JPS5987329A - Method for measuring temperature of steel - Google Patents

Method for measuring temperature of steel

Info

Publication number
JPS5987329A
JPS5987329A JP57195970A JP19597082A JPS5987329A JP S5987329 A JPS5987329 A JP S5987329A JP 57195970 A JP57195970 A JP 57195970A JP 19597082 A JP19597082 A JP 19597082A JP S5987329 A JPS5987329 A JP S5987329A
Authority
JP
Japan
Prior art keywords
steel plate
plate
emissivity
steel
radiation thermometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57195970A
Other languages
Japanese (ja)
Inventor
Takeo Yamada
健夫 山田
Naoki Harada
直樹 原田
Kiyotaka Imai
清隆 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP57195970A priority Critical patent/JPS5987329A/en
Publication of JPS5987329A publication Critical patent/JPS5987329A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0887Integrating cavities mimicking black bodies, wherein the heat propagation between the black body and the measuring element does not occur within a solid; Use of bodies placed inside the fluid stream for measurement of the temperature of gases; Use of the reemission from a surface, e.g. reflective surface; Emissivity enhancement by multiple reflections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure the temperature of a steel plate with high precision, by measuring the radiation energy from the steel plate, which is reflected alternately between the steel plate and an inclined reflective plate, with a radiation thermometer which is inclined to the steel plate. CONSTITUTION:The reflective plate such as an Al plate having a high reflection factor is so provided that it faces a steel plate 1 to be measured and is inclined to the steel plate 1 by 1-3 deg.. A radiation thermometer 3 is so provided that it is inclined to the steel pate 1 by 60-70 deg.. The radiation energy from the steel plate 1 is reflected alternately between the steel plate 1 and the reflective plate 2 and is made incident to the radiation thermometer 3; and the apparent emissivity of the steel plate 1 becomes higher due to this multiple reflection of the radiation energy, and high-precision measurement is performed by measuring this radiation energy of a high emissivity with the radiation thermometer 3.

Description

【発明の詳細な説明】 この発明は、鋼板の温度測定方法に関するものである。[Detailed description of the invention] The present invention relates to a method for measuring the temperature of a steel plate.

一般に鋼板の表面温度を非接触で測定するには。Generally used to measure the surface temperature of steel plates without contact.

放射温度計が用いられている。A radiation thermometer is used.

=1− 放射温度計は、測定対象物から放射される放射エネルギ
ーを温度に換算するものであり、測定対象物の放射率に
合わせて温度表示を調整できるように構成されている。
=1- The radiation thermometer converts the radiant energy emitted from the object to be measured into temperature, and is configured so that the temperature display can be adjusted according to the emissivity of the object to be measured.

従って、放射温度計により鋼板の表面温度を測定する場
合には、鋼板表面の放射率を求めることがきわめて重要
である。
Therefore, when measuring the surface temperature of a steel plate with a radiation thermometer, it is extremely important to determine the emissivity of the steel plate surface.

従来、放射率を考慮した放射温度計としては、おわん形
をなす反射器を備えていて、骨板表面直上に設置した反
射器により鋼板表面からの放射エネルギーを多重反射さ
せて、放射エネルギーの放射率を増大させ、放射率によ
る影響を除いたものがある。
Conventionally, radiation thermometers that take emissivity into consideration are equipped with a bowl-shaped reflector, which is installed directly above the bone plate surface to multiple-reflect the radiant energy from the steel plate surface. There is one that increases the rate and removes the effect of emissivity.

しかし、上記放射温度計は1反射器を鋼板表面に接近さ
せて設置する必要があるために、連続的に移動する鋼板
の温度測定には不向きである。
However, since the radiation thermometer described above requires one reflector to be installed close to the surface of the steel plate, it is not suitable for measuring the temperature of a continuously moving steel plate.

放射率の多重反射を利用した放射温度計としてはこの他
、キャビティーの上部に回転セクターを設置し、開口部
の大きさを変化させることにより。
Another example of a radiation thermometer that uses multiple reflections of emissivity is to install a rotating sector at the top of the cavity and change the size of the opening.

温度測定を行なうものがある。There are some that measure temperature.

