JP2000304617A - Surface temperature of steel material measuring method and apparatus - Google Patents

Surface temperature of steel material measuring method and apparatus

Info

Publication number
JP2000304617A
JP2000304617A JP11115828A JP11582899A JP2000304617A JP 2000304617 A JP2000304617 A JP 2000304617A JP 11115828 A JP11115828 A JP 11115828A JP 11582899 A JP11582899 A JP 11582899A JP 2000304617 A JP2000304617 A JP 2000304617A
Authority
JP
Japan
Prior art keywords
liquid
surface temperature
steel material
radiation
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11115828A
Other languages
Japanese (ja)
Inventor
Kaoru Tanaka
薫 田中
Yoshiki Fukutaka
善己 福高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11115828A priority Critical patent/JP2000304617A/en
Publication of JP2000304617A publication Critical patent/JP2000304617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the steel plate temperature to be measured under a condition that emissivity of a steel plate changes and rolling oil exists on the surface of the steel plate like a part between rolling stands. SOLUTION: A plurality of radiation thermometers 20, 22 having a measuring wavelength λ1 wherein absorption of radiation energy of rolling oil 12 is large are arranged at mutually different measuring angles θ1, θ2. A radiation thermometer 24 having a measuring wavelength λ2 wherein absorption of radiation energy of the rolling oil 12 is small is arranged. From a relational equation of three luminance temperatures S1, S2, S3 measured by the radiation thermometers 20, 22, 24 and emissivity ε0 and thickness t of the rolling oil which are previously measured, the surface temperature T of a steel plate 10 in which influence of the rolling oil is eliminated is calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面に液体が存在
する鋼材の表面温度を測定する方法及び装置に係り、特
に、圧延中あるいは圧延後等の、表面に圧延油等の液体
が存在し、且つ、放射率が変動するような鋼材の表面温
度を、液体の存在や放射率の変動に拘らず、正確に測定
することが可能な鋼材の表面温度測定方法及び装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the surface temperature of a steel material having a liquid on its surface, and more particularly to a method for measuring the surface temperature of a steel material during rolling or after rolling. Also, the present invention relates to a method and an apparatus for measuring a surface temperature of a steel material capable of accurately measuring the surface temperature of the steel material whose emissivity fluctuates irrespective of the presence of a liquid and fluctuation of the emissivity.

【0002】[0002]

【従来の技術】鋼材の表面温度測定に関する方法や装置
は、従来から数多く提案されている。例えば特開平5−
164622のように、測定波長や測定角度が変更可能
な複数の輻射センサの出力により求めた放射率の累乗比
から鋼板の表面温度を測定する方法及び装置や、特開平
5−273045のように、ブリュースター角へ放射さ
れる放射のP偏光成分及びS偏光成分を捉え、これらの
偏光放射輝度から、透明性酸化薄膜等に覆われた金属や
半導体の温度を、干渉効果による放射率変動の影響を受
けることなく測定する装置が提案されている。
2. Description of the Related Art Many methods and apparatuses for measuring the surface temperature of steel have been proposed. For example, Japanese Unexamined Patent Publication
As in 164622, a method and an apparatus for measuring the surface temperature of a steel sheet from the power ratio of the emissivity obtained from the outputs of a plurality of radiation sensors whose measurement wavelength and measurement angle can be changed, and as in Japanese Patent Application Laid-Open No. Hei 5-27345, The P-polarized component and the S-polarized component of the radiation radiated to the Brewster angle are captured, and the temperature of the metal or semiconductor covered with a transparent oxide thin film, etc. is determined from these radiated radiances by the effect of the emissivity fluctuation due to the interference effect A device that performs measurement without receiving the noise has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
方法では、圧延中や圧延後のように、図1に示す如く、
鋼板10の表面に圧延油12等の液体が存在する場合に
は、この圧延油12による放射エネルギの吸収等を受
け、放射温度計20では、正確に鋼板温度を測定するこ
とができない。又、これを防ぐために、圧延油12をエ
ア等により除去する処置を施せば、鋼板の温度が低下
し、実際の温度が測れない等の問題点を有していた。
However, in the conventional method, as shown in FIG. 1 during or after rolling,
When a liquid such as the rolling oil 12 is present on the surface of the steel sheet 10, the radiant energy is absorbed by the rolling oil 12, and the radiation thermometer 20 cannot accurately measure the steel sheet temperature. In addition, if measures are taken to remove the rolling oil 12 with air or the like in order to prevent this, the temperature of the steel sheet decreases, and there is a problem that the actual temperature cannot be measured.

