温度を正確に推定することは困難である。
Conventionally, in order to measure the liquid surface temperature of the molten slag contained in the furnace, the intensity of near-infrared radiation having a wavelength of about 1 to 2 μm radiated from the liquid surface, or having a different wavelength 2 The temperature of the slag liquid surface 5a is estimated from the intensity ratio of the radiant light of more than kinds.
However, since the dust in the furnace has a diameter of about 1 to 2 μm and the same size as the wavelength of the near-infrared radiation, the dust concentration in the furnace is extremely high, for example, in a plasma ash melting furnace. In addition, the near-infrared radiation of the molten slag is scattered by dust. Therefore, the near-infrared radiation does not reach the window provided on the ceiling of the furnace, and the temperature of the slag liquid level cannot be estimated.
Therefore, in the plasma ash melting furnace, the temperature of the molten slag discharged from the slag port of the furnace is measured by a thermocouple or the like, and the furnace temperature is estimated based on the measured values. However, with this method, it is difficult to accurately estimate the liquid surface temperature of the molten slag.

本発明は、上記課題を解決し、煤塵濃度が高い炉であっても、溶融スラグの液面温度を確実に測定することが可能な溶融スラグの温度計測装置を提供することを目的とする。   An object of the present invention is to solve the above problems and to provide a molten slag temperature measuring device capable of reliably measuring the liquid surface temperature of molten slag even in a furnace having a high dust concentration.

本発明に係る溶融スラグの温度計測方法は、上記目的を達成するため、炉内に収容された溶融スラグの液面から放射される輻射光のうち、中間赤外域又は遠赤外域の輻射光を光電気素子に集光し、入射する輻射光の強度に応じた振幅の出力電圧を光電気素子から発生させ、この出力電圧値とプランクの輻射則から上記溶融スラグの液面温度を決定する方法である。   The method for measuring the temperature of molten slag according to the present invention, in order to achieve the above object, of the radiation emitted from the liquid level of the molten slag contained in the furnace, the radiation in the mid-infrared range or far-infrared range. A method of generating an output voltage having an amplitude corresponding to the intensity of incident radiant light from a photoelectric element, and determining the liquid surface temperature of the molten slag from this output voltage value and Planck's radiation law. It is.

ここで、中間赤外域において用いることができる光電気素子としては焦電素子がある。焦電素子は、間欠的に入射される輻射光に同期した交流信号を出力し、この交流信号の振幅は光量に比例した大きさになる。これによって、各波長の出力信号の振幅値に、炉内の煤塵及び炉壁に設けられた集光窓の透過率を考慮して真の光強度比を算出し、プランクの輻射則から溶融スラグの液面温度を推定することができる。
通常は、煤塵の径が1〜2μmであり、この径とほぼ同じ大きさの波長を有する近赤外域の輻射光は煤塵によって散乱され、炉の天井部等にまで到達することが困難である。このため、溶融スラグの表面から放射される輻射光のうち、近赤外域の輻射光によっては、溶融スラグの液面温度を推定することができない。
しかし、本発明によれば、煤塵の径よりも大きい波長域の中間赤外域又は遠赤外域の輻射光を用いるため、炉内の煤塵濃度が非常に高い場合であっても、煤塵の径よりも大きい波長を有する中間赤外域又は遠赤外域の輻射光は煤塵によって散乱されることなく炉壁まで到達し、確実に溶融スラグの表面温度を推定することができる。また、溶融スラグの輻射光を用いて直接的に温度を計測するため、正確な温度を測定することができ、輻射光の種類は、2波長以上あれば良い。なお、焦電素子は、通常、人体検出等に用いる汎用素子であり、遠赤外用CCD素子等に比較して低コストで、かつ、冷却等の付帯設備も必要ない。
Here, there is a pyroelectric element as a photoelectric element that can be used in the mid-infrared region. The pyroelectric element outputs an AC signal synchronized with the intermittently incident radiation light, and the amplitude of the AC signal has a magnitude proportional to the amount of light. In this way, the true light intensity ratio is calculated by taking into account the dust in the furnace and the transmittance of the light collecting window provided on the furnace wall to the amplitude value of the output signal of each wavelength, and the melting slag is calculated from Planck's radiation law. Can be estimated.
Usually, the dust has a diameter of 1 to 2 μm, and the near-infrared radiation having a wavelength substantially equal to this diameter is scattered by the dust, and it is difficult to reach the furnace ceiling and the like. . For this reason, among the radiations emitted from the surface of the molten slag, the liquid surface temperature of the molten slag cannot be estimated by the radiation in the near infrared region.
However, according to the present invention, to use radiation in the middle infrared or far-infrared region of the wavelength range larger than the diameter of the dust, even if the dust concentration in the furnace is very high, than the diameter of the dust. Radiation light in the mid-infrared region or far-infrared region having a larger wavelength reaches the furnace wall without being scattered by dust, and the surface temperature of the molten slag can be reliably estimated. Further, since the temperature is directly measured using the radiation light of the molten slag, the temperature can be accurately measured, and the type of the radiation light may be two or more wavelengths. The pyroelectric element is a general-purpose element used for detecting a human body or the like, and is lower in cost than a far-infrared CCD element or the like, and does not require any additional equipment such as cooling.

