JP5421840B2 - Temperature control method for reference plate in metal plate temperature measuring device - Google Patents

Temperature control method for reference plate in metal plate temperature measuring device Download PDF

Info

Publication number
JP5421840B2
JP5421840B2 JP2010082995A JP2010082995A JP5421840B2 JP 5421840 B2 JP5421840 B2 JP 5421840B2 JP 2010082995 A JP2010082995 A JP 2010082995A JP 2010082995 A JP2010082995 A JP 2010082995A JP 5421840 B2 JP5421840 B2 JP 5421840B2
Authority
JP
Japan
Prior art keywords
temperature
plate
measured
reference plate
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010082995A
Other languages
Japanese (ja)
Other versions
JP2011214979A (en
Inventor
良太 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010082995A priority Critical patent/JP5421840B2/en
Publication of JP2011214979A publication Critical patent/JP2011214979A/en
Application granted granted Critical
Publication of JP5421840B2 publication Critical patent/JP5421840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、例えば連続焼鈍設備や合金化溶融亜鉛メッキ設備に使用され、非接触にて金属板の温度を測定するための金属板の温度測定装置における参照板の温度制御方法に関する。   The present invention relates to a method for controlling the temperature of a reference plate in a temperature measuring device for a metal plate that is used in, for example, a continuous annealing facility or an alloyed hot dip galvanizing facility and measures the temperature of the metal plate in a non-contact manner.

鋼板を連続熱処理する連続焼鈍設備や溶融メッキの後に合金化処理する合金化溶融亜鉛メッキ設備においては、多品種の鋼板は連続処理される。このため、品種ごとに異なる鋼板の機械的特性(強度や伸びなど)やメッキ特性(合金化度など)を安定化させるためには、加熱・冷却を伴う熱処理プロセス後の鋼板温度を目標温度に精度良く制御することが重要である。   In continuous annealing equipment for continuously heat-treating steel sheets and galvannealed equipment for galvanizing after hot-dip plating, various types of steel sheets are continuously processed. For this reason, in order to stabilize the mechanical properties (strength, elongation, etc.) and plating properties (degree of alloying, etc.) of steel plates that differ for each product type, the steel plate temperature after the heat treatment process with heating / cooling is set to the target temperature. It is important to control accurately.

これらの設備において連続的に搬送される鋼板の温度測定は、非接触による放射温度計を用いた測定が一般的である(例えば、特許文献1参照)。放射温度計を用いる場合、被測定対象物である鋼板の放射率の設定が必要である。ところが、鋼板の放射率は鋼種、表面性状など鋼板自体の物理性状の他、鋼板温度など種々の要因によって変動するため、このような変動に対応して鋼板の放射率を設定することは非常に困難である。この結果、鋼板温度の測定に誤差が生じやすく、鋼板温度を目標温度に精度良く制御できない問題があった。   The temperature measurement of a steel sheet continuously conveyed in these facilities is generally performed using a non-contact radiation thermometer (see, for example, Patent Document 1). When using a radiation thermometer, it is necessary to set the emissivity of the steel sheet that is the object to be measured. However, since the emissivity of a steel sheet varies depending on various factors such as the steel sheet itself, the physical properties of the steel sheet, such as the surface properties, and the temperature of the steel sheet, it is very difficult to set the emissivity of the steel sheet in response to such variations. Have difficulty. As a result, an error is likely to occur in the measurement of the steel plate temperature, and the steel plate temperature cannot be accurately controlled to the target temperature.

そこで、上記のような鋼板の放射率変動の影響を極力排除した測定方法として、参照板と鋼板との間で交互に反射する回数がそれぞれで1または2回となる角度に鋼板に向けて放射温度計を設置することで、見かけ放射率が高くなるという知見に基づく測定方法が提案されている。   Therefore, as a measurement method that eliminates the influence of the emissivity fluctuation of the steel plate as much as possible, the number of times of alternately reflecting between the reference plate and the steel plate is radiated toward the steel plate at an angle of 1 or 2 each. A measuring method based on the knowledge that the apparent emissivity is increased by installing a thermometer has been proposed.

例えば、図6(a)に示すように、炉壁110a、110b、110c、110dで囲まれた炉内に、温度コントローラ160を備えた幅Wの参照板120を幅Wの被測定鋼板130に対向させて設置してある。この温度コントローラ160には、被測定鋼板130の目標温度Tが入力され、温度コントローラ160の指示に従って電源150から参照板120の幅W方向の全面に渡って一様に配設されたヒータ140に電力が供給される。また、参照板120の温度Tは接触式温度計170で直接測定される。さらに、参照板120と被測定鋼板130との間で放射エネルギーが交互に反射する回数がそれぞれで1回または2回となる角度θに被測定鋼板130に向けて放射温度計180を設置する。このようにして、被測定鋼板130から放出される射度を放射温度計180で測定し、この射度と等価なエネルギーを放射する黒体の温度に換算して求めた温度を射度温度Tとする。前記参照板120の温度Tが被測定鋼板130の目標温度Tまたは被測定鋼板130の温度Tに近づくように温度コントローラ160にてヒータ140を制御するとともに、射度温度Tと参照板120の温度Tに基づき鋼板温度演算器190にて被測定鋼板130の温度Tを算出する鋼板の温度測定方法である(例えば、特許文献2参照)。 For example, as shown in FIG. 6 (a), the furnace wall 110a, 110b, 110c, surrounded by a furnace at 110d, the measured steel plate of a reference plate 120 to the width W s of the width W r equipped with a temperature controller 160 It is installed opposite to 130. The target temperature T 0 of the steel plate 130 to be measured is input to the temperature controller 160, and a heater that is uniformly arranged over the entire surface in the width W r direction of the reference plate 120 from the power source 150 in accordance with an instruction from the temperature controller 160. Power is supplied to 140. Further, the temperature T 2 of the reference plate 120 is directly measured by the contact thermometer 170. Furthermore, the radiation thermometer 180 is installed toward the steel plate 130 to be measured at an angle θ at which the radiant energy is alternately reflected once or twice between the reference plate 120 and the steel plate 130 to be measured. In this way, the emissivity emitted from the steel plate 130 to be measured is measured by the radiation thermometer 180, and the temperature obtained by converting to the temperature of a black body that emits energy equivalent to this emissivity is the emissivity temperature T. g . Controls the heater 140 at the temperature controller 160 to temperature T 2 of the reference plate 120 approaches the temperature T 1 of the target temperature T 0 or the measured steel plate 130 of a measured steel plate 130, and reference id temperature T g This is a steel plate temperature measurement method in which the steel plate temperature calculator 190 calculates the temperature T 1 of the steel plate 130 to be measured based on the temperature T 2 of the plate 120 (see, for example, Patent Document 2).

