JPS6135490B2 - - Google Patents

Info

Publication number
JPS6135490B2
JPS6135490B2 JP55094594A JP9459480A JPS6135490B2 JP S6135490 B2 JPS6135490 B2 JP S6135490B2 JP 55094594 A JP55094594 A JP 55094594A JP 9459480 A JP9459480 A JP 9459480A JP S6135490 B2 JPS6135490 B2 JP S6135490B2
Authority
JP
Japan
Prior art keywords
radiation
radiometer
reflector
reflected
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55094594A
Other languages
Japanese (ja)
Other versions
JPS5719629A (en
Inventor
Tooru Inochi
Kunitoshi Watanabe
Toshihiko Shibata
Tetsuo Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9459480A priority Critical patent/JPS5719629A/en
Priority to US06/239,727 priority patent/US4465382A/en
Priority to GB8106604A priority patent/GB2074722B/en
Priority to CA000372187A priority patent/CA1166037A/en
Priority to FR8104233A priority patent/FR2477706A1/en
Priority to NL8101049A priority patent/NL191447C/en
Priority to DE19813108153 priority patent/DE3108153A1/en
Publication of JPS5719629A publication Critical patent/JPS5719629A/en
Publication of JPS6135490B2 publication Critical patent/JPS6135490B2/ja
Priority to NL9101843A priority patent/NL9101843A/en
Priority to NL9101842A priority patent/NL9101842A/en
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0074Radiation pyrometry, e.g. infrared or optical thermometry having separate detection of emissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns

Description

【発明の詳細な説明】 本発明は、高温移動物体などの測温に有効な放
射測温方法および装置に関すある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation temperature measurement method and apparatus that are effective in measuring the temperature of a high-temperature moving object.

第1図の反射鏡12の代りに黒体炉を用いた放
射測温方式は本発明が既に案出している。この方
式は、鏡面反射を利用しているので背光雑音の除
去に優れ、炉内物体の測温に有効である。しかし
黒体炉は、理想的なものなら形体が大きくなり、
一定温度に加熱保持する必要があるなど厄介な問
題も含んでいる。そこで本発明は黒体炉を省略で
きる、鏡面反射利用放射測温方式を提供しようと
するものである。次に図面を参照しながらこれを
詳細に説明する。
The present invention has already devised a radiation temperature measurement method using a blackbody furnace in place of the reflecting mirror 12 shown in FIG. Since this method uses specular reflection, it is excellent in eliminating backlight noise and is effective in measuring the temperature of objects inside the furnace. However, an ideal blackbody furnace would have a large shape;
It also has some troublesome problems, such as the need to heat and maintain it at a constant temperature. Therefore, the present invention aims to provide a radiation temperature measurement method using specular reflection, which can omit the blackbody furnace. Next, this will be explained in detail with reference to the drawings.