【0004】本発明は、前記従来の問題点を解消するべ
くなされたもので、圧延中や圧延後のように、表面に圧
延油等の液体が存在し、且つ、放射率が変動する鋼材の
表面温度を、正確に測定することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems. For example, a steel material having a liquid such as rolling oil on its surface and having a variable emissivity, such as during or after rolling, is provided. It is an object to accurately measure a surface temperature.

【0005】[0005]

【課題を解決するための手段】本発明は、表面に液体が
存在する鋼材の表面温度を測定するに際して、前記液体
による放射エネルギの吸収が大きな測定波長を有する放
射温度計を、互いに異なる測定角度で複数台配置すると
共に、前記液体による放射エネルギの吸収が小さな測定
波長を有する放射温度計を少なくとも1台配置し、各放
射温度計により測定された少なくとも3つの輝度温度
と、予め求めておいた液体の放射率と膜厚との関係式か
ら、液体の影響を排除した鋼材の表面温度を算出するよ
うにして、前記課題を解決したものである。
SUMMARY OF THE INVENTION According to the present invention, when measuring the surface temperature of a steel material having a liquid on its surface, a radiation thermometer having a measurement wavelength at which the absorption of radiant energy by the liquid is large is performed by using different measurement angles. And at least one radiation thermometer having a measurement wavelength at which absorption of radiant energy by the liquid is small, and at least three brightness temperatures measured by each radiation thermometer are determined in advance. The object of the present invention is to solve the above problem by calculating the surface temperature of a steel material excluding the influence of the liquid from the relational expression between the emissivity of the liquid and the film thickness.

【0006】又、表面に液体が存在する鋼材の表面温度
を測定するに際して、前記液体により放射エネルギが吸
収される測定波長を有する放射温度計を、互いに異なる
測定角度で3台以上配置し、各放射温度計により測定さ
れた少なくとも3つの輝度温度と、予め求めておいた液
体の放射率と膜厚との関係式から、液体の影響を排除し
た鋼材の表面温度を算出するようにして、同じく前記課
題を解決したものである。
When measuring the surface temperature of a steel material having a liquid on its surface, three or more radiation thermometers having measurement wavelengths at which radiation energy is absorbed by the liquid are arranged at different measurement angles from each other. From at least three luminance temperatures measured by the radiation thermometer and the relational expression between the emissivity and the film thickness of the liquid determined in advance, the surface temperature of the steel material excluding the influence of the liquid is calculated, This has solved the above-mentioned problem.

【0007】本発明は、又、表面に液体が存在する鋼材
の表面温度を測定するための鋼材の表面温度測定装置
を、互いに異なる測定角度で配設された、前記液体によ
る放射エネルギの吸収が大きな測定波長を有する複数台
の放射温度計と、前記液体による放射エネルギの吸収が
小さな測定波長を有する少なくとも1台の放射温度計
と、各放射温度計を所定角度で保持する機構と、各放射
温度計により測定された少なくとも3つの輝度温度と、
予め求めておいた液体の放射率と膜厚との関係式から、
液体の影響を排除した鋼材の表面温度を演算し、出力す
るデータ処理手段とを用いて構成することにより、同じ
く前記課題を解決したものである。
[0007] The present invention also provides a steel surface temperature measuring device for measuring the surface temperature of a steel material having a liquid present on the surface, the device having a measurement angle different from each other. A plurality of radiation thermometers having a large measurement wavelength, at least one radiation thermometer having a measurement wavelength at which absorption of radiant energy by the liquid is small, a mechanism for holding each radiation thermometer at a predetermined angle, and each radiation thermometer; At least three brightness temperatures measured by a thermometer;
From the relational expression between the emissivity of the liquid and the film thickness obtained in advance,
The above problem is also solved by using a data processing means for calculating and outputting the surface temperature of the steel material excluding the influence of the liquid.