また、本発明に係る溶融スラグの温度計測方法の一態様では、上記煤塵の径が1〜2μmであり、溶融スラグの表面から放射される複数の輻射光が2〜20μmの波長域を有する遠赤外域の輻射光である。
炉内に充満する煤塵の径よりも溶融スラグから放射される輻射光の波長の方が大きく、該輻射光は煤塵による散乱の影響をあまり受けないため、確実に溶融スラグの液面温度を推定することができる。
In one aspect of the method for measuring the temperature of molten slag according to the present invention, the dust has a diameter of 1 to 2 μm, and a plurality of radiations emitted from the surface of the molten slag have a wavelength range of 2 to 20 μm. It is infrared radiation.
The wavelength of the radiation emitted from the molten slag is larger than the diameter of the dust filling the furnace, and the radiation is not significantly affected by the scattering of the dust, so the liquid surface temperature of the molten slag can be reliably estimated. can do.

本発明によれば、煤塵濃度が高い炉内においても溶融スラグの液面温度を正確にかつ安価なコストで推定することができる。   According to the present invention, the liquid surface temperature of the molten slag can be accurately and inexpensively estimated even in a furnace having a high dust concentration.

以下に、本発明の実施の形態に係る溶融スラグの温度計測方法に用いる計測装置について、図面を用いて詳細に説明する。
本発明は、複数波長の遠赤外光を検出し、該遠赤外光の煤塵に対する透過率の波長依存性から各波長の光強度を補正した上で、プランクの輻射則から溶融スラグの液面温度を測定する方法である。また、煤塵の影響を取り除くため、主灰単独、混合灰、灰投入無の各運転状況に応じた輻射光の煤塵透過率及び輻射率をパソコンを用いて校正したり、集光窓の汚れによる透過光の減衰の影響を取り除くため、複数波長域の強度域の強度比を求める。
図1は、この溶融スラグの温度計測装置及び該温度計測装置が配設されたプラズマアーク溶融炉を示す概略図である。
Hereinafter, a measuring device used in a method for measuring the temperature of molten slag according to an embodiment of the present invention will be described in detail with reference to the drawings.
The present invention detects far-infrared light of a plurality of wavelengths, corrects the light intensity of each wavelength from the wavelength dependence of the transmittance of the far-infrared light with respect to dust, and then uses the Planck's radiation law to determine the liquid of the molten slag. This is a method of measuring the surface temperature. In addition, in order to remove the effects of dust, the dust transmittance and emissivity of the radiant light according to the operating conditions of the main ash alone, mixed ash, and no ash input are calibrated using a personal computer, In order to remove the influence of the attenuation of the transmitted light, the intensity ratio of the intensity ranges of a plurality of wavelength ranges is obtained.
FIG. 1 is a schematic view showing a temperature measuring device for the molten slag and a plasma arc melting furnace provided with the temperature measuring device.