2− しかし、この温度計は高い測定精度を得ることができる
が1機構が複雑で、しかも大型であるので、設置場所が
限定□されるとともに高価であ為。
2- However, although this thermometer can obtain high measurement accuracy, it has a complicated mechanism and is large in size, which limits the installation location and is expensive.

この発明は、上述のような観点から、きわめて容易に、
かつ高精度で鋼板の表面温度の測定が行なえる温度測定
方法を提供するものであって。
From the above-mentioned viewpoint, this invention can be carried out very easily by
The present invention also provides a temperature measurement method that can measure the surface temperature of a steel plate with high accuracy.

鋼板に対して10〜3°傾斜させて鏡面的高反射率を有
する反射板を前記鋼板と対向して設置し、前記鋼板に対
して60°〜70°の角度で前記鋼板に向けて放射温度
計を設置し、前記鋼板と前記反射板との間を交互に反射
する前記鋼板からの放射エネルギーを前記放射温度計で
測定することに特徴を有する。
A reflective plate having a high specular reflectance is installed facing the steel plate at an angle of 10 to 3 degrees with respect to the steel plate, and the radiant temperature is directed toward the steel plate at an angle of 60 to 70 degrees with respect to the steel plate. The radiation thermometer is characterized in that a thermometer is installed, and the radiation energy from the steel plate that is alternately reflected between the steel plate and the reflecting plate is measured by the radiation thermometer.

この発明の方法を図面を参照しながら説明する。The method of this invention will be explained with reference to the drawings.

第1図は、この発明の詳細な説明図である。FIG. 1 is a detailed explanatory diagram of the present invention.

第1図に示されるように、測定対象物である鋼板lに対
向してアルミニウム板等の高い反射率を有する反射板2
を、鋼板1に対して角度αだけ傾斜させて設置する。図
中dは反射板2の一端部0と鋼板1との間(0,0間)
の距離−a+は反射板=3− 2の他端部Aと鋼板lとの間(A、、B間)の距離。
As shown in FIG. 1, a reflective plate 2 having a high reflectance such as an aluminum plate is placed opposite the steel plate l that is the object to be measured.
is installed so as to be inclined at an angle α with respect to the steel plate 1. In the figure, d is between one end 0 of the reflector plate 2 and the steel plate 1 (between 0 and 0)
The distance -a+ is the distance between the other end A of the reflector plate 3-2 and the steel plate l (between A and B).

!は反射板2OOA間の長さである。! is the length between the reflecting plates 2OOA.

この状態で放射温度計3を0点に向けて、鋼板lに対し
てθだけ傾斜させて設置する。
In this state, the radiation thermometer 3 is installed with the radiation thermometer 3 facing the 0 point and tilted by θ with respect to the steel plate 1.

鋼板1かもの放射エネルギーは、鋼板lと反射板2との
間を交互に反射して放射温度計3に入射する。このよう
に、放射エネルギーが多重反射することにより鋼板1の
見かけの放射率は高くなり。
The radiant energy of the steel plate 1 is alternately reflected between the steel plate 1 and the reflecting plate 2 and is incident on the radiation thermometer 3. In this way, the apparent emissivity of the steel plate 1 increases due to multiple reflections of the radiant energy.

この高い放射率の放射エネルギーが放射温度計3に入射
することになる。
This high emissivity radiation energy enters the radiation thermometer 3.

ここで、上記見かけの放射率について第2図を参照しな
がら説明する。
Here, the above apparent emissivity will be explained with reference to FIG. 2.

鋼板lの表面と反射板2の表面は1例えばこれらの表面
に光が入射した場合、完全鏡面反射するものと仮定する
と、鋼板表面上のPlに角度θで入射した光は、鋼板1
と反射板2との間をP1→P2→P、・・・T13のよ
うに交互に複数回反射を繰り返す。
The surface of steel plate l and the surface of reflector plate 2 are 1. For example, if light is incident on these surfaces, assuming that it is perfectly mirror-reflected, the light incident on Pl on the steel plate surface at an angle θ will be reflected on steel plate 1.
Reflection is repeated multiple times alternately in the order P1→P2→P, .

即ち、このことは−PI + T2 + T3・・・の
各点からの放射エネルギーは前記各点で反射してPlか
ら放射温度計3に入射することを意味し、放射エネルギ
ー4− の反射回数が多いほどみかけの放射率が増大する。
That is, this means that the radiant energy from each point -PI + T2 + T3... is reflected at each point and enters the radiation thermometer 3 from Pl, and the number of reflections of the radiant energy 4- The larger the number, the higher the apparent emissivity.

この放射エネルギーの反射回数は完全鏡面反射の仮定の
もとでは、パラメタθ、al dAにより定まる。ここ
で、放射エネルギーの反射回数のうち鋼板lの表面での
反射回数をn41反射板2の表面での反射回数をn2と
すると、上記各パラメータを一定とした場合の放射温度
計3が検出する放射エネルギーE、は次式で表わされる
The number of reflections of this radiant energy is determined by the parameters θ and al dA under the assumption of perfect specular reflection. Here, among the number of reflections of radiant energy, if the number of reflections on the surface of the steel plate l is n41 and the number of reflections on the surface of the reflecting plate 2 is n2, the radiation thermometer 3 detects the number of times of reflection when each of the above parameters is constant. The radiant energy E is expressed by the following formula.

・・・(1) 但し、ε1:鋼板の放射率。...(1) However, ε1: emissivity of the steel plate.

ε2:反射板の放射率。ε2: Emissivity of the reflector.

rI:鋼板の反射率。rI: Reflectance of steel plate.

T2:反射板の反射率。T2: Reflectance of the reflector.

T1:鋼板の温度。T1: Temperature of steel plate.

T2:反射板の温度。T2: Temperature of the reflector.

Eb(T):温度Tの黒体エネルギー。Eb(T): Blackbody energy at temperature T.

−5= 1式において、第1項は鋼板1からの放射エネルギー、
第2項は反射板2からの放射エネルギーである。
−5= In equation 1, the first term is the radiant energy from steel plate 1,
The second term is the radiant energy from the reflector 2.

今、鋼板1に対して反射板2の温度が著しく低い場合に
はEb(T1)〉Eb(T2)が成り立つ。従って。
Now, if the temperature of the reflective plate 2 is significantly lower than that of the steel plate 1, Eb(T1)>Eb(T2) holds true. Therefore.

鋼板1のみかけの放射率をε;とすると、1式は次のよ
うに簡略化される。
If the apparent emissivity of the steel plate 1 is ε; then Equation 1 can be simplified as follows.

反射板2の温度が常温で1反射板2の反射率が高ければ
、2式を用いて鋼板1のみかけの放射率が算出される。
If the temperature of the reflector plate 2 is normal temperature and the reflectance of the reflector plate 2 is high, the apparent emissivity of the steel plate 1 is calculated using Equation 2.

例えば、θ=60°〜70°の場合、α、 a/f (
1=1)をパラメータとした時の放射エネルギーの反射
回数を第3図に、また、 d/11 = 0.2 、 
 ε2−0.03の場合、鋼板lの放射率ε1と反射板
2の傾斜角度αをパラメータとした時の鋼板1のみかけ
の放射率の値を第4図に示す。
For example, when θ=60° to 70°, α, a/f (
Figure 3 shows the number of reflections of radiant energy when 1 = 1) is used as a parameter, and d/11 = 0.2,
In the case of ε2-0.03, the value of the apparent emissivity of the steel plate 1 is shown in FIG. 4 when the emissivity ε1 of the steel plate 1 and the inclination angle α of the reflection plate 2 are used as parameters.

第3図から明らかなように、α〉Oならば放射6− エネルギーの反射回数はd、Qに依存しない。即ち。As is clear from Fig. 3, if α〉O, then the radiation 6− The number of energy reflections does not depend on d and Q. That is.

鋼板lが反射板2に対して上下方向に振動しても放射エ
ネルギーの反射回数は変ら、かい。しかし。
Even if the steel plate l vibrates vertically with respect to the reflector plate 2, the number of reflections of the radiant energy does not change. but.

鋼板lが上下方向に波打つ場合には、αが変動する。こ
の場合には1反射板2を0点を中心として回転させ、放
射温度計3からの出力の最大値を祈出すれば良い。
When the steel plate l is undulated in the vertical direction, α changes. In this case, it is sufficient to rotate the reflector plate 2 around the zero point and hope for the maximum value of the output from the radiation thermometer 3.