【0008】又、表面に液体が存在する鋼材の表面温度
を測定するための鋼材の表面温度測定装置を、互いに異
なる測定角度で配設された、前記液体により放射エネル
ギが吸収される測定波長を有する3台以上の放射温度計
と、各放射温度計を所定角度で保持する機構と、各放射
温度計により測定された少なくとも3つの輝度温度と、
予め求めておいた液体の放射率と膜厚との関係式から、
液体の影響を排除した鋼材の表面温度を演算し、出力す
るデータ処理手段とを用いて構成することにより、同じ
く前記課題を解決したものである。
In addition, a steel surface temperature measuring device for measuring the surface temperature of a steel material having a liquid on its surface is provided with a measuring wavelength, which is disposed at different measurement angles from each other and at which radiant energy is absorbed by the liquid. Three or more radiation thermometers, a mechanism for holding each radiation thermometer at a predetermined angle, at least three brightness temperatures measured by each radiation thermometer,
From the relational expression between the emissivity of the liquid and the film thickness obtained in advance,
The above-mentioned problem is also solved by using a data processing means for calculating and outputting the surface temperature of the steel material excluding the influence of the liquid.

【0009】本発明によれば、測定対象(鋼材)表面に
存在する圧延油等の液体による放射エネルギの吸収が大
きな測定波長を有する複数の放射温度計を、互いに異な
る測定角度で配置し、且つ、前記液体による放射エネル
ギの吸収が小さな測定波長を有する放射温度計を少なく
とも1台配置するか、あるいは、前記液体により放射エ
ネルギが吸収される測定波長を有する放射温度計を、互
いに異なる測定角度で3台以上配置し、事前に求めてお
いた液体の放射率と膜厚との関係を利用して、各放射温
度計から得られる測定温度(輝度温度)、鋼材温度及び
放射率等の関係式から、未知である鋼材温度を求めるこ
とで、液体の影響による鋼材の放射率変動の影響を受け
ることなく、正確な温度測定が可能となる。
According to the present invention, a plurality of radiation thermometers having a measurement wavelength at which absorption of radiant energy by a liquid such as rolling oil existing on the surface of a measurement object (steel material) is arranged at different measurement angles from each other, and At least one radiation thermometer having a measurement wavelength at which absorption of radiant energy by the liquid is small, or a radiation thermometer having a measurement wavelength at which radiant energy is absorbed by the liquid is provided at different measurement angles. Using a relationship between the emissivity of the liquid and the film thickness determined in advance, using three or more units, the relational expression of the measured temperature (brightness temperature), steel temperature, emissivity, etc. obtained from each radiation thermometer Thus, by obtaining the unknown steel material temperature, accurate temperature measurement can be performed without being affected by the emissivity fluctuation of the steel material due to the influence of the liquid.

【0010】図2に、膜厚15μmの圧延油の透過率と
波長との関係(分光透過率)の一例を示す。図から明ら
かなように、波長3.4μm付近に、ほとんど透過しな
い領域がある。なお、圧延油の膜厚が十分厚ければ、鋼
材からの光を全く通さないが、実際には薄いため、鋼材
からの光も透過する。
FIG. 2 shows an example of the relationship (spectral transmittance) between the transmittance and the wavelength of a rolling oil having a film thickness of 15 μm. As is clear from the figure, there is a region where light is hardly transmitted near the wavelength of 3.4 μm. If the thickness of the rolling oil is sufficiently large, the light from the steel material does not pass at all, but the light from the steel material is actually transmitted because it is thin.

【0011】従って、この波長を選択することで、図1
に示した如く、鋼材(鋼板10)からの放射エネルギE
sは、圧延油12の油膜を通過する過程で減衰してしま
い、放射温度計20が捉えるのは、圧延油自身からの放
射エネルギEoが大部分を占めるようになる。
Therefore, by selecting this wavelength, FIG.
As shown in the figure, the radiation energy E from the steel material (steel plate 10)
The s is attenuated during the passage of the rolling oil 12 through the oil film, and the radiation thermometer 20 captures most of the radiant energy Eo from the rolling oil itself.

【0012】図3に、温度250℃のときの圧延油の放
射率εと膜厚tとの関係の一例を示す。図から、膜厚t
が薄い領域では、圧延油の放射率εが、膜厚tに比例し
て大きくなることが分かる。これを利用して、図4に例
示する如く、1台の放射温度計20は、鋼板10の真上
に配置し、他方の放射温度計22は斜めから測定すれ
ば、実際の膜厚tは同じでも、図5に示す如く、斜めか
ら入射する方が、見掛け上膜厚t′が大きくなる。従っ
て、見掛け上の放射率も高くなるため、輝度温度に差が
生じる。
FIG. 3 shows an example of the relationship between the emissivity ε of the rolling oil at a temperature of 250 ° C. and the film thickness t. From the figure, the film thickness t
It can be understood that the emissivity ε of the rolling oil increases in the region where the thickness is small in proportion to the film thickness t. Utilizing this, as illustrated in FIG. 4, one radiation thermometer 20 is disposed directly above the steel plate 10, and the other radiation thermometer 22 is measured obliquely, so that the actual film thickness t is Even if it is the same, as shown in FIG. 5, the film thickness t 'apparently becomes larger when the light is incident obliquely. Accordingly, the apparent emissivity also increases, and a difference occurs in the brightness temperature.