プラズマアーク溶融炉1(以下、単に溶融炉ともいう。)内部の中心には、上下方向に沿って主電極2及び炉底電極3が配設されており、溶融炉1の底部には溶融スラグ5が収容されている。上記主電極2の下端からはプラズマアーク7が炉底電極3に向けて放射され、溶融スラグ5の液面5aからは上方に向けて輻射光8が放射されている。この輻射光8の波長は、図2に示すように、散乱のない場合は2μm程度であるものが多く、散乱を考慮した場合は5〜10μm程度のものが多い。
また、溶融炉1の天井部10には、集光窓11を介して上記輻射光8を集光し、これを用いて溶融スラグ5の液面温度を推定する温度計測装置15が配設されている。
A main electrode 2 and a bottom electrode 3 are disposed along the vertical direction at the center of the inside of the plasma arc melting furnace 1 (hereinafter, also simply referred to as a melting furnace). 5 are accommodated. A plasma arc 7 is emitted from the lower end of the main electrode 2 toward the furnace bottom electrode 3, and radiation 8 is emitted upward from a liquid level 5 a of the molten slag 5. As shown in FIG. 2, the wavelength of the radiated light 8 is often about 2 μm when there is no scattering, and is about 5 to 10 μm when scattering is considered.
Further, on the ceiling 10 of the melting furnace 1, a temperature measuring device 15 that collects the radiant light 8 through a light collecting window 11 and estimates the liquid surface temperature of the molten slag 5 using the collected light is provided. ing.

この集光窓11は、その材質がZnSeであり、横方向にスライド可能に構成されているため、集光窓11が汚れた場合に取り替えることが容易にできる。従って、スライド方式でなく、ワイピングによって集光窓11の汚れを除去するようにしても良い。また、図示していないが、窓ホルダー16は冷却水によって冷却されており、集光窓11の炉内側はN2ガスによってパージされている。
この集光窓11の上部にはZnSe製集光レンズ20が配設され、集光窓11からの輻射光8を集光することができ、該集光レンズ20の上部にはライトチョッパー22が配設されている。該ライトチョッパー22は、DC電源24に接続されたDCモーター(減速機)25に取り付けられ、該DCモーター25によって自由に回転させることができる。
The light collecting window 11 is made of ZnSe and is configured to be slidable in the horizontal direction. Therefore, when the light collecting window 11 becomes dirty, it can be easily replaced. Therefore, the dirt on the light collecting window 11 may be removed by wiping instead of the sliding method. Although not shown, the window holder 16 is cooled by cooling water, and the inside of the furnace of the condenser window 11 is purged with N 2 gas.
A condenser lens 20 made of ZnSe is disposed above the condenser window 11 and can collect the radiated light 8 from the condenser window 11. A light chopper 22 is provided above the condenser lens 20. It is arranged. The light chopper 22 is attached to a DC motor (reduction gear) 25 connected to a DC power supply 24, and can be freely rotated by the DC motor 25.

このライトチョッパー22の上部には、焦電素子(パイロエレクトリック素子ともいう。)28が設けられており、増幅器29を介してパソコン30、及び制御装置に接続されている。ここで、上記焦電素子28は、遠赤外域の輻射光8が当たると温度が上昇して分極値が変化し、輻射光8の強度に比例する量の電荷を放出するため、増幅器29でこの電荷量を増幅させたのち、パソコン30に送ることができる。しかし、焦電素子28は一定の強度の光である定常光を一定時間以上当てると反応しなくなる、いわゆる飽和性と呼ばれる性質を有するため、輻射光8を上記ライトチョッパー22によって断続的に遮った間欠的な状態で焦電素子28に照射する必要がある。図1では、焦電素子28が1つの場合の温度計測装置15を示したが、これに限定されず、2つ以上の焦電素子28を配設し、各々の焦電素子28ごとに波長の異なる輻射光8を照射させても良い。   A pyroelectric element (also referred to as a pyroelectric element) 28 is provided above the light chopper 22, and is connected to a personal computer 30 and a control device via an amplifier 29. Here, when the pyroelectric element 28 is irradiated with the radiated light 8 in the far-infrared region, the temperature rises, the polarization value changes, and an amount of electric charge proportional to the intensity of the radiated light 8 is released. After the charge amount is amplified, it can be sent to the personal computer 30. However, since the pyroelectric element 28 has a property called so-called saturation, which does not react when the stationary light, which is light having a certain intensity, is applied for a certain time or more, the radiant light 8 is intermittently blocked by the light chopper 22. It is necessary to irradiate the pyroelectric element 28 in an intermittent state. FIG. 1 shows the temperature measuring device 15 in the case where the number of pyroelectric elements 28 is one. However, the present invention is not limited to this, and two or more pyroelectric elements 28 are provided. May be applied.