一方、第4図から明らか々ように、α−r〜3゜近傍で
鋼板1の放射率が0.2以上ならば、みかけの放射率は
0.85以上となり、放射率の補正を行々わなくても高
い精度でt島度測定が行々える。
On the other hand, as is clear from Fig. 4, if the emissivity of the steel plate 1 is 0.2 or more in the vicinity of α-r~3°, the apparent emissivity will be 0.85 or more, and the emissivity must be corrected. T-island measurement can be carried out with high accuracy even without

従って、この発明では、鋼板と対向させ、かつ鋼板に対
してl°〜3°傾斜させて反射板を設置し。
Therefore, in the present invention, the reflective plate is installed facing the steel plate and inclined at 1° to 3° with respect to the steel plate.

放射温度計を鋼板に対して60°〜70’の位置に設置
したのである。
The radiation thermometer was installed at a position of 60° to 70' with respect to the steel plate.

第5図に、この発明の方法に従って加熱炉から出た鋼板
に対向して反射板を設置した場合の鋼板の放射率と1反
射板を設置しない場合の鋼板の放射率との関係を示す。
FIG. 5 shows the relationship between the emissivity of the steel plate when a reflector is installed opposite the steel plate coming out of the heating furnace according to the method of the present invention and the emissivity of the steel plate when no reflector is installed.

第5図から明らかなように1反射板を設置しな7− い場合の鋼板の放射率は0.22〜0,91と犬きく変
動するのに対して、反射板を設置した場合の鋼板の放射
率は0.85〜0.99と増大しており、放射率の補正
を行なう必要がないことがわかる。
As is clear from Figure 5, the emissivity of the steel plate without a reflector varies greatly from 0.22 to 0.91, whereas the emissivity of the steel plate with a reflector installed varies considerably. It can be seen that the emissivity increases to 0.85 to 0.99, and there is no need to correct the emissivity.

以上説明したように、この発明によれば、鋼板の放射率
の補正を行なうことなく鋼板の温度を高精度で測定する
ことができるといったきわめて有用な効果がもたらされ
る。
As explained above, according to the present invention, the extremely useful effect of being able to measure the temperature of a steel plate with high accuracy without correcting the emissivity of the steel plate is brought about.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の原理を示す説明図、第2図は、放
射エネルギーの反射状態を示す説明図。 第3図は1反射板の傾きと放射エネルギーの反射回数と
の関係を示す図、第4図は1反射板の傾きとみかけの放
射率との関係を示す図、第5図は。 反射板を設置しない場合の放射率と設置した場合の放射
率との関係を示す図である。図面において、l・・・鋼
板       2・・・反射板3・・・放射温度計 8−
FIG. 1 is an explanatory diagram showing the principle of the invention, and FIG. 2 is an explanatory diagram showing the state of reflection of radiant energy. FIG. 3 is a diagram showing the relationship between the inclination of one reflector and the number of reflections of radiant energy, FIG. 4 is a diagram showing the relationship between the inclination of one reflector and apparent emissivity, and FIG. 5 is a diagram showing the relationship between the inclination of one reflector and the apparent emissivity. FIG. 7 is a diagram showing the relationship between the emissivity when a reflector is not installed and the emissivity when a reflector is installed. In the drawings, l... Steel plate 2... Reflection plate 3... Radiation thermometer 8-

Claims (1)

【特許請求の範囲】[Claims] 鋼板に対して1°〜3°傾斜させて鏡面的高反射率を有
する反射板を前記鋼板と対向して設置し、前記鋼板に対
して600〜70’の角度で前記鋼板に向けて放射温度
計を設置し、前記鋼板と前記反射板との間を交互に反射
する前記鋼板からの放射エネルギーを前記放射温度計で
測定することを特徴とする。鋼板の温度測定方法。
A reflective plate having a high specular reflectance is installed facing the steel plate at an angle of 1° to 3° with respect to the steel plate, and the radiant temperature is directed toward the steel plate at an angle of 600 to 70′ with respect to the steel plate. The radiation thermometer measures the radiation energy from the steel plate that is alternately reflected between the steel plate and the reflecting plate. How to measure the temperature of steel plates.
JP57195970A 1982-11-10 1982-11-10 Method for measuring temperature of steel Pending JPS5987329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195970A JPS5987329A (en) 1982-11-10 1982-11-10 Method for measuring temperature of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195970A JPS5987329A (en) 1982-11-10 1982-11-10 Method for measuring temperature of steel

Publications (1)

Publication Number Publication Date
JPS5987329A true JPS5987329A (en) 1984-05-19

Family

ID=16350019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195970A Pending JPS5987329A (en) 1982-11-10 1982-11-10 Method for measuring temperature of steel

Country Status (1)

Country Link
JP (1) JPS5987329A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078394A (en) * 2005-09-12 2007-03-29 Sumitomo Metal Ind Ltd Apparatus and method for measuring surface temperature of metallic body, and method for manufacturing metallic body
WO2008013004A1 (en) 2006-07-27 2008-01-31 Kabushiki Kaisha Kobe Seiko Sho Temperature measuring method and temperature measuring device of steel plate, and temperature control method of steel plate
JP2008224287A (en) * 2007-03-09 2008-09-25 Sumitomo Metal Ind Ltd Apparatus and method for measuring emissivity of surface of metal body and steel sheet manufacturing method
JP2018141778A (en) * 2017-02-24 2018-09-13 Jfeスチール株式会社 Method of deriving apparent emissivity, temperature measurement method, method of manufacturing pipe materials, and temperature measurement device
JP2020165794A (en) * 2019-03-29 2020-10-08 株式会社チノー Inclined mirror multiple reflection type radiation thermometer
JP2021135105A (en) * 2020-02-25 2021-09-13 株式会社チノー Radiation temperature measurement device using multireflection between mirrors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078394A (en) * 2005-09-12 2007-03-29 Sumitomo Metal Ind Ltd Apparatus and method for measuring surface temperature of metallic body, and method for manufacturing metallic body
WO2008013004A1 (en) 2006-07-27 2008-01-31 Kabushiki Kaisha Kobe Seiko Sho Temperature measuring method and temperature measuring device of steel plate, and temperature control method of steel plate
US8812168B2 (en) 2006-07-27 2014-08-19 Kobe Steel, Ltd. Temperature measuring method and temperature measuring device of steel plate, and temperature control method of steel plate
JP2008224287A (en) * 2007-03-09 2008-09-25 Sumitomo Metal Ind Ltd Apparatus and method for measuring emissivity of surface of metal body and steel sheet manufacturing method
JP2018141778A (en) * 2017-02-24 2018-09-13 Jfeスチール株式会社 Method of deriving apparent emissivity, temperature measurement method, method of manufacturing pipe materials, and temperature measurement device
JP2020165794A (en) * 2019-03-29 2020-10-08 株式会社チノー Inclined mirror multiple reflection type radiation thermometer
JP2021135105A (en) * 2020-02-25 2021-09-13 株式会社チノー Radiation temperature measurement device using multireflection between mirrors

Similar Documents

Publication Publication Date Title
KR960013995B1 (en) Method for measuring surface temperature of semiconductor wafer substrate and heat-treating apparatus
US5102231A (en) Semiconductor wafer temperature measurement system and method
GB2074722A (en) Measuring surface temperature and emmissivity of a heated sample
JPS5987329A (en) Method for measuring temperature of steel
JPS6049849B2 (en) Device for measuring surface temperature and emissivity of objects
JPH02245624A (en) Radiation temperature measuring apparatus
SU763698A1 (en) Temperature measuring method
JPS59111026A (en) Temperature measurement for steel plate
JPS6049850B2 (en) radiation thermometer
JPH0458568B2 (en)
JPS6014193Y2 (en) Simultaneous measurement device for metal surface temperature and emissivity
JPS6033379Y2 (en) Radiation temperature measurement test device
JPH0232207A (en) Roughness measuring method for metal surface
JPS6221953Y2 (en)
JPS6111617Y2 (en)
JPS6225973B2 (en)
JPH0427496B2 (en)
JPS604830A (en) Measurement of substrate temperature
JP2873943B2 (en) Hemispherical mirror specific heat capacity measurement method
JPS6112212B2 (en)
JP2001091362A (en) Surface temperature measuring method amd apparatus therefor
JPS6014192Y2 (en) Surface temperature measuring device for objects inside the furnace
Stein Laser pyrometry
JPH0285731A (en) Non-contact-type thermometer
JPS6049852B2 (en) How to measure object surface temperature