【0013】又、波長3.4μm以外には、透過率の高
い、つまり、ほとんど吸収されない領域がある。この測
定波長(例えば3.5μm)の放射温度計を選択すれ
ば、捉えるのは、鋼板10からの放射エネルギが大部分
を占めるようになる。これから、鋼材の放射率を求める
ことができる。
In addition to the wavelength of 3.4 μm, there is a region having a high transmittance, that is, a region which is hardly absorbed. If a radiation thermometer having this measurement wavelength (for example, 3.5 μm) is selected, the radiant energy from the steel plate 10 will occupy a large part. From this, the emissivity of the steel material can be determined.

【0014】従って、未知である鋼材温度Ts、鋼材の
放射率εs及び圧延油12の膜厚tに対し、図6に示す
如く、測定波長λ1=3.4μmの、測定角度が互いに
異なる複数台の放射温度計20、22、及び、3.4μ
m以外の測定波長λ2の少なくとも1台の放射温度計2
4から得られる3つの関係式(例えば後出(1)(2)
(3)式)をとることにより、鋼材温度Tsを求めるこ
とができる。
Therefore, as shown in FIG. 6, for a plurality of unknown steel temperature Ts, emissivity .epsilon.s of steel material and film thickness t of rolling oil 12, a plurality of measuring instruments having a measuring wavelength .lambda. Radiation thermometers 20, 22, and 3.4μ
at least one radiation thermometer 2 with a measurement wavelength λ2 other than m
4 (for example, (1) and (2) below)
By taking the equation (3), the steel material temperature Ts can be obtained.

【0015】或いは、図7に示す如く、例えば測定波長
λ1=3.4μmの、測定角度が互いに異なる少なくと
も3台の放射温度計20、22、26から得られる、3
つの関係式(例えば後出(1)(2)(17)式)をと
ることによっても、鋼材温度Tsを求めることができ
る。
[0017] Alternatively, as shown in FIG. 7, for example, at least three radiation thermometers 20, 22, and 26 at different measurement angles, each having a measurement wavelength λ 1 = 3.4 μm, 3
The steel material temperature Ts can also be obtained by taking one of the two relational expressions (for example, the expressions (1), (2), and (17)).

【0016】[0016]

【発明の実施の形態】以下図面を参照して、本発明の実
施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0017】本発明の第1実施形態においては、図8に
示す如く、圧延スタンド30、32間の鋼板10の上方
に、圧延油による放射エネルギの吸収が大きな測定波長
λ1=3.4μmを有する2台の放射温度計20、2
2、及び、圧延油による放射エネルギの吸収が小さな測
定波長λ2=3.5μmを有する1台の放射温度計24
を配置する。測定角度θは、鋼板10の法線方向に対
し、放射温度計20がθ1=0°、放射温度計22と2
4がθ2=60°とする。
In the first embodiment of the present invention, as shown in FIG. 8, above the steel plate 10 between the rolling stands 30 and 32, there is a measurement wavelength λ1 = 3.4 μm at which absorption of radiant energy by rolling oil is large. Two radiation thermometers 20, 2
2, and one radiation thermometer 24 having a measurement wavelength λ 2 = 3.5 μm where the absorption of radiation energy by the rolling oil is small.
Place. The measurement angle θ is such that, with respect to the normal direction of the steel sheet 10, the radiation thermometer 20 is θ1 = 0 °, and the radiation thermometers 22 and
4 is θ2 = 60 °.

【0018】各放射温度計20、22、24の測定温度
(輝度温度)は、それぞれアンプ40、42、44を介
してデータ処理装置50に取り込まれる。
The measured temperatures (brightness temperatures) of the radiation thermometers 20, 22, and 24 are taken into a data processing device 50 via amplifiers 40, 42, and 44, respectively.