次いで、上記構成を有する温度計測装置15を実証炉に配設して行った実施例によって、本発明を更に詳細に説明する。
[温度計測装置の概要]
まず、温度計測装置15の構成を説明する。本実施例で用いた計測装置15は、図1に示すような構成を有するものであり、その波長域が2〜20μm、5〜20μm、7〜20μmのバンドパスフィルターを有する3個の焦電素子28が配設されている。この焦電素子28は、温度によって誘電率が変化する強誘電体結晶であり、感度は、最大1000V/Wである。集光レンズ20は凸レンズであり、輻射光8が該集光レンズ20によって焦電素子28の受光面に結像し、他の光を検出し難くしている。
Next, the present invention will be described in more detail with reference to an example in which the temperature measuring device 15 having the above configuration is provided in a demonstration furnace.
[Overview of temperature measurement device]
First, the configuration of the temperature measuring device 15 will be described. The measuring device 15 used in the present embodiment has a configuration as shown in FIG. 1, and has three pyroelectric devices having band-pass filters having wavelength ranges of 2 to 20 μm, 5 to 20 μm, and 7 to 20 μm. An element 28 is provided. The pyroelectric element 28 is a ferroelectric crystal whose dielectric constant changes depending on the temperature, and has a maximum sensitivity of 1000 V / W. The condenser lens 20 is a convex lens, and the radiated light 8 forms an image on the light receiving surface of the pyroelectric element 28 by the condenser lens 20, making it difficult to detect other light.

[光学系の構成]
溶融スラグ5の液面5aからは、図3に示すように、遠赤外域の輻射光8が放射されており、該輻射光8は、集光レンズ20を介して焦電素子28に集光される。この焦光レンズ20の径はφ50mmであり、焦点距離はf=50mmであるため、焦光レンズ20から溶融スラグ5の液面5aまでの距離aが約1500mmの場合、焦光レンズ20と焦光素子28との距離bが以下の(式1)で算出される51.7mmのときに結像する。
[Configuration of optical system]
As shown in FIG. 3, radiation light 8 in the far infrared region is emitted from the liquid surface 5 a of the molten slag 5, and the radiation light 8 is condensed on the pyroelectric element 28 via the condenser lens 20. Is done. Since the diameter of the focal lens 20 is φ50 mm and the focal length is f = 50 mm, when the distance a from the focal lens 20 to the liquid surface 5 a of the molten slag 5 is about 1500 mm, the focal lens 20 is focused. An image is formed when the distance b from the optical element 28 is 51.7 mm calculated by the following (Equation 1).

Figure 2004271537
Figure 2004271537

ただし、スラグ面は下がることがあるため、b≒52〜53[mm]に設定する。
また、焦電素子28の受光面の径は、dp=2[mm]であるため、焦電素子28に入射するスラグ面5aの領域は、
ds=dp・a/b=2×1500/53=56.6≒57[mm]となる。
スラグ面5aから見た焦光レンズ20の立体角は、以下のとおりである。
ω=2π(1−cosθ)=2π[1−cos(0.0167)]
=8.8×10-4 [srad]
θ=arctan(25/1500)
=0.0167[rad]
However, since the slag surface may be lowered, b is set to 52 to 53 [mm].
Further, since the diameter of the light receiving surface of the pyroelectric element 28 is dp = 2 [mm], the area of the slag surface 5a incident on the pyroelectric element 28 is:
ds = dp · a / b = 2 × 1500/53 = 56.6 ≒ 57 [mm]
The solid angles of the focal lens 20 as viewed from the slug surface 5a are as follows.
ω = 2π (1-cos θ) = 2π [1-cos (0.0167)]
= 8.8 × 10 -4 [srad]
θ = arctan (25/1500)
= 0.0167 [rad]