第1図で10は被測温物体、12は反射鏡、1
4は回転セクタ、16は放射計である。物体10
は被測温物体、12は反射鏡、14は回転セク
タ、16は放射計である。物体10は例えば炉内
を走行する加熱ストリツプである。この場合反射
鏡12および回転セクタ14は炉外に置かれ、窓
18を通して物体10を覗くことになる。放射計
16は炉内、炉外いずれでもよい。反射鏡12と
放射計16は物体表面に立てた法線N―Oの両側
に同じ角θをなして配置され、反射鏡12は平面
鏡であつて図示の如く点Oと反射鏡を結ぶ直線に
対して直交する。このため次の様な放射線経路が
ある。即ち、温度Tの物体10はθ方向の放射率
をεθとしてεθ・Eb(T)の放射線をほゞ全
〓〓〓〓
方向に放出するが、このうち、放射計16へ向つ
た放射線はそのまゝ該放射計へ入り、また反射鏡
12へ向つた放射線は該反射鏡で反射し、点Oで
鏡面反射して放射計16へ入る。反射鏡12の前
面つまり物体10側には回転セクタがあり、この
回転セクタは第2図aに示す如く表面が吸収面と
なつている羽根部分14aと、それらの間の空間
14bからなり、図示しないモータにより回転す
るので、羽根部分14aが直線12―Oと交叉する
とき物体10からの反射線を吸収しまた反射鏡1
2からの放射線も遮断する。なおこの反射鏡1
2、それに回転セクタ14は物体10の温度に対
して充分低温にしておくので、これから放出され
る放射エネルギは無視できる。セクタ14が放射
線を吸収、遮断するとき放射計16へ入る放射エ
ネルギは物体10から放出されたもののみとな
る。即ち炉壁などからの放射線も物体表面で反射
して放射計16へ入射する可能性があるが、その
可能性のある鏡面反射経路はセクタ14で遮蔽さ
れるので、かゝる背光雑音が放射計16に入るこ
とはない。この点が鏡面反射利用の放射測温方式
の利点である。なおこの鏡面反射性は角θが大な
る程強い。放射計16へ入る放射エネルギは上記
の通りであるので、下式が成立する。
In Fig. 1, 10 is the temperature measured object, 12 is a reflector, 1
4 is a rotating sector, and 16 is a radiometer. Object 10
12 is a reflecting mirror, 14 is a rotating sector, and 16 is a radiometer. The object 10 is, for example, a heating strip running in a furnace. In this case, the reflector 12 and rotating sector 14 are placed outside the furnace and look into the object 10 through the window 18. The radiometer 16 may be placed either inside the furnace or outside the furnace. The reflecting mirror 12 and the radiometer 16 are arranged at the same angle θ on both sides of the normal line NO to the object surface, and the reflecting mirror 12 is a plane mirror and is connected to a straight line connecting the point O and the reflecting mirror as shown in the figure. perpendicular to For this reason, there are the following radiation paths. That is, the object 10 at temperature T emits almost all the radiation of εθ・E b (T), assuming that the emissivity in the θ direction is εθ.
Of these, the radiation directed toward the radiometer 16 enters the radiometer as is, and the radiation directed toward the reflecting mirror 12 is reflected by the reflecting mirror, specularly reflected at point O, and emitted. Entering 16 in total. There is a rotating sector on the front side of the reflecting mirror 12, that is, on the object 10 side, and this rotating sector consists of a blade portion 14a whose surface is an absorbing surface and a space 14b between them, as shown in FIG. 2a. Since the blade portion 14a intersects the straight line 12-O, it absorbs the reflected line from the object 10 and also reflects the reflection mirror 1.
It also blocks radiation from 2. Furthermore, this reflecting mirror 1
2. Also, since the rotating sector 14 is kept sufficiently cold relative to the temperature of the object 10, the radiant energy emitted from it is negligible. When the sector 14 absorbs and blocks radiation, the only radiant energy that enters the radiometer 16 is that emitted by the object 10. In other words, there is a possibility that radiation from the reactor wall or the like is reflected by the object surface and enters the radiometer 16, but since the possible specular reflection path is blocked by the sector 14, such backlight noise is not radiated. It will never be 16 in total. This point is an advantage of the radiation temperature measurement method that uses specular reflection. Note that this specular reflection becomes stronger as the angle θ becomes larger. Since the radiant energy entering the radiometer 16 is as described above, the following formula holds true.