【0019】データ処理装置50には、予め、圧延油の
放射率と膜厚との関係式を入力しておく。そして、各放
射温度計の輝度温度Sと鋼板温度Tsから得られる、放
射輝度に関する3つの関係式から、鋼板温度Tsを求め
る。この結果は、温度表示器52に表示したり、上位の
計算機54に送り、温度管理やライン制御に利用され
る。
The relational expression between the emissivity of the rolling oil and the film thickness is input to the data processor 50 in advance. Then, the steel sheet temperature Ts is obtained from three relational expressions relating to the radiance obtained from the luminance temperature S of each radiation thermometer and the steel sheet temperature Ts. This result is displayed on the temperature display 52 or sent to the host computer 54 and used for temperature management and line control.

【0020】ここで、放射輝度の関係式から鋼板温度T
sを求める方法について、具体的に説明する。
Here, from the relational expression of the radiance, the steel plate temperature T
A method for obtaining s will be specifically described.

【0021】放射温度計20、22、24の輝度温度
を、それぞれS1、S2、S3とすると、各放射温度計2
0、22、24の放射輝度L1、L2、L3について、次
の関係式が成り立つ。
Assuming that the luminance temperatures of the radiation thermometers 20, 22, and 24 are S1, S2, and S3, respectively,
For radiances L1, L2, and L3 of 0, 22, and 24, the following relational expression holds.

【0022】 L1(S1)=κ・εs(λ1)・L1(Ts) +(1−κ)εo・L1(To) …(1) L2(S2)=κ′・εs(λ1)・L1(Ts) +(1−κ′)εo・L1(To) …(2) L3(S3)=εs(λ2)・L2(Ts) …(3) ここで、Ts:鋼板温度 To:圧延油温度(=Ts) εs:鋼板の放射率 εo:圧延油の放射率(既知) κ、κ:圧延油の透過率 であり、圧延油の透過率κは、次式で表わされる。L1 (S1) = κ · εs (λ1) · L1 (Ts) + (1−κ) εo · L1 (To) (1) L2 (S2) = κ ′ · εs (λ1) · L1 ( Ts) + (1−κ ′) εo · L1 (To) (2) L3 (S3) = εs (λ2) · L2 (Ts) (3) where Ts: steel sheet temperature To: rolling oil temperature ( = Ts) εs: emissivity of steel plate εo: emissivity of rolling oil (known) κ, κ: transmittance of rolling oil, and transmittance κ of rolling oil is represented by the following equation.

【0023】 κ=exp(−α・t) …(4) κ′=exp(−α・t′) …(5) ここで、α:圧延油の吸収係数(既知) t:圧延油の膜厚 t′:圧延油の見掛けの油膜厚Κ = exp (−α · t) (4) κ ′ = exp (−α · t ′) (5) where α: absorption coefficient of rolling oil (known) t: film of rolling oil Thickness t ': Apparent oil film thickness of rolling oil

【0024】(1)〜(3)式において、εs(λ1)、
εs(λ2)は、λ1とλ2が近い波長であるため、ほぼ等
しく、これをεsとおくことができる。又、油温度To
は、膜厚が薄いため、ほぼ鋼板温度Tsと同一とみなせ
るので、これをTとおく。
In the equations (1) to (3), εs (λ1),
εs (λ2) is almost equal because λ1 and λ2 are close wavelengths, and can be set as εs. Also, the oil temperature To
Since the film thickness is thin, it can be regarded as substantially the same as the steel sheet temperature Ts.

【0025】上記(1)〜(3)式を更に展開する。放
射輝度Lについては、次のウィーンの式で表わすことが
できる。
The equations (1) to (3) are further developed. The radiance L can be expressed by the following Wien equation.

【0026】[0026]

【数1】 (Equation 1)

【0027】これを代入すると、(1)〜(3)式は、
次の(7)〜(9)式になる。
By substituting this, the equations (1) to (3) become
The following equations (7) to (9) are obtained.

【0028】[0028]

【数2】 (Equation 2)

【0029】この(9)式よりεsを求め、(7)、
(8)式にそれぞれ代入すると、次式のようになる。
Εs is obtained from the equation (9), and (7)
By substituting each into the equation (8), the following equation is obtained.

【0030】[0030]

【数3】 (Equation 3)

【0031】従って、(10)、(11)式は、次のよ
うになる。
Therefore, the equations (10) and (11) are as follows.