[スラグ面の輻射エネルギー]
スラグ面5aの単位面積から放射される、単位波長当たりの輻射エネルギーは、以下の(式2)から算出される。
[Radiation energy of slag surface]
The radiation energy per unit wavelength radiated from the unit area of the slag surface 5a is calculated from the following (Equation 2).

Figure 2004271537
Figure 2004271537

ここで、ε・τは輻射率×透過率、 hはプランクの定数、kはボルツマン定数、Cは光速度、νは輻射光の周波数である。
ε・τ=1とした場合の(Eλ/C)は図4のグラフのようになる。
Here, ε · τ is emissivity × transmittance, h is Planck's constant, k is Boltzmann's constant, C is the speed of light, and ν is the frequency of the radiated light.
(Eλ / C) when ε · τ = 1 is as shown in the graph of FIG.

焦電素子28の感度波長範囲を2〜20μm、5〜20μm、7〜20μmとすると、1800[k]では、スラグ面5aから放射される輻射エネルギーは、以下の(式3)〜(式5)のようになる。   Assuming that the sensitivity wavelength range of the pyroelectric element 28 is 2 to 20 μm, 5 to 20 μm, and 7 to 20 μm, at 1800 [k], the radiation energy radiated from the slag surface 5 a is expressed by the following (Equation 3) to (Equation 5). )become that way.

Figure 2004271537
Figure 2004271537

Figure 2004271537
Figure 2004271537

Figure 2004271537
Figure 2004271537

[輻射強度の煤塵による減衰]
実証炉におけるHe−Neレーザーを用いた煤塵による光の散乱特性計測結果からσ・n=3.5[m-1]とする。ここで、σは煤塵の散乱断面積、nは煤塵の密度である。
スラグ面5aから放射された輻射光8が計測用集光窓11に到達するまでに減衰する割合は、
η=exp(−σ・n・L)=exp(−3.5×15)=5.2×103
但し、Lはスラグ面5aから集光窓11までの距離であり、図3のaとほぼ等しいとした。
[Attenuation of radiation intensity by dust]
Σ · n = 3.5 [m −1 ] based on the measurement results of the light scattering characteristics of the dust by the He—Ne laser in the demonstration furnace. Here, σ is the dust scattering cross section, and n is the dust density.
The rate at which the radiated light 8 emitted from the slag surface 5a attenuates before reaching the measurement light condensing window 11 is:
η = exp (−σ · n · L) = exp (−3.5 × 15) = 5.2 × 10 3
Here, L is the distance from the slag surface 5a to the light collection window 11, and is assumed to be substantially equal to a in FIG.