特開平3−67137号公報JP-A-3-67137 特許第4217255号公報Japanese Patent No. 4217255

しかしながら、図6(a)に示すように、バーナなどが設置されていない空送帯において、被測定鋼板130に対向しない炉壁側面110cや110dからは放熱があり、かつ、被測定鋼板130からの形態係数も小さい。したがって、炉壁側面110cや110dは、受熱量が小さく、被測定鋼板130に対向する炉壁上面110aに比べて温度が低くなる。したがって、幅Wの参照板120を幅Wの被測定鋼板130に対向させて設置した場合、参照板120の幅W方向の全面に渡って一様に配設されたヒータ140で参照板120を加熱するだけでは、参照板120の幅W方向の両端部側の温度はどうしても低下してしまう。このような状態で、通板する被測定鋼板130の幅Wが変化すると、参照板120から被測定鋼板130以外(炉壁上面110a)を望む割合も変化し、参照板120の幅W方向の温度分布もさらに変化してしまう(図6(b)参照)。このように、通板する被測定鋼板130の幅Wが変化すると、特に被測定鋼板130の幅Wが変化した部分に対応する参照板120の幅W方向の部分の温度がどうしても大きく変化(温度偏差が増大)してしまい、被測定鋼板130の温度Tを算出する誤差(すなわち、被測定鋼板130の温度測定誤差)が大きくなってしまうという問題点があった。 However, as shown in FIG. 6 (a), in the air transport zone where no burner or the like is installed, there is heat radiation from the furnace wall side surfaces 110c and 110d that do not face the steel plate 130 to be measured, and from the steel plate 130 to be measured. The form factor is also small. Therefore, the furnace wall side surfaces 110c and 110d have a small amount of heat reception and have a lower temperature than the furnace wall upper surface 110a facing the steel plate 130 to be measured. Thus, the reference width W if the reference plate 120 r installed to face the measured steel plate 130 having a width W s, the reference plate 120 width W r direction of the heater 140 is uniformly arranged over the entire surface of the By merely heating the plate 120, the temperature at both ends of the reference plate 120 in the width Wr direction inevitably decreases. In such a state, when the width W s of the steel plate 130 to be measured changes, the ratio of the reference plate 120 other than the steel plate 130 to be measured (furnace wall upper surface 110a) also changes, and the width W r of the reference plate 120 changes. The temperature distribution in the direction also changes (see FIG. 6B). In this way, when the width W s of the steel plate 130 to be measured changes, the temperature of the portion in the width W r direction of the reference plate 120 corresponding to the portion where the width W s of the steel plate 130 to be measured has changed is inevitably increased. change will be (temperature deviation increases), and the error of calculating the temperature T 1 of the measured steel plate 130 (i.e., the temperature measurement error of the measured steel plate 130) has a problem that increases.

本発明の目的は、被測定金属板の幅が変化した際にも、被測定金属板の幅が変化した部分に対応する参照板の幅方向の部分の温度の変化(温度偏差)が軽減され、被測定金属板の温度測定誤差を小さくすることが可能な金属板の温度測定装置における参照板の温度制御方法を提供することにある。   The object of the present invention is to reduce the temperature change (temperature deviation) of the portion in the width direction of the reference plate corresponding to the portion where the width of the metal plate to be measured changes even when the width of the metal plate to be measured changes. Another object of the present invention is to provide a temperature control method for a reference plate in a metal plate temperature measuring apparatus capable of reducing a temperature measurement error of a metal plate to be measured.

この目的を達成するために、本発明の請求項1に記載の発明は、
幅Wが最小幅Wminから最大幅Wmaxまで変化する被測定金属板に対向して設置された幅Wの参照板と、この参照板に沿って設けられた主ヒータと補助ヒータと、この主ヒータと補助ヒータをそれぞれ制御するための主温度制御装置と補助温度制御装置と、前記参照板の温度(以下、「参照板温度」という。)Tを直接測定する温度検出器と、前記被測定金属板と前記参照板のそれぞれから放射される放射エネルギーが前記参照板と前記被測定金属板との間で所定の回数反射される角度となるように前記被測定金属板に向けて設置され、この角度で前記被測定金属板から放出されるエネルギーが測定され、この測定されたエネルギーと等価なエネルギーを放射する黒体の温度に相当する等価温度Tに換算され出力するための放射温度計と、前記等価温度Tと前記参照板温度Tと前記被測定金属板の幅Wに基づいて前記被測定金属板の温度Tを算出する金属板温度補正演算回路と、を備えた金属板の温度測定装置における参照板の温度制御方法であって、前記主ヒータの幅は、前記参照板の幅Wに対応するように設定され、
前記補助ヒータは、前記参照板に沿って、前記参照板と対向する最小幅Wminの前記被測定金属板の両端部よりそれぞれ外側の位置に対応するように設けられ、
前記被測定金属板の幅Wが変化した場合にも、前記参照板温度Tが前記被測定金属板の目標温度Tまたは前記被測定金属板の温度Tに近づくようにするために、
前記主温度制御装置の指示に基づき前記主ヒータに所定の電力を供給するとともに、
前記補助温度制御装置の指示に基づき前記被測定金属板の幅Wに応じた所定の電力を前記補助ヒータに供給し、前記参照板の温度分布が所定の温度分布となるように制御することを特徴とする金属板の温度測定装置における参照板の温度制御方法である。
In order to achieve this object, the invention according to claim 1 of the present invention provides:
See the plate width W is installed to face the measured metal plate which varies from a minimum width Wmin to a maximum width Wmax width W r, and the auxiliary heater main heater provided along the reference plate, the main A main temperature control device and an auxiliary temperature control device for controlling the heater and the auxiliary heater, a temperature detector for directly measuring the temperature of the reference plate (hereinafter referred to as “reference plate temperature”) T 2 , The radiant energy radiated from each of the measurement metal plate and the reference plate is installed toward the metal plate to be measured so that the radiant energy is reflected a predetermined number of times between the reference plate and the metal plate to be measured. the energy emitted from the measured metal plate at this angle is measured and the radiation for outputting is converted into an equivalent temperature T r corresponding to the temperature of a black body that emits the measured energy equivalent energy With a degree meter, and a metal plate temperature correction calculation circuit for calculating the temperature T 1 of the device under test metal sheet on the basis of the equivalent temperature T r and the reference plate temperature T 2 to the width W of the measured metal plate The temperature control method for the reference plate in the metal plate temperature measuring device, wherein the width of the main heater is set to correspond to the width W r of the reference plate,
The auxiliary heater is provided along the reference plate so as to correspond to positions outside the both ends of the metal plate to be measured having a minimum width Wmin facing the reference plate,
Wherein even when the width W of the measured metal plate is changed, for the reference plate temperature T 2 is as close to the temperature T 1 of the target temperature T 0 or the measured metal plate of the measured metal plate,
While supplying predetermined power to the main heater based on an instruction of the main temperature control device,
Based on an instruction from the auxiliary temperature control device, a predetermined power corresponding to the width W of the metal plate to be measured is supplied to the auxiliary heater, and the temperature distribution of the reference plate is controlled to be a predetermined temperature distribution. It is the temperature control method of the reference board in the temperature measuring apparatus of the metal plate characterized.