E1=τ・εθ・Eb(T) …(1) E2=τ・〔εθ・Eb(T) +ra・τ・εθ(1−εθ)(1−p)E
b(T) …(2) ここでE1,E2はセクタ14で遮蔽した、しない
各場合の放射計16への入射エネルギ、τはフイ
ルタ本例では炉壁に設けた窓18の放射線透過
率、raは反射鏡12の実効反射率、pは物体表
面の拡散反射係数である。(1),(2)より E/E=1+ra・τ(1−εθ)(1−p) ∴εθ=1−1/rτ(1−p)(E/E
1)…(3) ≡1−K(G−1) …(4) また(1)式より Eb(T)=E/τ・εθ …(5) これらの(3)または4と(5)式から物体の放射率ε
θおよび温度Tが求まる。なおこの測温において
G=E/Eに実測し、K=1/r・τ(1−p
)は定数として 扱う。ra,τは保守管理を充分にすれば一定値
に維持される。pは測定鋼板の拡散反射係数であ
るからその都度実測するのは厄介であり、予め測
定して求めた値を使用する。従つて実際値が予測
値から大きく外れないことが、本測温方式を誤差
少なく行なう条件となる。Kが一定ならεθは第
3図の直線関係になる。
E 1 =τ・εθ・E b (T) …(1) E 2 =τ・[εθ・E b (T) +r a・τ 2・εθ(1−εθ)(1−p)E
b (T) ...(2) Here, E 1 and E 2 are the energy incident on the radiometer 16 with and without shielding with the sector 14, and τ is the radiation transmission through the window 18 provided in the furnace wall in this example. r a is the effective reflectance of the reflecting mirror 12, and p is the diffuse reflection coefficient of the object surface. From (1) and (2), E 2 /E 1 =1+ ra・τ 2 (1−εθ)(1−p) ∴εθ=1−1/ ra τ 2 (1−p)(E 2 /E 1-
1)...(3) ≡1-K(G-1)...(4) Also, from equation (1), E b (T)=E 1 /τ・εθ...(5) These (3) or 4 and ( 5) From the formula, the emissivity ε of the object
θ and temperature T are determined. In addition, in this temperature measurement, G=E 2 /E 1 was actually measured, and K=1/ ra・τ 2 (1-p
) is treated as a constant. r a and τ can be maintained at constant values if maintenance management is sufficient. Since p is the diffuse reflection coefficient of the steel plate to be measured, it is troublesome to actually measure it each time, so a value determined by measurement in advance is used. Therefore, the condition for performing this temperature measurement method with few errors is that the actual value does not deviate greatly from the predicted value. If K is constant, εθ has a linear relationship as shown in FIG.

第4図はεθおよびEb(T)を算出する演算
装置40を示す。セクタ14の回転と同期したサ
ンプリングロツクにより放射計16の出力をサン
プリングしてE1,E2を得、割算器22でG=E2/
E1を得る。設定器34から定数1を出力させ、
減算器24でG−1を作り、また設定器34から
定数Kを出力させ乗算器26でK(G−1)を作
る。これを減算器28で定数1から引いて物体の
放射率εθ=1−K(G−1)を得る。また設定
器34から透過率τを出力させ、乗算器30でτ
εθを作り、これを割算器32に入力してEb
(T)=E/τ・εθを得る。この後、放射エネルギ
ー 温度変換器36で物体温度Tを求める。
FIG. 4 shows an arithmetic unit 40 for calculating εθ and E b (T). The output of the radiometer 16 is sampled by a sampling lock synchronized with the rotation of the sector 14 to obtain E 1 and E 2 , and the divider 22 calculates G=E 2 /
Get E 1 . Output constant 1 from the setting device 34,
A subtracter 24 generates G-1, a setter 34 outputs a constant K, and a multiplier 26 generates K(G-1). This is subtracted from the constant 1 by the subtracter 28 to obtain the emissivity εθ=1−K(G−1) of the object. Also, the transmittance τ is output from the setter 34, and the multiplier 30 outputs the transmittance τ.
Create εθ and input it to the divider 32 to obtain E b
Obtain (T)=E 1 /τ·εθ. Thereafter, the object temperature T is determined by the radiant energy temperature converter 36.