[焦電素子に入射する輻射エネルギー]
溶融スラグ5の輻射率ε=0.1、集光窓11及び焦光レンズ20等の総合透過率τ=0.1とするとε・τ=0.01である。
図3のdsで示した領域の面積は、S=π・(ds/2)2
=π・(57×103 /2)2 =2.6×10-3 [m-2
であるから、焦電素子28に入射する輻射エネルギーは、それぞれ波長域ごとに以下のようになる
e2〜20 =ω/2π・E2〜20・S・ε・τ・η
=8.8×10-4/2π×1.42×106×2.64×10-3
×0.01×2.75×10-5=1.4×10-7[W]
e5〜20 =ω/2π・E5〜20・S・ε・τ・η
=8.8×10-4/2π×1.42×105×2.64×10-3
×0.01×2.75×10-5=2.6×10-8[W]
e7〜20 =ω/2π・E7〜20・S・ε・τ・η
=8.8×10-4/2π×2.56×105×2.64×10-3
×0.01×2.75×10-5=1.1×10-8[W]
[Radiation energy incident on the pyroelectric element]
If the emissivity ε of the molten slag 5 is 0.1 and the total transmittance τ of the condenser window 11 and the focusing lens 20 is 0.1, then ε · τ = 0.01.
The area of the region indicated by ds in FIG. 3 is S = π · (ds / 2) 2
= Π · (57 × 10 3/2 ) 2 = 2.6 × 10 -3 [m -2 ]
Therefore, the radiant energy incident on the pyroelectric element 28 is as follows for each wavelength range: e2-20 = ω / 2π · E2-20 · S · ε · τ · η
= 8.8 × 10 -4 /2π×1.42×10 6 × 2.64 × 10 -3
× 0.01 × 2.75 × 10 −5 = 1.4 × 10 −7 [W]
e5-20 = ω / 2π · E5-20 · S · ε · τ · η
= 8.8 × 10 -4 /2π×1.42×10 5 × 2.64 × 10 -3
× 0.01 × 2.75 × 10 −5 = 2.6 × 10 −8 [W]
e7-20 = ω / 2π · E7-20 · S · ε · τ · η
= 8.8 × 10 -4 /2π×2.56×10 5 × 2.64 × 10 -3
× 0.01 × 2.75 × 10 −5 = 1.1 × 10 −8 [W]

[焦電素子の出力電力]
焦電素子28の感度は、
ρ2〜20 =ρ2〜20・e2〜20 =1500×1.4×10-7=2.1×10-4[V]
ρ5〜20 =ρ5〜20・e5〜20 =1500×2.6×10-8=3.9×10-5[V]
ρ7〜20 =ρ7〜20・e7〜20 =1500×1.4×10-8=1.4×10-5[V]
従って、計測装置には、103〜104倍の増幅器が必要である。
[Output power of pyroelectric element]
The sensitivity of the pyroelectric element 28 is
ρ2-20 = ρ2-20 · e2-20 = 1500 × 1.4 × 10 −7 = 2.1 × 10 −4 [V]
ρ5-20 = ρ5-20〜e5-20 = 1500 × 2.6 × 10 -8 = 3.9 × 10 -5 [V]
ρ7-20 = ρ7-20〜e7-20 = 1500 × 1.4 × 10 −8 = 1.4 × 10 −5 [V]
Therefore, the measuring device requires 10 3 to 10 4 times of amplifier.

[スラグ温度の推定]
次いで、プランクの放射則から、輻射エネルギーの強度比を求める。
[Estimation of slag temperature]
Next, the intensity ratio of radiant energy is determined from Planck's radiation law.

Figure 2004271537
Figure 2004271537

Figure 2004271537
Figure 2004271537

Figure 2004271537
Figure 2004271537

各温度におけるE5〜7/E2〜5、E7〜20/E2〜5 の値を図5に示す。
各波長域のε・τの値は、別途、実機試運転時に熱電対による計測値と焦電素子28の出力値から求める。焦電素子出力は、V2〜20、V5〜20、V7〜20 であるから、以下のようになる。
V2〜5 ∝ε2・τ2・E2〜5
V5〜7 ∝ε5・τ5・E5〜7
V7〜20 ∝ε7・τ7・E7〜20
従って、以下の式が導かれる。
FIG. 5 shows the values of E5-7 / E2-5 and E7-20 / E2-5 at each temperature.
The values of ε and τ in each wavelength range are separately obtained from the measured value by the thermocouple and the output value of the pyroelectric element 28 during the trial run of the actual device. Since the pyroelectric element outputs are V2-20, V5-20, and V7-20, they are as follows.
V2 ~ 5 ∝ε2 ・ τ2 ・ E2〜5
V5-7 ∝ε5 ・ τ5 ・ E5〜7
V7-20 ∝ε7 ・ τ7 ・ E7-20
Therefore, the following equation is derived.

Figure 2004271537
Figure 2004271537

Figure 2004271537
Figure 2004271537

焦電素子出力が、V'2〜5 、V'5〜7 、V'7〜20 と得られた場合、補正されたスペクトル強度比は、以下の式のとおりである。   When the pyroelectric element outputs are obtained as V'2 to 5, V'5 to 7, and V'7 to 20, the corrected spectral intensity ratio is as follows.