請求項2に記載の発明は、請求項1に記載の発明において、
前記補助ヒータは、前記参照板に沿って、前記参照板と対向する最小幅Wminの前記被測定金属板の両端部よりそれぞれ外側であり、かつ、最大幅Wmaxの前記被測定金属板の両端部よりそれぞれ内側の位置に対応するように設けられたことを特徴とする。
The invention according to claim 2 is the invention according to claim 1,
The auxiliary heaters are outside the both end portions of the metal plate to be measured having a minimum width Wmin facing the reference plate along the reference plate, and both end portions of the metal plate to be measured having a maximum width Wmax. It is characterized by being provided so as to correspond to the inner positions.

請求項3に記載の発明は、請求項2に記載の発明において、
前記主ヒータと対向する最大幅Wmaxの前記被測定金属板の両端部より外側の位置に対応する前記主ヒータの部分の温度が、前記主ヒータと対向する最大幅Wmaxの前記被測定金属板の両端部より内側の位置に対応する前記主ヒータの部分の温度より高温となるように構成されたことを特徴とする。
The invention according to claim 3 is the invention according to claim 2,
The temperature of the portion of the main heater corresponding to the position outside the both end portions of the metal plate to be measured having the maximum width Wmax facing the main heater is the temperature of the metal plate to be measured having the maximum width Wmax facing the main heater. It is characterized in that the temperature is higher than the temperature of the main heater corresponding to the position inside the both ends.

請求項4に記載の発明は、請求項1に記載の発明において、
前記補助ヒータは、前記参照板に沿って、前記参照板と対向する最小幅Wminの前記被測定金属板の両端部よりそれぞれαだけ外側に離れた位置からさらに外側の位置に対応するように設けられたことを特徴とする。
The invention according to claim 4 is the invention according to claim 1,
The auxiliary heater is provided along the reference plate so as to correspond to a position on the outer side from a position spaced outward by α from both ends of the metal plate to be measured having a minimum width Wmin facing the reference plate. It is characterized by that.

請求項5に記載の発明は、請求項1に記載の発明において、
前記補助ヒータの温度は、前記参照板の幅W方向に対して外側の方が内側に比べて高温となるように構成されたことを特徴とする。
The invention according to claim 5 is the invention according to claim 1,
The temperature of the auxiliary heater is configured such that the outer side is higher than the inner side with respect to the width W r direction of the reference plate.

本発明によれば、前記主ヒータの幅は、前記参照板の幅Wに対応するように設定され、
前記補助ヒータは、前記参照板に沿って、前記参照板と対向する最小幅Wminの前記被測定金属板の両端部よりそれぞれ外側の位置に対応するように設けられ、
前記被測定金属板の幅Wが変化した場合にも、前記参照板温度Tが前記被測定金属板の目標温度Tまたは前記被測定金属板の温度Tに近づくようにするために、
前記主温度制御装置の指示に基づき前記主ヒータに所定の電力を供給するとともに、
前記補助温度制御装置の指示に基づき前記被測定金属板の幅Wに応じた所定の電力を前記補助ヒータに供給し、前記参照板の温度分布が所定の温度分布となるように制御しているため、
被測定金属板の幅が変化した際にも、被測定金属板の幅が変化した部分に対応する参照板の幅方向の部分の温度の変化(温度偏差)が軽減され、被測定金属板の温度測定誤差を小さくすることが可能となる。
According to the present invention, the width of the main heater is set to correspond to the width W r of the reference plate,
The auxiliary heater is provided along the reference plate so as to correspond to positions outside the both ends of the metal plate to be measured having a minimum width Wmin facing the reference plate,
Wherein even when the width W of the measured metal plate is changed, for the reference plate temperature T 2 is as close to the temperature T 1 of the target temperature T 0 or the measured metal plate of the measured metal plate,
While supplying predetermined power to the main heater based on an instruction of the main temperature control device,
Based on an instruction from the auxiliary temperature control device, a predetermined power corresponding to the width W of the metal plate to be measured is supplied to the auxiliary heater, and the temperature distribution of the reference plate is controlled to be a predetermined temperature distribution. For,
Even when the width of the metal plate to be measured changes, the change in temperature (temperature deviation) of the width direction portion of the reference plate corresponding to the portion where the width of the metal plate to be measured has changed is reduced. The temperature measurement error can be reduced.

実施形態1に係る鋼板の温度測定装置の概略構成を説明するためのものであり、(a)は通板方向断面および制御フロー図、(b)ヒータ温度と参照板温度を説明するための説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is for demonstrating schematic structure of the temperature measuring apparatus of the steel plate which concerns on Embodiment 1, (a) is a sheet | seat direction cross section and a control flow figure, (b) Explanation for demonstrating heater temperature and a reference board temperature. FIG. 実施形態2に係る鋼板の温度測定装置の概略構成を説明するためのものであり、(a)は通板方向断面および制御フロー図、(b)ヒータ温度と参照板温度を説明するための説明図である。It is for demonstrating schematic structure of the temperature measuring apparatus of the steel plate which concerns on Embodiment 2, (a) is a sheet-passing direction cross section and a control flow figure, (b) Explanation for demonstrating heater temperature and a reference board temperature. FIG. 実施形態3に係る鋼板の温度測定装置の概略構成を説明するためのものであり、(a)は通板方向断面および制御フロー図、(b)ヒータ温度と参照板温度を説明するための説明図である。It is for demonstrating schematic structure of the temperature measuring apparatus of the steel plate which concerns on Embodiment 3, (a) is a sheet | seat direction cross section and a control flow figure, (b) Explanation for demonstrating heater temperature and a reference board temperature. FIG. 実施形態3における補助ヒータ設置位置とその位置が参照板の温度に与える影響を説明するための説明図である。It is explanatory drawing for demonstrating the influence which the auxiliary heater installation position in Embodiment 3 has on the temperature of a reference plate. 実施形態4に係る鋼板の温度測定装置の概略構成を説明するためのものであり、(a)は通板方向断面および制御フロー図、(b)ヒータ温度と参照板温度を説明するための説明図である。It is for demonstrating schematic structure of the temperature measuring apparatus of the steel plate which concerns on Embodiment 4, (a) is a sheet-pass direction cross section and a control flow figure, (b) Explanation for demonstrating heater temperature and reference plate temperature. FIG. 従来の鋼板の温度測定装置の概略構成を説明するためのものであり、(a)は通板方向断面および制御フロー図、(b)参照板温度を説明するための説明図である。It is for demonstrating schematic structure of the conventional temperature measuring apparatus of a steel plate, (a) is a sheet direction cross section and a control flowchart, (b) It is explanatory drawing for demonstrating reference plate temperature.

以下、本発明の一実施形態について、添付図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

〔実施形態1〕
図1は、実施形態1に係る鋼板の温度測定装置の概略構成を説明するためのものであり、(a)は通板方向断面および制御フロー図、(b)ヒータ温度と参照板温度を説明するための説明図である。
Embodiment 1
1A and 1B are diagrams for explaining a schematic configuration of a temperature measuring apparatus for a steel sheet according to Embodiment 1, wherein FIG. 1A is a cross-sectional view and a control flow diagram, and FIG. 1B is a heater temperature and a reference plate temperature. It is explanatory drawing for doing.