物体10が炉内を搬送されるストリツプである
と、物体表面は詳しくは時々刻々上下し、また傾
斜し、場合によつては鏡面反射した放射線が放射
計に入力しなくなる。これには反射鏡を平面鏡と
してそして所定の幅を持たせるのが有効である。
第5図についてこれを説明すると物体10が角φ
傾斜すると、物体表面O、反射鏡中点12a、物
体表面O、放射計16の経路の放射線は点線で示
すように放射計16から外れてしまう。この場合
は、代つて、物体10の点10aから放出された
放射線が図示矢印経路で放射計16に入ることに
なる。逆にこのように反射鏡12の幅を定めると
よい。具体的には図示の長さ、角間には a=・tan2φ …(6) b=2sin2/cos(θ−3) …(7) が成立するから予想されるφの最大値に対する上
記aが存在し得るように反射鏡の寸法を定める。
反射鏡12として拡散反射鏡を用いるのも有効で
ある。第6図はキヤビテイ型反射鏡を用いた場合
を示し、この場合物体10が角傾斜すると矢印
〓〓〓〓
F1で示す如き多重反射が存在し得、実効反射率
aが変化する可能性がある。従つて反射鏡とし
ては、製作容易なども考慮すると平面鏡が優れて
いる。また平面鏡の代りに凹面鏡を使用すると、
物体10が炉内にある場合、凹面鏡の集光性によ
り、該凹面鏡と物体の測定点を結ぶ光軸上にある
炉壁窓18の寸法を小さくすることができる。
If the object 10 is a strip conveyed through a furnace, the surface of the object will move up and down from time to time, and will also be tilted, and in some cases specularly reflected radiation will not be input to the radiometer. For this purpose, it is effective to use a plane mirror as the reflecting mirror and to have a predetermined width.
To explain this regarding FIG. 5, the object 10 has an angle φ
When tilted, the radiation along the path between the object surface O, the reflector midpoint 12a, the object surface O, and the radiometer 16 deviates from the radiometer 16 as shown by the dotted line. In this case, the radiation emitted from the point 10a of the object 10 will instead enter the radiometer 16 along the path shown by the arrow. On the contrary, it is preferable to determine the width of the reflecting mirror 12 in this way. Specifically, the following a=・tan2φ...(6) b=2sin2/cos(θ-3)...(7) holds true for the length and angle shown, so the above a exists for the expected maximum value of φ. Dimension the reflector so that it can be used.
It is also effective to use a diffuse reflector as the reflector 12. FIG. 6 shows a case where a cavity type reflector is used. In this case, when the object 10 is tilted, the arrows 〓〓〓〓
There may be multiple reflections as shown by F 1 and the effective reflectance r a may change. Therefore, a plane mirror is preferable as a reflecting mirror in view of ease of manufacture. Also, if you use a concave mirror instead of a plane mirror,
When the object 10 is in the furnace, the light-gathering properties of the concave mirror make it possible to reduce the size of the furnace wall window 18 located on the optical axis connecting the concave mirror and the measurement point of the object.

回転セクタ14は第2図bに示すように放射線
の反射面14cと吸収面14aからなる回転円板
としてもよい。この場合は反射面14cが反射鏡
12を兼ねる。吸収面には空隙(空洞)を用いて
もよい。また放射計16には走査型のものもある
が、この走査型の放射計を使用する場合は反射鏡
12に隣接させて吸収面を配置し、放射計がその
走査でこれらの反射鏡と吸収面を交互に覗くよう
にしてもよい。この場合は回転セクタは不要であ
る。
The rotating sector 14 may be a rotating disk consisting of a radiation reflecting surface 14c and a radiation absorbing surface 14a, as shown in FIG. 2b. In this case, the reflective surface 14c also serves as the reflective mirror 12. A void (cavity) may be used in the absorption surface. There are also scanning type radiometers 16, but when using this scanning type radiometer, an absorption surface is placed adjacent to the reflecting mirror 12, and the radiometer interacts with these reflecting mirrors in its scanning. You may also look at the faces alternately. In this case, rotating sectors are not required.

以上説明した様に本発明によれば黒体炉を省略
した自己基準型の鏡面反射型放射測温が可能にな
り、甚だ有益である。この測温方式は炉内物体の
測温に有利であるが、勿論これに限るものではな
い。
As explained above, according to the present invention, it is possible to perform self-reference type specular reflection type radiation temperature measurement without using a blackbody furnace, which is extremely beneficial. Although this temperature measurement method is advantageous for measuring the temperature of objects inside the furnace, it is of course not limited to this method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の説明図、第2図a,
bは回転セクタの説明図、第3図はGとεθの関
係を示すグラフ、第4図は演算装置のブロツク
図、第5図および第6図は物体が傾斜した場合の
放射線経路の説明図である。 図面で16は放射計、12は反射鏡、10は物
体、40は演算装置、14は回転セクタである。 〓〓〓〓
Fig. 1 is an explanatory diagram of an embodiment of the present invention, Fig. 2 a,
b is an explanatory diagram of the rotating sector, Fig. 3 is a graph showing the relationship between G and εθ, Fig. 4 is a block diagram of the arithmetic unit, and Figs. 5 and 6 are explanatory diagrams of the radiation path when the object is tilted. It is. In the drawing, 16 is a radiometer, 12 is a reflector, 10 is an object, 40 is an arithmetic unit, and 14 is a rotating sector. 〓〓〓〓

Claims (1)

【特許請求の範囲】 1 放射計と反射鏡を物体上に、該物体からの放
射線が直接放射計に入り、また該物体からの放射
線が反射鏡で反射し、更に物体表面で反射して放
射計に入るように設置し、物体からの放射線を該
反射鏡で反射させた場合と、これを遮蔽した場合
の、該放射計に入力する各放射エネルギを測定
し、その測定値から該物体の放射率と求め、更に
該物体の温度を求めることを特徴とする物体の表
面温度測定方法。 2 反射鏡からの反射放射線が物体表面で鏡面反
射して放射計に入力するように設置された該反射
鏡および放射計と、該反射鏡の物体側に配置され
物体表面から放出されて反射鏡へ入力する放射線
を遮断する部分および該放射線を通しそして該反
射鏡で反射した放射線を再び物体表面へ通す部分
を有する回転セクタと、放射計の出力から該物体
の放射率および温度を算出する演算装置とを備え
ることを特徴とする物体の表面温度温度測定装
置。 3 反射鏡が平面鏡であることを特徴とする特許
請求の範囲第2項記載の物体の表面温度測定装
置。
[Claims] 1. A radiometer and a reflecting mirror are placed on an object, and radiation from the object directly enters the radiometer, and radiation from the object is reflected by the reflecting mirror, further reflected by the object surface, and emitted. The radiation energy input to the radiometer is measured when the radiation from the object is reflected by the reflector and when it is shielded, and the radiation energy of the object is determined from the measured value. A method for measuring the surface temperature of an object, characterized by determining the emissivity and further determining the temperature of the object. 2. A reflector and a radiometer installed so that the reflected radiation from the reflector is specularly reflected on the object surface and input to the radiometer, and a reflector and a radiometer installed on the object side of the reflector so that the reflected radiation is emitted from the object surface and input to the radiometer. a rotating sector having a part that blocks radiation input to the object and a part that allows the radiation to pass through and the radiation reflected by the reflector to pass back to the surface of the object; and an operation for calculating the emissivity and temperature of the object from the output of the radiometer. A device for measuring the surface temperature of an object, comprising: 3. The device for measuring the surface temperature of an object according to claim 2, wherein the reflecting mirror is a plane mirror.
JP9459480A 1980-03-04 1980-07-11 Measuring method for surface temperature of object and device thereof Granted JPS5719629A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP9459480A JPS5719629A (en) 1980-07-11 1980-07-11 Measuring method for surface temperature of object and device thereof
US06/239,727 US4465382A (en) 1980-03-04 1981-03-02 Method of and an apparatus for measuring surface temperature and emmissivity of a heated material
GB8106604A GB2074722B (en) 1980-03-04 1981-03-03 Measuring surface temperature and emmissivity of a heated sample
CA000372187A CA1166037A (en) 1980-03-04 1981-03-03 Method of and an apparatus for measuring surface temperature and emmissivity of a heated material
FR8104233A FR2477706A1 (en) 1980-03-04 1981-03-03 METHOD AND APPARATUS FOR MEASURING THE SURFACE TEMPERATURE AND THE EMISSIVE POWER OF A HEATED MATERIAL
NL8101049A NL191447C (en) 1980-03-04 1981-03-04 Device for measuring the surface temperature and the emissivity of a heated object.
DE19813108153 DE3108153A1 (en) 1980-03-04 1981-03-04 METHOD AND DEVICE FOR MEASURING THE SURFACE TEMPERATURE AND THE EMISSION CAPACITY OF HEATED MATERIAL
NL9101843A NL9101843A (en) 1980-03-04 1991-11-04 Device for measuring the surface temperature and emissivity of a heated object
NL9101842A NL9101842A (en) 1980-03-04 1991-11-04 Device for measuring the surface temperature and emissivity of a object heated in an oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9459480A JPS5719629A (en) 1980-07-11 1980-07-11 Measuring method for surface temperature of object and device thereof

Publications (2)

Publication Number Publication Date
JPS5719629A JPS5719629A (en) 1982-02-01
JPS6135490B2 true JPS6135490B2 (en) 1986-08-13

Family

ID=14114597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9459480A Granted JPS5719629A (en) 1980-03-04 1980-07-11 Measuring method for surface temperature of object and device thereof

Country Status (1)

Country Link
JP (1) JPS5719629A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541133A (en) * 2005-05-16 2008-11-20 ウルトラテック インク Mirror surface remote temperature measuring method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541133A (en) * 2005-05-16 2008-11-20 ウルトラテック インク Mirror surface remote temperature measuring method and apparatus

Also Published As

Publication number Publication date
JPS5719629A (en) 1982-02-01

Similar Documents

Publication Publication Date Title
US4465382A (en) Method of and an apparatus for measuring surface temperature and emmissivity of a heated material
US4435092A (en) Surface temperature measuring apparatus for object within furnace
US5993059A (en) Combined emissivity and radiance measurement for determination of temperature of radiant object
US6127658A (en) Wafer heating apparatus and method with radiation absorptive peripheral barrier blocking stray radiation
US2611541A (en) Radiation pyrometer with illuminator
US5573339A (en) Active radiometer for self-calibrated furnace temperature measurements
EP0708318A1 (en) Radiance measurement by angular filtering for use in temperature determination of radiant object
Lampinen et al. Modeling and measurements of infrared dryers for coated paper
JPS6135490B2 (en)
JPS6049849B2 (en) Device for measuring surface temperature and emissivity of objects
Pfänder et al. Pyrometric temperature measurements on solar thermal high temperature receivers
Ballico A simple technique for measuring the infrared emissivity of black-body radiators
JPS6047538B2 (en) How to measure the temperature and emissivity of an object
JPS6133539Y2 (en)
JPS6221953Y2 (en)
JP2542781B2 (en) Infrared sensor calibration device
JPS5987329A (en) Method for measuring temperature of steel
JPH0521412B2 (en)
JP3259815B2 (en) Method and apparatus for measuring emissivity and temperature of an object, and rod-shaped radiation source
JP2000186962A (en) Temperature measuring method and device for steel sheet
CN110763356A (en) Temperature detector and system based on optical fiber waveguide structure
JPS6111617Y2 (en)
EP0083100B1 (en) Method of measuring pipe temperature
SU783580A1 (en) Apparatus for measuring object deformation
US7133126B2 (en) Method for the detection of coatings using emissivity and reflectivity