Figure 2004271537
Figure 2004271537

Figure 2004271537
Figure 2004271537

これらのスペクトル強度比を用い、図5からスラグ液面5aの温度を求めることができる。   Using these spectral intensity ratios, the temperature of the slag liquid level 5a can be obtained from FIG.

本発明に係る温度計測装置を配設した溶融炉を示す断面図である。It is a sectional view showing the melting furnace provided with the temperature measuring device concerning the present invention. 煤塵による散乱がある場合とない場合における、輻射光の波長と強度との関係を示すグラフである。It is a graph which shows the relationship between the wavelength and intensity | strength of radiant light in the case where there is scattering by dust. 輻射光を集光する状態を示す概略図である。It is the schematic which shows the state which condenses radiation light. 輻射光の波長と輻射エネルギーとの関係を示すグラフである。It is a graph which shows the relationship between the wavelength of radiation light, and radiation energy. 温度と輻射スペクトル強度比との関係を示すグラフである。4 is a graph showing a relationship between a temperature and a radiation spectrum intensity ratio.

符号の説明Explanation of reference numerals

1 プラズマアーク溶融炉
2 主電極
3 炉底電極
5 溶融スラグ
7 プラズマアーク
8 輻射光
10 天井部
11 集光窓
15 温度計測装置
16 窓ホルダー
20 集光レンズ
22 ライトチョッパー
24 DC電源
25 DCモーター
28 焦電素子
29 増幅器
30 パソコン
DESCRIPTION OF SYMBOLS 1 Plasma arc melting furnace 2 Main electrode 3 Furnace bottom electrode 5 Melting slag 7 Plasma arc 8 Radiation light 10 Ceiling 11 Condensing window 15 Temperature measuring device 16 Window holder 20 Condensing lens 22 Light chopper 24 DC power supply 25 DC motor 28 Focus Element 29 Amplifier 30 PC

Claims (4)

炉内に収容された溶融スラグの液面から放射される輻射光のうち、2〜20μmの波長域を有する輻射光を光電気素子に集光し、入射する輻射光の強度に応じた出力電圧を光電気素子から発生させ、この出力電圧値から求める補正されたスペクトル強度比とプランクの輻射則から上記溶融スラグの液面温度を決定することを特徴とする溶融スラグの温度計測方法。   Among the radiated light emitted from the liquid surface of the molten slag contained in the furnace, the radiated light having a wavelength range of 2 to 20 μm is focused on the photoelectric element, and the output voltage according to the intensity of the incident radiated light Is generated from a photoelectric element, and the liquid surface temperature of the molten slag is determined from the corrected spectrum intensity ratio obtained from the output voltage value and Planck's radiation law. 2以上の異なる波長の輻射光を用いて上記溶融スラグの液面温度を決定することを特徴とする請求項1に記載の溶融スラグの温度計測方法。   The method for measuring the temperature of a molten slag according to claim 1, wherein the liquid surface temperature of the molten slag is determined by using radiation light of two or more different wavelengths. 上記炉内に存在する煤塵の径が1〜2μmであることを特徴とする請求項1又は2に記載の溶融スラグの温度計測方法。   The method for measuring the temperature of molten slag according to claim 1, wherein the diameter of the dust present in the furnace is 1 to 2 μm. 上記光電気素子が焦電素子であることを特徴とする請求項1〜3のいずれかに記載の溶融スラグの温度計測方法。   The method for measuring the temperature of molten slag according to claim 1, wherein the photoelectric element is a pyroelectric element.
JP2004137021A 2004-05-06 2004-05-06 Temperature measurement method for molten slag Expired - Fee Related JP3820259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137021A JP3820259B2 (en) 2004-05-06 2004-05-06 Temperature measurement method for molten slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137021A JP3820259B2 (en) 2004-05-06 2004-05-06 Temperature measurement method for molten slag

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000061318A Division JP2001249049A (en) 2000-03-07 2000-03-07 Method for measuring temperature of molten slag

Publications (3)