図1(a)において、1a、1b、1c、1dは炉壁、2は幅Wの参照板、3は幅が最小幅Wsminから最大幅Wsmaxまで変化する被測定金属板としての鋼板、4は参照板2に内蔵され、幅が参照板2の幅Wに対応するように設定された主ヒータ、5は主電源、6は主温度制御装置としての温度コントローラ、7は参照板2の温度Tを直接測定する温度検出器としての熱電対、8は参照板2と鋼板3との間(間隔h)で放射エネルギーが交互に反射する回数がそれぞれで1回または2回となる角度θになるように鋼板3に向けて設置された放射温度計、10は金属板温度補正演算回路としての鋼板温度補正演算回路、11は補助電源、12は補助温度制御装置としての温度コントローラ、13は参照板2に沿って設けられた補助ヒータである。最小幅Wsminの鋼板3と最大幅Wsmaxの鋼板3ともに参照板2に対向し、その間隔はともにhであるが、図示の都合上、位置をずらして表示している。なお、参照板2の温度を測定する熱電対7は、参照板2に複数個設置し、各熱電対7の測定値を平均して参照板温度Tとすることが望ましい。なお、本実施形態においては、被測定金属板として鋼板を例に説明するため、最小幅Wminと最大幅Wmaxの表記にあたって、鋼(Steel)であることを示すための「s」を添え字として付与している。 1 in (a), 1a, 1b, 1c, 1d are furnace wall, 2 reference plate width W r, 3 a steel sheet as an object to be measured metal plate width varies from a minimum width Wsmin up width WSMAX, 4 Is incorporated in the reference plate 2 and has a main heater whose width corresponds to the width W r of the reference plate 2, 5 is a main power source, 6 is a temperature controller as a main temperature control device, and 7 is a reference plate 2. thermocouple as a temperature detector for measuring the temperature T 2 directly, the angle of the number 8 for reflecting radiant energy alternately between (spacing h) of the reference plate 2 and the steel plate 3 becomes once or twice in each A radiation thermometer installed toward the steel plate 3 so as to be θ, 10 is a steel plate temperature correction arithmetic circuit as a metal plate temperature correction arithmetic circuit, 11 is an auxiliary power source, 12 is a temperature controller as an auxiliary temperature control device, 13 Is a supplement provided along the reference plate 2 A heater. Both the steel plate 3 having the minimum width Wsmin and the steel plate 3 having the maximum width Wsmax are opposed to the reference plate 2 and the distance between them is h. However, the positions are shifted from each other for convenience of illustration. Incidentally, a thermocouple 7 for measuring the temperature of the reference plate 2, a plurality placed on reference plate 2, it is desirable that the reference plate temperature T 2 by averaging the measured values of the thermocouples 7. In this embodiment, in order to explain a steel plate as an example of the metal plate to be measured, in the description of the minimum width Wmin and the maximum width Wmax, “s” for indicating steel is used as a subscript. Has been granted.

炉壁1a、1b、1c、1dで囲まれた炉内に、温度コントローラ6を備えた幅Wの参照板2を幅が最小幅Wsminから最大幅Wsmaxまで変化する鋼板3に対向させて設置してある。 Furnace wall 1a, 1b, 1c, surrounded by a furnace at 1d, placed to face the steel plate 3 of the reference plate 2 having a width W r having a temperature controller 6 width varies from a minimum width Wsmin up width Wsmax It is.

補助ヒータ13は、参照板2に沿って、参照板2と対向する最小幅Wsminの鋼板3の両端部よりそれぞれ外側であり、かつ、最大幅Wsmaxの鋼板3の両端部よりそれぞれ内側の位置に対応するように設けられている。   The auxiliary heaters 13 are located outside the both ends of the steel plate 3 with the minimum width Wsmin facing the reference plate 2 along the reference plate 2 and at positions inside the both ends of the steel plate 3 with the maximum width Wsmax. It is provided to correspond.

温度コントローラ6には、鋼板3の目標温度Tが入力され、温度コントローラ6の指示に従って主電源5から参照板2の幅W方向の全面に渡って一様に配設された主ヒータ4に電力が供給される。さらに、鋼板3の幅Wsに応じた所定の電力を温度コントローラ12の指示に従って補助電源11から補助ヒータ13に供給するように構成されている。 The target temperature T 0 of the steel plate 3 is input to the temperature controller 6, and the main heater 4 disposed uniformly over the entire surface in the width W r direction of the reference plate 2 from the main power source 5 in accordance with an instruction from the temperature controller 6. Is supplied with power. Furthermore, it is configured to supply predetermined power corresponding to the width Ws of the steel plate 3 from the auxiliary power source 11 to the auxiliary heater 13 in accordance with an instruction from the temperature controller 12.

また、鋼板3から放出される射度を放射温度計8で測定し、この射度と等価なエネルギーを放射する黒体の温度に換算して求めた温度を射度温度Tとする。 Further, the id released from the steel plate 3 is measured by a radiation thermometer 8, a temperature obtained by converting the temperature of a black body that emits the id equivalent energy and Id temperature T g.

そして、鋼板3の幅Wsが変化した場合にも、上記参照板温度Tが上記鋼板3の目標温度Tまたは後述する鋼板3の温度T(図1参照)に近づくようにするために、温度コントローラ6の指示に基づき主ヒータ4に所定の電力を供給するとともに、温度コントローラ12の指示に基づき鋼板3の幅Ws(最小幅Wsmin〜最大幅Wsmax)に応じた所定の電力を補助ヒータ13に供給し、参照板2の温度分布が所定の温度分布となるように制御する。 Then, even if the width Ws of the steel plate 3 is changed, for the reference plate temperature T 2 is as close to the temperature T 1 of the target temperature T 0 or below to the steel plate 3 of the steel plate 3 (see FIG. 1) A predetermined power is supplied to the main heater 4 based on an instruction from the temperature controller 6, and a predetermined power corresponding to the width Ws (minimum width Wsmin to maximum width Wsmax) of the steel plate 3 is supplied to the auxiliary heater based on an instruction from the temperature controller 12. 13 and is controlled so that the temperature distribution of the reference plate 2 becomes a predetermined temperature distribution.

より詳細には、例えば、最小幅Wsmin=600mm、最大幅Wsmax=1200mm、W=2000mm、鋼板3の目標温度T=800℃、補助ヒータ13を上述したような位置に設置した場合に、主ヒータ4と補助ヒータ13の合成温度を鋼板3の幅Wsに応じて図1(b)の左半分側に発明例1(左右対称であるため左半分側のみを表示する)として示したように制御すると、同じく図1(b)の左半分側に発明例1(左右対称であるため左半分側のみを表示する)として示したようにWsmaxの鋼板3の場合の参照板2の細部温度とWsminの鋼板3の場合の参照板2の細部温度の各位置で比較した時の温度偏差は、図1(b)の右半分側に示した従来例(図6参照に同じ)に比べて小さくなる(すなわち、参照板2の温度分布が所定の温度分布となるように制御される)。 More specifically, for example, when the minimum width Wsmin = 600 mm, the maximum width Wsmax = 1200 mm, W r = 2000 mm, the target temperature T 0 of the steel plate 3 = 800 ° C., and the auxiliary heater 13 is installed at the position described above, The combined temperature of the main heater 4 and the auxiliary heater 13 is shown as Invention Example 1 (only the left half side is displayed because it is symmetrical) on the left half side of FIG. 1B according to the width Ws of the steel plate 3. 1B, the detailed temperature of the reference plate 2 in the case of the steel plate 3 of Wsmax as shown as Invention Example 1 (only the left half side is displayed because it is symmetrical) on the left half side of FIG. And Wsmin steel plate 3, the temperature deviation when compared at each position of the detailed temperature of the reference plate 2 is compared with the conventional example shown in the right half side of FIG. 1B (same as FIG. 6). (Ie, reference plate 2 The temperature distribution is controlled to be a predetermined temperature distribution).

このように、鋼板3の幅Wsが変化した際にも、鋼板3の幅Wsが変化した部分{(Wsmax―Wsmin)/2}に対応する参照板2の幅W方向の部分の温度の変化(温度偏差)が軽減されるため、上記射度温度Tと上記参照板温度Tと鋼板3の幅Wsに基づいて、鋼板温度補正演算回路10内で下記式(1)により、鋼板3の温度Tの温度測定誤差が小さくなるように算出することができる。

≒F[T+K(T−T)] ・・・式(1)

ここで、Fは鋼板3と参照板2との幾何学的関係により変動する形態係数であるが、鋼板3の幅Wsに基づいて、1に近づくように補正されている。また、Kは、鋼板3および参照板2の放射率ε、εのみの関数からなる補正係数である。このため、補正係数K自体は、鋼板3および参照板2の放射率変動の影響を受けることになるが、参照板2の温度を射度温度Tに近づくように(すなわち、参照板2の温度を鋼板3の目標温度Tまたは上述した鋼板3の温度Tに近づくように)制御するので、補正係数Kによる誤差が除外され高精度の鋼板温度の測定が可能となる。
Thus, even when the width Ws of the steel plate 3 is changed, the temperature of the portion in the width W r direction of the reference plate 2 corresponding to the portion {(Wsmax−Wsmin) / 2} where the width Ws of the steel plate 3 is changed. since the changes (temperature deviation) is reduced, based on the width Ws of the id temperature T g and the reference plate temperature T 2 and the steel plate 3, the following expressions steel temperature correction operation circuit 10. by (1), the steel plate 3 so that the temperature measurement error of the temperature T 1 of 3 can be reduced.

T 1 ≈ F [T g + K (T 2 −T g )] (1)

Here, F is a form factor that varies depending on the geometric relationship between the steel plate 3 and the reference plate 2, but is corrected so as to approach 1 based on the width Ws of the steel plate 3. K is a correction coefficient composed of a function of only the emissivities ε 1 and ε 2 of the steel plate 3 and the reference plate 2. Therefore, the correction coefficient K itself is will be affected by emissivity variations of the steel plate 3 and the reference plate 2, the temperature of the reference plate 2 so as to approach the id temperature T g (i.e., the reference plate 2 Since the temperature is controlled so as to approach the target temperature T 0 of the steel plate 3 or the temperature T 1 of the steel plate 3 described above, an error due to the correction coefficient K is excluded, and the steel plate temperature can be measured with high accuracy.

〔実施形態2〕
図2は、実施形態2に係る鋼板の温度測定装置の概略構成を説明するためのものであり、(a)は通板方向断面および制御フロー図、(b)ヒータ温度と参照板温度を説明するための説明図である。図2において、図1と同一の構成要素については、同一の番号を付与して詳細な説明は省略し、異なる部分についてのみ詳述する。
[Embodiment 2]
2A and 2B are diagrams for explaining a schematic configuration of a temperature measuring apparatus for a steel sheet according to Embodiment 2, wherein FIG. 2A is a cross-sectional view and a control flow diagram, and FIG. 2B is a diagram illustrating heater temperature and reference plate temperature. It is explanatory drawing for doing. In FIG. 2, the same components as those in FIG. 1 are given the same reference numerals and detailed description thereof is omitted, and only different portions will be described in detail.

図2(a)において、24は参照板2に内蔵され、幅が参照板2の幅Wに対応するように設定された主ヒータである。主ヒータ24と対向する最大幅Wsmaxの鋼板3の両端部より外側の位置に対応する主ヒータ24の部分の温度が、主ヒータ24と対向する最大幅Wsmaxの鋼板3の両端部より内側の位置に対応する主ヒータ24の部分の温度より高温となるように、主ヒータ24の両端側はコイルが密に構成されている。 In FIG. 2A, reference numeral 24 denotes a main heater built in the reference plate 2 and having a width set to correspond to the width W r of the reference plate 2. The temperature of the portion of the main heater 24 corresponding to the position outside the both ends of the steel plate 3 having the maximum width Wsmax facing the main heater 24 is located at the inside of the both ends of the steel plate 3 having the maximum width Wsmax facing the main heater 24. The coils of the both ends of the main heater 24 are densely arranged so that the temperature is higher than the temperature of the main heater 24 corresponding to.

より詳細には、例えば、補助ヒータ13を図1(a)と同じ位置に設置した場合に、主ヒータ24と補助ヒータ13の合成温度を鋼板3の幅Wsに応じて図2(b)の左半分側に発明例2(左右対称であるため左半分側のみを表示する)として示したように制御すると、同じく図2(b)の左半分側に発明例2(左右対称であるため左半分側のみを表示する)として示したようにWsmaxの鋼板3の場合の参照板2の細部温度とWsminの鋼板3の場合の参照板2の細部温度の各位置で比較した時の温度偏差は、図2(b)の右半分側に示した従来例(図1(b)に同じ)に比べて小さくなる(すなわち、参照板2の温度分布が所定の温度分布となるように制御される)。   More specifically, for example, when the auxiliary heater 13 is installed at the same position as in FIG. 1A, the combined temperature of the main heater 24 and the auxiliary heater 13 is changed according to the width Ws of the steel plate 3 as shown in FIG. When control is performed as shown as Invention Example 2 (only the left half side is displayed because it is bilaterally symmetrical) on the left half side, Invention Example 2 (left side because it is bilaterally symmetrical) is similarly displayed on the left half side of FIG. The temperature deviation when comparing the position of the detailed temperature of the reference plate 2 in the case of the Wsmax steel plate 3 and the detailed temperature of the reference plate 2 in the case of the Wsmin steel plate 3 as shown in FIG. As compared with the conventional example shown in the right half of FIG. 2B (same as FIG. 1B), the temperature distribution of the reference plate 2 is controlled to be a predetermined temperature distribution. ).

したがって、実施形態1の場合と同様に、鋼板3の幅Wsが変化した際にも、鋼板3の幅Wsが変化した部分{(Wsmax―Wsmin)/2}に対応する参照板2の幅W方向の部分の温度の変化(温度偏差)が軽減されるため、上記射度温度Tと上記参照板温度Tと鋼板3の幅Wsに基づいて、鋼板温度補正演算回路10内で上記式(1)により、鋼板3の温度Tの温度測定誤差が小さくなるように算出することができる。 Therefore, as in the case of the first embodiment, when the width Ws of the steel plate 3 is changed, the width W of the reference plate 2 corresponding to the portion {(Wsmax−Wsmin) / 2} where the width Ws of the steel plate 3 is changed. since the temperature change of r direction of a portion (temperature deviation) is reduced, based on the width Ws of the id temperature T g and the reference plate temperature T 2 and the steel plate 3, the steel plate temperature correction operation circuit 10. According to the equation (1), the temperature measurement error of the temperature T 1 of the steel plate 3 can be calculated to be small.

〔実施形態3〕
図3は、実施形態3に係る鋼板の温度測定装置の概略構成を説明するためのものであり、(a)は通板方向断面および制御フロー図、(b)ヒータ温度と参照板温度を説明するための説明図である。図3において、図1と同一の構成要素については、同一の番号を付与して詳細な説明は省略し、異なる部分についてのみ詳述する。
[Embodiment 3]
FIG. 3 is a diagram for explaining a schematic configuration of a temperature measuring apparatus for a steel sheet according to Embodiment 3, wherein (a) illustrates a cross section in a plate passing direction and a control flow diagram, and (b) illustrates a heater temperature and a reference plate temperature. It is explanatory drawing for doing. In FIG. 3, the same components as those in FIG. 1 are given the same reference numerals and detailed description thereof is omitted, and only different portions will be described in detail.

図3(a)において、23は参照板2に沿って、参照板2と対向する最小幅Wsminの鋼板3の両端部よりそれぞれαだけ外側に離れた位置からさらに外側の位置(参照板2の幅W方向の両端部)に対応するように設けられた補助ヒータである。 In FIG. 3 (a), reference numeral 23 denotes a position on the outer side of the reference plate 2 that is further away from the both ends of the steel plate 3 having the minimum width Wsmin facing the reference plate 2 by α (outside of the reference plate 2). It is an auxiliary heater provided so as to correspond to both ends in the width Wr direction.

主ヒータ4と上記補助ヒータ23の合成温度を鋼板3の幅Wsに応じて図3(b)の左半分側に発明例3(左右対称であるため左半分側のみを表示する)として示したように制御すると、同じく図3(b)の左半分側に発明例3(左右対称であるため左半分側のみを表示する)として示したようにWsmaxの鋼板3の場合の参照板2の細部温度とWsminの鋼板3の場合の参照板2の細部温度の各位置で比較した時の温度偏差は、図3(b)の右半分側に示した従来例(図1(b)に同じ)に比べて小さくなる(すなわち、参照板2の温度分布が所定の温度分布となるように制御される)。   The combined temperature of the main heater 4 and the auxiliary heater 23 is shown as Invention Example 3 (only the left half side is displayed because it is symmetrical) on the left half side of FIG. 3B according to the width Ws of the steel plate 3. In this way, the details of the reference plate 2 in the case of the steel plate 3 of Wsmax as shown as Invention Example 3 (only the left half side is displayed because it is bilaterally symmetric) on the left half side of FIG. The temperature deviation when comparing the temperature and the detail temperature of the reference plate 2 in the case of the steel plate 3 of Wsmin is the conventional example shown in the right half side of FIG. 3B (same as FIG. 1B). (That is, the temperature distribution of the reference plate 2 is controlled to be a predetermined temperature distribution).

したがって、実施形態1、2の場合と同様に、鋼板3の幅Wsが変化した際にも、鋼板3の幅Wsが変化した部分{(Wsmax―Wsmin)/2}に対応する参照板2の幅W方向の部分の温度の変化(温度偏差)が軽減されるため、上記射度温度Tと上記参照板温度Tと鋼板3の幅Wsに基づいて、鋼板温度補正演算回路10内で上記式(1)により、鋼板3の温度Tの温度測定誤差が小さくなるように算出することができる。 Therefore, similarly to the first and second embodiments, when the width Ws of the steel plate 3 changes, the reference plate 2 corresponding to the portion {(Wsmax−Wsmin) / 2} where the width Ws of the steel plate 3 changes. since the temperature change of the width W r direction of a portion (temperature deviation) is reduced, the id based on the temperature T g and the width Ws of the reference plate temperature T 2 and the steel plate 3, the steel sheet temperature correction calculation circuit 10 From the above equation (1), the temperature measurement error of the temperature T 1 of the steel plate 3 can be calculated to be small.

また、本実施形態において、補助ヒータ23の設置位置とその位置が参照板2の温度に与える影響を考察した結果が図4である。図4において、横軸はC=(α/(鋼板3と参照板2との距離h))、縦軸は参照板2への温度影響(比率)である。縦軸の参照板2への温度影響は、α=0の場合の参照板2の温度を基準にした比率である。図4より、鋼板3の端部の直下の参照板2の面は、鋼板3の影響があるため、Wsminの鋼板3の端部から距離α離した位置から補助ヒータ23を設置することが可能である。また、補助ヒータ23をWsminの鋼板3の端部から離しすぎて設置すると、参照板2に温度低下部分が発生するが、Cが4(すなわち、αがhに対して4倍)以下であれば、参照板2の温度は基準に対して0.01(すなわち、1%)以下の変化に収まる。したがって、補助ヒータ23の設置位置は、Cが4以下となるαの位置に設置するのが好ましい。   Moreover, in this embodiment, the result of having considered the installation position of the auxiliary heater 23 and the influence which the position has on the temperature of the reference plate 2 is FIG. In FIG. 4, the horizontal axis is C = (α / (distance h between the steel plate 3 and the reference plate 2)), and the vertical axis is the temperature influence (ratio) on the reference plate 2. The temperature influence on the reference plate 2 on the vertical axis is a ratio based on the temperature of the reference plate 2 when α = 0. From FIG. 4, the surface of the reference plate 2 immediately below the end of the steel plate 3 is affected by the steel plate 3, so the auxiliary heater 23 can be installed from a position a distance α away from the end of the steel plate 3 of Wsmin. It is. Further, if the auxiliary heater 23 is installed too far from the end of the Wsmin steel plate 3, a temperature drop portion is generated in the reference plate 2, but C is 4 or less (that is, α is 4 times that of h). For example, the temperature of the reference plate 2 falls within a change of 0.01 (that is, 1%) or less with respect to the standard. Therefore, it is preferable to install the auxiliary heater 23 at a position α where C is 4 or less.

〔実施形態4〕
図5は、実施形態4に係る鋼板の温度測定装置の概略構成を説明するためのものであり、(a)は通板方向断面および制御フロー図、(b)ヒータ温度と参照板温度を説明するための説明図である。図5において、図1と同一の構成要素については、同一の番号を付与して詳細な説明は省略し、異なる部分についてのみ詳述する。
[Embodiment 4]
5A and 5B are diagrams for explaining a schematic configuration of a temperature measuring apparatus for a steel sheet according to Embodiment 4, wherein FIG. 5A is a cross-sectional view and a control flow diagram, and FIG. 5B is a heater temperature and a reference plate temperature. It is explanatory drawing for doing. In FIG. 5, the same components as those in FIG. 1 are given the same numbers and detailed description thereof is omitted, and only different portions will be described in detail.

図5(a)において、33は参照板2に沿って、参照板2と対向する最小幅Wsminの鋼板3の両端部よりそれぞれ外側の位置に対応するように設けられた補助ヒータである。この補助ヒータ33の温度は、参照板2の幅W方向に対して外側の方が内側に比べて高温となるように、補助ヒータ33の両端側はコイルが密に構成されている。 In FIG. 5A, reference numeral 33 denotes an auxiliary heater provided along the reference plate 2 so as to correspond to positions outside the both ends of the steel plate 3 having the minimum width Wsmin facing the reference plate 2. The temperature of the auxiliary heater 33 is densely configured with coils at both ends of the auxiliary heater 33 so that the outer side is higher than the inner side with respect to the width W r direction of the reference plate 2.

主ヒータ4と上記補助ヒータ33の合成温度を鋼板3の幅Wsに応じて図5(b)の左半分側に発明例4(左右対称であるため左半分側のみを表示する)として示したように制御すると、同じく図5(b)の左半分側に発明例4(左右対称であるため左半分側のみを表示する)として示したようにWsmaxの鋼板3の場合の参照板2の細部温度とWsminの鋼板3の場合の参照板2の細部温度の各位置で比較した時の温度偏差は、図5(b)の右半分側に示した従来例(図1(b)に同じ)に比べて小さくなる(すなわち、参照板2の温度分布が所定の温度分布となるように制御される)。   The combined temperature of the main heater 4 and the auxiliary heater 33 is shown as Invention Example 4 (only the left half side is displayed because it is symmetrical) on the left half side of FIG. 5B according to the width Ws of the steel plate 3. In this way, the details of the reference plate 2 in the case of the steel plate 3 of Wsmax as shown as Invention Example 4 (only the left half side is displayed because it is bilaterally symmetric) on the left half side of FIG. The temperature deviation when comparing the temperature and the detailed temperature of the reference plate 2 in the case of the steel plate 3 of Wsmin is the conventional example shown in the right half side of FIG. 5B (same as FIG. 1B). (That is, the temperature distribution of the reference plate 2 is controlled to be a predetermined temperature distribution).

したがって、実施形態1、2、3の場合と同様に、鋼板3の幅Wsが変化した際にも、鋼板3の幅Wsが変化した部分{(Wsmax―Wsmin)/2}に対応する参照板2の幅W方向の部分の温度の変化(温度偏差)が軽減されるため、上記射度温度Tと上記参照板温度Tと鋼板3の幅Wsに基づいて、鋼板温度補正演算回路10内で上記式(1)により、鋼板3の温度Tの温度測定誤差が小さくなるように算出することができる。 Therefore, as in the first, second, and third embodiments, when the width Ws of the steel plate 3 changes, the reference plate corresponding to the portion {(Wsmax−Wsmin) / 2} in which the width Ws of the steel plate 3 changes. since the temperature change of the second width W r direction of a portion (temperature deviation) is reduced, based on the width Ws of the id temperature T g and the reference plate temperature T 2 and the steel plate 3, the steel sheet temperature correction operation circuit 10, the temperature measurement error of the temperature T 1 of the steel plate 3 can be calculated by the above formula (1) so as to be small.

なお、実施形態1〜4においては、被測定金属板として、鋼板を用いて説明したが、これに限定されるものではなく、広く金属板にて適応可能である。   In the first to fourth embodiments, the steel plate is described as the metal plate to be measured. However, the invention is not limited to this, and the metal plate can be widely applied.

また、実施形態1〜4においては、被測定金属板から放出されるエネルギーが測定され、この測定されたエネルギーと等価なエネルギーを放射する黒体の温度に相当する等価温度Tとして射度温度Tを例に説明したが、これに限定されるものではなく、多重反射エネルギーと等価なエネルギーを放射する黒体の温度に相当する等価温度を用いることも可能である。 In the first to fourth embodiments, is measured energy emitted from the measured metal plate, Ido temperature as an equivalent temperature T r corresponding to the temperature of a black body that emits the measured energy equivalent energy Although Tg has been described as an example, the present invention is not limited to this, and it is also possible to use an equivalent temperature corresponding to the temperature of a black body that emits energy equivalent to multiple reflection energy.

1a、1b、1c、1d:炉壁
2:参照板
3:鋼板
4、24:主ヒータ
5:主電源
6、12:温度コントローラ
7:熱電対
8:放射温度計
10:鋼板温度補正演算回路
11:補助電源
13、23、33:補助ヒータ
1a, 1b, 1c, 1d: furnace wall 2: reference plate 3: steel plate 4, 24: main heater 5: main power source 6, 12: temperature controller 7: thermocouple 8: radiation thermometer 10: steel plate temperature correction calculation circuit 11 : Auxiliary power supply 13, 23, 33: Auxiliary heater

Claims (5)

幅Wが最小幅Wminから最大幅Wmaxまで変化する被測定金属板に対向して設置された幅Wの参照板と、この参照板に沿って設けられた主ヒータと補助ヒータと、この主ヒータと補助ヒータをそれぞれ制御するための主温度制御装置と補助温度制御装置と、前記参照板の温度(以下、「参照板温度」という。)Tを直接測定する温度検出器と、前記被測定金属板と前記参照板のそれぞれから放射される放射エネルギーが前記参照板と前記被測定金属板との間で所定の回数反射される角度となるように前記被測定金属板に向けて設置され、この角度で前記被測定金属板から放出されるエネルギーが測定され、この測定されたエネルギーと等価なエネルギーを放射する黒体の温度に相当する等価温度Tに換算され出力するための放射温度計と、前記等価温度Tと前記参照板温度Tと前記被測定金属板の幅Wに基づいて前記被測定金属板の温度Tを算出する金属板温度補正演算回路と、を備えた金属板の温度測定装置における参照板の温度制御方法であって、前記主ヒータの幅は、前記参照板の幅Wに対応するように設定され、
前記補助ヒータは、前記参照板に沿って、前記参照板と対向する最小幅Wminの前記被測定金属板の両端部よりそれぞれ外側の位置に対応するように設けられ、
前記被測定金属板の幅Wが変化した場合にも、前記参照板温度Tが前記被測定金属板の目標温度Tまたは前記被測定金属板の温度Tに近づくようにするために、
前記主温度制御装置の指示に基づき前記主ヒータに所定の電力を供給するとともに、
前記補助温度制御装置の指示に基づき前記被測定金属板の幅Wに応じた所定の電力を前記補助ヒータに供給し、前記参照板の温度分布が所定の温度分布となるように制御することを特徴とする金属板の温度測定装置における参照板の温度制御方法。
See the plate width W is installed to face the measured metal plate which varies from a minimum width Wmin to a maximum width Wmax width W r, and the auxiliary heater main heater provided along the reference plate, the main A main temperature control device and an auxiliary temperature control device for controlling the heater and the auxiliary heater, a temperature detector for directly measuring the temperature of the reference plate (hereinafter referred to as “reference plate temperature”) T 2 , The radiant energy radiated from each of the measurement metal plate and the reference plate is installed toward the metal plate to be measured so that the radiant energy is reflected a predetermined number of times between the reference plate and the metal plate to be measured. the energy emitted from the measured metal plate at this angle is measured and the radiation for outputting is converted into an equivalent temperature T r corresponding to the temperature of a black body that emits the measured energy equivalent energy With a degree meter, and a metal plate temperature correction calculation circuit for calculating the temperature T 1 of the device under test metal sheet on the basis of the equivalent temperature T r and the reference plate temperature T 2 to the width W of the measured metal plate The temperature control method for the reference plate in the metal plate temperature measuring device, wherein the width of the main heater is set to correspond to the width W r of the reference plate,
The auxiliary heater is provided along the reference plate so as to correspond to positions outside the both ends of the metal plate to be measured having a minimum width Wmin facing the reference plate,
Wherein even when the width W of the measured metal plate is changed, for the reference plate temperature T 2 is as close to the temperature T 1 of the target temperature T 0 or the measured metal plate of the measured metal plate,
While supplying predetermined power to the main heater based on an instruction of the main temperature control device,
Based on an instruction from the auxiliary temperature control device, a predetermined power corresponding to the width W of the metal plate to be measured is supplied to the auxiliary heater, and the temperature distribution of the reference plate is controlled to be a predetermined temperature distribution. A reference plate temperature control method in a metal plate temperature measuring apparatus.
前記補助ヒータは、前記参照板に沿って、前記参照板と対向する最小幅Wminの前記被測定金属板の両端部よりそれぞれ外側であり、かつ、最大幅Wmaxの前記被測定金属板の両端部よりそれぞれ内側の位置に対応するように設けられたことを特徴とする請求項1に記載の金属板の温度測定装置における参照板の温度制御方法。   The auxiliary heaters are outside the both end portions of the metal plate to be measured having a minimum width Wmin facing the reference plate along the reference plate, and both end portions of the metal plate to be measured having a maximum width Wmax. The temperature control method for the reference plate in the metal plate temperature measuring device according to claim 1, wherein the temperature control device is provided so as to correspond to the inner positions. 前記主ヒータと対向する最大幅Wmaxの前記被測定金属板の両端部より外側の位置に対応する前記主ヒータの部分の温度が、前記主ヒータと対向する最大幅Wmaxの前記被測定金属板の両端部より内側の位置に対応する前記主ヒータの部分の温度より高温となるように構成されたことを特徴とする請求項2に記載の金属板の温度測定装置における参照板の温度制御方法。   The temperature of the portion of the main heater corresponding to the position outside the both end portions of the metal plate to be measured having the maximum width Wmax facing the main heater is the temperature of the metal plate to be measured having the maximum width Wmax facing the main heater. 3. The temperature control method for a reference plate in a metal plate temperature measuring device according to claim 2, wherein the temperature is higher than the temperature of the portion of the main heater corresponding to the position inside the both end portions. 前記補助ヒータは、前記参照板に沿って、前記参照板と対向する最小幅Wminの前記被測定金属板の両端部よりそれぞれαだけ外側に離れた位置からさらに外側の位置に対応するように設けられたことを特徴とする請求項1に記載の金属板の温度測定装置における参照板の温度制御方法。   The auxiliary heater is provided along the reference plate so as to correspond to a position on the outer side from a position spaced outward by α from both ends of the metal plate to be measured having a minimum width Wmin facing the reference plate. The temperature control method of the reference plate in the metal plate temperature measuring device according to claim 1, wherein 前記補助ヒータの温度は、前記参照板の幅W方向に対して外側の方が内側に比べて高温となるように構成されたことを特徴とする請求項1に記載の金属板の温度測定装置における参照板の温度制御方法。 2. The temperature measurement of the metal plate according to claim 1, wherein the temperature of the auxiliary heater is configured such that the outer side is higher than the inner side with respect to the width W r direction of the reference plate. A reference plate temperature control method in the apparatus.
JP2010082995A 2010-03-31 2010-03-31 Temperature control method for reference plate in metal plate temperature measuring device Active JP5421840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010082995A JP5421840B2 (en) 2010-03-31 2010-03-31 Temperature control method for reference plate in metal plate temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082995A JP5421840B2 (en) 2010-03-31 2010-03-31 Temperature control method for reference plate in metal plate temperature measuring device

Publications (2)

Publication Number Publication Date
JP2011214979A JP2011214979A (en) 2011-10-27
JP5421840B2 true JP5421840B2 (en) 2014-02-19

Family

ID=44944878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010082995A Active JP5421840B2 (en) 2010-03-31 2010-03-31 Temperature control method for reference plate in metal plate temperature measuring device

Country Status (1)

Country Link
JP (1) JP5421840B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367137A (en) * 1989-08-04 1991-03-22 Chino Corp Surface temperatude controller
JPH05203497A (en) * 1992-01-29 1993-08-10 Nkk Corp Measuring method for temperature of steel plate
JP2001202140A (en) * 2000-01-21 2001-07-27 Dainippon Screen Mfg Co Ltd Device for controlling temperature of substrate
JP4217255B2 (en) * 2006-07-27 2009-01-28 株式会社神戸製鋼所 Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method

Also Published As

Publication number Publication date
JP2011214979A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
TWI224144B (en) Heat treating device, heat treating method, recording medium recording heat treating program and steel product
JP4217255B2 (en) Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method
JP5476189B2 (en) Metal plate temperature measuring device
CN100381784C (en) Distance estimation apparatus, abnormality detection apparatus, temperature regulator and thermal treatment apparatus
JP5421840B2 (en) Temperature control method for reference plate in metal plate temperature measuring device
JP4878234B2 (en) Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method
JP2011249065A (en) Induction heating cooker
JP5310144B2 (en) Thick steel plate surface temperature measuring device and material judgment method
JP5134466B2 (en) Steel plate temperature measuring device
US20180258506A1 (en) Heat treatment system
JP5767606B2 (en) Temperature measuring device for measuring plate and measuring temperature correction method
EP2944393B1 (en) Heating device for hot stamping
CN216501552U (en) Device for induction heating of strip steel
JP4956578B2 (en) Rotating drum type food continuous heating machine
JP2007246977A (en) Direct-fired heating furnace
CN113894166B (en) Device for induction heating of strip steel
JP4875290B2 (en) Method and apparatus for controlling furnace temperature of heating furnace
KR100742859B1 (en) Method for curing water coated on strip using furnace
JP2715739B2 (en) Control method of alloying furnace in alloying hot-dip galvanized steel sheet manufacturing facility
JP2005120409A (en) Method for manufacturing high-strength steel plate superior in uniformity of material in longitudinal direction of steel sheet
JP2018123364A (en) Method and apparatus for controlling temperature of steel sheet
JP6880980B2 (en) Induction heating device and induction heating method
JP2014130074A (en) Temperature measuring apparatus of plate to be measured
JP2021113765A (en) Method for estimating average film thickness of oxide film
JP2005163057A (en) Hot dip galvannealed steel plate manufacturing device, and method for controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131122

R150 Certificate of patent or registration of utility model

Ref document number: 5421840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150