【0032】 F1(T)=κ・F3(T)+εo(1−κ) …(12) F2(T)=κ′・F3(T)+εo(1−κ′) …(13)F 1 (T) = κ · F 3 (T) + εo (1-κ) (12) F 2 (T) = κ ′ · F 3 (T) + εo (1-κ ′) (13) )

【0033】ここで、κ及びκ′は、前出(4)式及び
(5)式で表わされる。又、tとt′の関係は図5で表
わされ、t′=t/cosθ′となる。
Here, κ and κ ′ are expressed by the above-mentioned equations (4) and (5). The relationship between t and t 'is shown in FIG. 5, where t' = t / cos θ '.

【0034】(4)、(5)式を(12)、(13)式
に代入して変形すると、次式が得られる。
By substituting equations (4) and (5) into equations (12) and (13) and transforming them, the following equation is obtained.

【0035】[0035]

【数4】 (Equation 4)

【0036】この(14)及び(15)式よりtを消去
すると、次の関係式が導出できる。
If t is eliminated from the equations (14) and (15), the following relational expression can be derived.

【0037】 lnA(T)=cosθ′・lnB(T) …(16)InA (T) = cos θ ′ · lnB (T) (16)

【0038】従って、この(16)式を解くことによ
り、鋼板温度Tを求めることができる。
Accordingly, the steel sheet temperature T can be obtained by solving the equation (16).

【0039】なお、第1実施形態では、波長をλ1及び
λ2の2種類としたが、図7に示した要部構成を有する
第2実施形態のように、測定波長がλ1と同一の放射温
度計20、22、26を3台用いて、測定角度θを例え
ばθ1=0°、θ2=40°及びθ3=80°の3水準と
して、膜厚をt、t′、t”(t′、t”は見掛けの膜
厚)の3種類にしても、同様に求めることができる。こ
の場合には、前出(3)式が、次の(17)式に示す如
くとなる。
In the first embodiment, two wavelengths, λ1 and λ2, are used. However, as in the second embodiment having the main configuration shown in FIG. 7, the measured radiation temperature is the same as λ1. The total film thickness is t, t ', t "(t', t ', t3) at three levels, for example, θ1 = 0 °, θ2 = 40 °, and θ3 = 80 °. Even if t ″ is an apparent film thickness), the same can be obtained. In this case, the above equation (3) becomes as shown in the following equation (17).

【0040】 L1(S3)=κ”・εs(λ1)・L1(Ts) +(1−κ”)εo・L1(To) …(17)L1 (S3) = κ ″ · εs (λ1) · L1 (Ts) + (1−κ ″) εo · L1 (To) (17)

【0041】なお、前記実施形態においては、波長λ1
=3.4μm、λ2=3.5μmとされていたが、波長
は、これらに限定されない。
In the above embodiment, the wavelength λ1
= 3.4 μm and λ 2 = 3.5 μm, but the wavelength is not limited to these.

【0042】又、前記実施形態においては、本発明が、
圧延油が塗布された鋼板の表面温度の測定にも適用され
ていたが、本発明の適用対象はこれに限定されず、圧延
油以外の油や水等の液体が存在する、鋼板以外の一般の
鋼材の表面温度の測定にも、同様に適用できることは明
らかである。
In the above embodiment, the present invention provides:
Although it was also applied to the measurement of the surface temperature of a steel sheet coated with rolling oil, the application of the present invention is not limited to this, and there is a liquid such as oil or water other than the rolling oil. It is clear that the present invention can be similarly applied to the measurement of the surface temperature of the steel material.

【0043】[0043]

【発明の効果】本発明によれば、鋼材の放射率が変動
し、且つ、圧延スタンド間のように、鋼材の表面に圧延
油等の液体が存在する条件であっても、鋼材の表面温度
を正確に測定することができる。
According to the present invention, even if the emissivity of the steel material fluctuates and the liquid such as rolling oil is present on the surface of the steel material, such as between rolling stands, the surface temperature of the steel material is reduced. Can be measured accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の問題点及び本発明の原理を説明するため
の、圧延油が乗った状態の鋼板を示す断面図
FIG. 1 is a cross-sectional view showing a steel sheet on which rolling oil is applied, for explaining a conventional problem and the principle of the present invention.

【図2】本発明の原理を説明するための、圧延油の分光
透過率の測定例を示す線図
FIG. 2 is a diagram showing a measurement example of a spectral transmittance of rolling oil for explaining the principle of the present invention.

【図3】同じく圧延油の放射率と膜厚の関係の測定例を
示す線図
FIG. 3 is a diagram showing a measurement example of the relationship between the emissivity of rolling oil and the film thickness.

【図4】同じく本発明の有効性を確認するための実験方
法を示す断面図
FIG. 4 is a sectional view showing an experimental method for confirming the effectiveness of the present invention.

【図5】本発明の原理を説明するための、実際の膜厚と
見掛けの膜厚との関係を示す線図
FIG. 5 is a diagram showing a relationship between an actual film thickness and an apparent film thickness for explaining the principle of the present invention.

【図6】本発明における放射温度計の基本的な配置例を
示す断面図
FIG. 6 is a sectional view showing a basic arrangement example of a radiation thermometer according to the present invention.

【図7】同じく放射温度計の配置の変形例を示す断面図FIG. 7 is a sectional view showing a modification of the arrangement of the radiation thermometer.

【図8】本発明の第1実施形態の全体構成を示すブロッ
ク線図
FIG. 8 is a block diagram showing the overall configuration of the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…鋼板 12…圧延油 t、t′、t”…油膜厚 20、22、24、26…放射温度計 S1、S2、S3…輝度温度 50…データ処理装置 52…温度表示器 T…鋼板温度 DESCRIPTION OF SYMBOLS 10 ... Steel plate 12 ... Rolling oil t, t ', t "... Oil film thickness 20, 22, 24, 26 ... Radiation thermometer S1, S2, S3 ... Brightness temperature 50 ... Data processing device 52 ... Temperature display T ... Steel plate temperature

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】表面に液体が存在する鋼材の表面温度を測
定するに際して、 前記液体による放射エネルギの吸収が大きな測定波長を
有する放射温度計を、互いに異なる測定角度で複数台配
置すると共に、 前記液体による放射エネルギの吸収が小さな測定波長を
有する放射温度計を少なくとも1台配置し、 各放射温度計により測定された少なくとも3つの輝度温
度と、予め求めておいた液体の放射率と膜厚との関係式
から、液体の影響を排除した鋼材の表面温度を算出する
ことを特徴とする鋼材の表面温度測定方法。
When measuring the surface temperature of a steel material having a liquid on its surface, a plurality of radiation thermometers having a measurement wavelength at which absorption of radiant energy by the liquid is large are arranged at different measurement angles from each other; At least one radiation thermometer having a measurement wavelength at which absorption of radiant energy by the liquid is small, at least three brightness temperatures measured by each radiation thermometer, emissivity and film thickness of the liquid determined in advance, and Calculating the surface temperature of the steel material excluding the influence of the liquid from the relational expression (1).
【請求項2】表面に液体が存在する鋼材の表面温度を測
定するに際して、 前記液体により放射エネルギが吸収される測定波長を有
する放射温度計を、互いに異なる測定角度で3台以上配
置し、 各放射温度計により測定された少なくとも3つの輝度温
度と、予め求めておいた液体の放射率と膜厚との関係式
から、液体の影響を排除した鋼材の表面温度を算出する
ことを特徴とする鋼材の表面温度測定方法。
2. When measuring the surface temperature of a steel material having a liquid on its surface, three or more radiation thermometers having measurement wavelengths at which radiant energy is absorbed by the liquid are arranged at different measurement angles from each other. It is characterized in that the surface temperature of the steel material excluding the influence of the liquid is calculated from at least three brightness temperatures measured by the radiation thermometer and the relational expression between the emissivity and the film thickness of the liquid which is obtained in advance. A method for measuring the surface temperature of steel materials.
【請求項3】表面に液体が存在する鋼材の表面温度を測
定するための鋼材の表面温度測定装置であって、 互いに異なる測定角度で配設された、前記液体による放
射エネルギの吸収が大きな測定波長を有する複数台の放
射温度計と、 前記液体による放射エネルギの吸収が小さな測定波長を
有する少なくとも1台の放射温度計と、 各放射温度計を所定角度で保持する機構と、 各放射温度計により測定された少なくとも3つの輝度温
度と、予め求めておいた液体の放射率と膜厚との関係式
から、液体の影響を排除した鋼材の表面温度を演算し、
出力するデータ処理手段と、 を備えたことを特徴とする鋼材の表面温度測定装置。
3. A steel surface temperature measuring device for measuring a surface temperature of a steel material having a liquid on its surface, wherein the measuring device is disposed at different measurement angles and has a large absorption of radiant energy by the liquid. A plurality of radiation thermometers having wavelengths; at least one radiation thermometer having a measurement wavelength at which absorption of radiation energy by the liquid is small; a mechanism for holding each radiation thermometer at a predetermined angle; and each radiation thermometer Calculate the surface temperature of the steel material excluding the influence of the liquid from at least three luminance temperatures measured by the above and the relational expression between the emissivity and the film thickness of the liquid determined in advance,
A data processing means for outputting, and a device for measuring the surface temperature of steel.
【請求項4】表面に液体が存在する鋼材の表面温度を測
定するための鋼材の表面温度測定装置であって、 互いに異なる測定角度で配設された、前記液体により放
射エネルギが吸収される測定波長を有する3台以上の放
射温度計と、 各放射温度計を所定角度で保持する機構と、 各放射温度計により測定された少なくとも3つの輝度温
度と、予め求めておいた液体の放射率と膜厚との関係式
から、液体の影響を排除した鋼材の表面温度を演算し、
出力するデータ処理手段と、 を備えたことを特徴とする鋼材の表面温度測定装置。
4. A steel surface temperature measuring device for measuring a surface temperature of a steel material having a liquid on its surface, wherein the measurement device is disposed at different measurement angles from each other and absorbs radiant energy by the liquid. Three or more radiation thermometers having wavelengths, a mechanism for holding each radiation thermometer at a predetermined angle, at least three brightness temperatures measured by each radiation thermometer, the emissivity of the liquid determined in advance, From the relational expression with the film thickness, calculate the surface temperature of the steel material excluding the effect of the liquid,
A data processing means for outputting, and a device for measuring the surface temperature of steel.
JP11115828A 1999-04-23 1999-04-23 Surface temperature of steel material measuring method and apparatus Pending JP2000304617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11115828A JP2000304617A (en) 1999-04-23 1999-04-23 Surface temperature of steel material measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11115828A JP2000304617A (en) 1999-04-23 1999-04-23 Surface temperature of steel material measuring method and apparatus

Publications (1)

Publication Number Publication Date
JP2000304617A true JP2000304617A (en) 2000-11-02

Family

ID=14672136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11115828A Pending JP2000304617A (en) 1999-04-23 1999-04-23 Surface temperature of steel material measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP2000304617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112823270A (en) * 2018-11-09 2021-05-18 株式会社神户制钢所 Oxide film thickness measuring device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112823270A (en) * 2018-11-09 2021-05-18 株式会社神户制钢所 Oxide film thickness measuring device and method
CN112823270B (en) * 2018-11-09 2022-09-13 株式会社神户制钢所 Oxide film thickness measuring device and method

Similar Documents

Publication Publication Date Title
EP0335224B1 (en) Radiation thermometry
US20100292950A1 (en) Radiation thermometry and radiation thermometry system
JP2008235858A (en) Method of measuring semiconductor surface temperature, and device therefor
JP2019023635A (en) Temperature measuring device, temperature measuring method, and program
EP2299250B1 (en) Pyrometer adapted for detecting UV-radiation and use thereof
US6082892A (en) Temperature measuring method and apparatus
Yamada et al. Toward reliable industrial radiation thermometry
WO2007088552A9 (en) Apparatus and method for imaging integrated circuits and the like
Fu et al. The set-up of a vision pyrometer
JP2000304617A (en) Surface temperature of steel material measuring method and apparatus
JP7120834B2 (en) Oxide film thickness measuring device and method
JP2000356554A (en) Method for processing silicon work piece using composite type optical temperature measurement system
JPH07270130A (en) Method of measuring thickness of oxide film
Oshige et al. Emissivity-free radiation thermometry based on multivariate analysis of spectral radiance applied to steel-making process
JP2007107939A (en) Method and device of measuring temperature of steel plate
JPH07174634A (en) Method for measuring temperature of object in furnace
JP2002303551A (en) Method and device for measuring temperature of in- furnace metallic material
JPH05273045A (en) Temperature measuring apparatus for object covered with transparent thin film
Thomas et al. Infrared properties of polycrystalline magnesium fluoride
JPH0933353A (en) Method for measuring radiation temperature and temperature measuring device therefor
JP3518425B2 (en) Method and apparatus for measuring surface temperature of steel
JPH0425729A (en) Temperature measuring instrument
JPH0643034A (en) Method of measuring temperature
JPH04276527A (en) Thermometer in furnace
JP2020165794A (en) Inclined mirror multiple reflection type radiation thermometer