Publication Number Publication Date
JP2004271537A true JP2004271537A (en) 2004-09-30
JP2004271537A5 JP2004271537A5 (en) 2006-03-02
JP3820259B2 JP3820259B2 (en) 2006-09-13

Family

ID=33128593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137021A Expired - Fee Related JP3820259B2 (en) 2004-05-06 2004-05-06 Temperature measurement method for molten slag

Country Status (1)

Country Link
JP (1) JP3820259B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095664A (en) * 2012-11-12 2014-05-22 Mitsubishi Heavy Ind Ltd Temperature detection method, temperature detection device and program
JP2017058370A (en) * 2015-09-16 2017-03-23 三菱マテリアル株式会社 Method for measuring temperature of measured object, temperature of powder dust and concentration of powder dust
WO2017047376A1 (en) * 2015-09-16 2017-03-23 三菱マテリアル株式会社 Method of measuring temperature of an object to be measured, dust temperature and dust concentration
CN117553918A (en) * 2024-01-12 2024-02-13 国工恒昌新材料(义乌)有限公司 Copper alloy temperature measurement equipment with protection mechanism and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095664A (en) * 2012-11-12 2014-05-22 Mitsubishi Heavy Ind Ltd Temperature detection method, temperature detection device and program
JP2017058370A (en) * 2015-09-16 2017-03-23 三菱マテリアル株式会社 Method for measuring temperature of measured object, temperature of powder dust and concentration of powder dust
WO2017047376A1 (en) * 2015-09-16 2017-03-23 三菱マテリアル株式会社 Method of measuring temperature of an object to be measured, dust temperature and dust concentration
US10852195B2 (en) 2015-09-16 2020-12-01 Mitsubishi Materials Corporation Method of measuring temperature of an object to be measured, dust temperature and dust concentration
CN117553918A (en) * 2024-01-12 2024-02-13 国工恒昌新材料(义乌)有限公司 Copper alloy temperature measurement equipment with protection mechanism and method
CN117553918B (en) * 2024-01-12 2024-03-29 国工恒昌新材料(义乌)有限公司 Copper alloy temperature measurement equipment with protection mechanism and method

Also Published As

Publication number Publication date
JP3820259B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
EP2223016B1 (en) Flame scanning device and method for its operation
US7938576B1 (en) Sensing system for obtaining images and surface temperatures
US20100134628A1 (en) Process Monitoring the Processing of a Material
KR100346090B1 (en) Method and apparatus for monitoring the size variation and the focus shift of a weld pool in laser welding
JP2022163001A (en) Device and method for calibrating axial temperature sensor for lamination modeling system
US20200282495A1 (en) Laser processing head and laser processing system using same
KR100443152B1 (en) Method for monitoring the size variation and the focus shift of a weld pool in laser welding
JP2007192579A (en) Temperature measuring device and method
JP2007271399A (en) Method and device for measuring temperature of substrate
US9516243B2 (en) Method and system for emissivity determination
JP2007057338A (en) Optical measuring instrument
JP3820259B2 (en) Temperature measurement method for molten slag
Mackinnon et al. Implementation of a near backscattering imaging system on the National Ignition Facility
JP2008268106A (en) Method of measuring temperature information
JP2001249049A (en) Method for measuring temperature of molten slag
US11016023B1 (en) Far-infrared spectroscopic device and far-infrared spectroscopic method
KR20040010172A (en) Emissivity distribution measuring method and apparatus
JP2006133234A (en) Slug temperature measuring method and measuring device
KR100558773B1 (en) The method of laser weld monitoring using time variation of frequency components
KR100985341B1 (en) A Temperature Measurement Apparatus for Steel using Laser Diode
JP5085594B2 (en) Method and apparatus for continuous monitoring of molten steel
JP2009128252A (en) End face inspection method and end face inspection apparatus
JP2004109023A (en) Method and apparatus for measuring surface temperature of steel product
JPH05306956A (en) Method for measuring temperature of inner surface of furnace of boiler
US20240319011A1 (en) Device and method for monitoring an emission temperature of a radiation emitting element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060116

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees