JP2021113765A - Method for estimating average film thickness of oxide film - Google Patents

Method for estimating average film thickness of oxide film Download PDF

Info

Publication number
JP2021113765A
JP2021113765A JP2020007115A JP2020007115A JP2021113765A JP 2021113765 A JP2021113765 A JP 2021113765A JP 2020007115 A JP2020007115 A JP 2020007115A JP 2020007115 A JP2020007115 A JP 2020007115A JP 2021113765 A JP2021113765 A JP 2021113765A
Authority
JP
Japan
Prior art keywords
oxide film
film thickness
radiation
emissivity
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020007115A
Other languages
Japanese (ja)
Other versions
JP7399723B2 (en
Inventor
良太 中西
Ryota Nakanishi
良太 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020007115A priority Critical patent/JP7399723B2/en
Publication of JP2021113765A publication Critical patent/JP2021113765A/en
Application granted granted Critical
Publication of JP7399723B2 publication Critical patent/JP7399723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

To provide a method for estimating an average film thickness of an oxide film more easily and more accurately by removing influence of background radiation from a radiation rate.SOLUTION: The present invention relates to a method for estimating an average film thickness of an oxide film formed on a steel plate during oxide processing, the method including the steps of: calculating an apparent radiation rate from temperatures measured by a plate thermometer and a radiation temperature meter for measuring the temperature of the surface of a steel plate and by a cooling plate for preventing background radiation; correcting the apparent radiation rate; and estimating the average film thickness of the oxide film from the radiation rate after the correction step.SELECTED DRAWING: Figure 1

Description

本発明は、酸化膜の平均膜厚推定方法に関する。 The present invention relates to a method for estimating the average film thickness of an oxide film.

自動車の車体等に用いられる高強度鋼板として、防錆性を付与した表面処理鋼板、中でも防錆性に優れる溶融亜鉛めっき鋼板や合金化溶融亜鉛めっき鋼板が公知である。溶融亜鉛めっき鋼板は、一般にはスラブを熱間圧延及び冷間圧延した帯状の鋼板を母材鋼板として用い、この母材鋼板を焼鈍炉で還元性雰囲気のもとで再結晶焼鈍し、その後に溶融亜鉛めっき処理を行って製造される。 As high-strength steel sheets used for automobile bodies and the like, surface-treated steel sheets having rust-preventive properties, among them, hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets having excellent rust preventive properties are known. As the hot-dip galvanized steel sheet, a strip-shaped steel sheet obtained by hot-rolling and cold-rolling a slab is generally used as a base steel sheet, and this base steel sheet is recrystallized and annealed in a reducing furnace in a reducing atmosphere, and then recrystallized. Manufactured by hot dip galvanizing.

このような高強度鋼板では、強度を高めるためSiやMn等の添加が有効である。ところが、鋼板がSiやMnを含む場合、鉄の酸化が起こらない還元性の水素ガスを含有する還元性雰囲気においても酸化が進み、鋼板表面にSiやMnの酸化物を形成する。この酸化物によりめっき処理時に溶融亜鉛と鋼板との濡れ性が低下するため、SiやMn等が添加された母材鋼板を用いる場合、めっき密着性が低下し易い。 In such a high-strength steel plate, it is effective to add Si, Mn, etc. in order to increase the strength. However, when the steel sheet contains Si or Mn, oxidation proceeds even in a reducing atmosphere containing reducing hydrogen gas in which iron does not oxidize, and an oxide of Si or Mn is formed on the surface of the steel sheet. Since the wettability between the hot-dip zinc and the steel sheet is lowered by this oxide during the plating treatment, the plating adhesion is likely to be lowered when the base steel sheet to which Si, Mn or the like is added is used.

SiやMn等が添加された母材鋼板のめっき密着性を改善する方法として、酸化帯及び還元帯を有する焼鈍炉を用いた酸化還元法による製造方法が実用化されている。この製造方法では、鋼板の表面に鉄の酸化膜を形成させ、水素を含む還元性雰囲気中でこの酸化膜を還元した後にめっき処理を行う。 As a method for improving the plating adhesion of the base steel sheet to which Si, Mn, etc. are added, a manufacturing method by a redox method using an annealing furnace having an oxidation zone and a reduction zone has been put into practical use. In this manufacturing method, an iron oxide film is formed on the surface of the steel sheet, and the oxide film is reduced in a reducing atmosphere containing hydrogen, and then plating treatment is performed.

この酸化還元法では、めっき密着性を確保するために酸化膜の平均膜厚が重要である。酸化膜が薄すぎると、SiやMnの酸化物が酸化膜により十分に被覆されず、この酸化膜から還元される鉄の量が不足するため、鋼板表面にSiやMnの酸化物が残存し易くなる。一方、酸化膜の平均膜厚が大き過ぎると、めっき剥離が生じ易くなる。このため、酸化膜の平均膜厚の管理を適性に行う必要がある。 In this redox method, the average film thickness of the oxide film is important in order to ensure the plating adhesion. If the oxide film is too thin, the oxides of Si and Mn are not sufficiently covered by the oxide film, and the amount of iron reduced from the oxide film is insufficient, so that the oxides of Si and Mn remain on the surface of the steel plate. It will be easier. On the other hand, if the average film thickness of the oxide film is too large, plating peeling is likely to occur. Therefore, it is necessary to properly control the average film thickness of the oxide film.

この酸化膜の平均膜厚を推定する方法として、(分光)放射率と酸化膜の平均膜厚の関係に基づき酸化膜の平均膜厚を推定する方法が提案されている(特開平7−270130号公報参照)。この従来の酸化膜の平均膜厚推定方法では、酸化膜の膜厚に対応して放射率が変化する遠赤外域の特定波長で分光放射輝度を検出し、この特定波長での放射率を求め、予め測定した放射率と酸化膜の平均膜厚の関係から酸化膜の平均膜厚を推定する。 As a method for estimating the average film thickness of the oxide film, a method for estimating the average film thickness of the oxide film based on the relationship between the (spectral) emissivity and the average film thickness of the oxide film has been proposed (Japanese Patent Laid-Open No. 7-270130). See Gazette). In this conventional method for estimating the average film thickness of an oxide film, the spectral radiance is detected at a specific wavelength in the far infrared region where the emissivity changes according to the film thickness of the oxide film, and the emissivity at this specific wavelength is obtained. , The average film thickness of the oxide film is estimated from the relationship between the emissivity measured in advance and the average film thickness of the oxide film.

この従来の推定方法では、背景放射により放射率と酸化膜の平均膜厚との関係が変化するところ、この背景放射は鋼板の種類や酸化条件等の影響を受けて変化するため、推定誤差を抑制することが難しい。 In this conventional estimation method, the relationship between the emissivity and the average film thickness of the oxide film changes due to background radiation, but this background radiation changes under the influence of the type of steel sheet, oxidation conditions, etc. Difficult to control.

特開平7−270130号公報Japanese Unexamined Patent Publication No. 7-270130

本発明は、上述のような事情に基づいてなされたものであり、放射率から背景放射の影響を除去し、精度よくかつ簡便に酸化膜の平均膜厚を推定する方法の提供を目的とする。 The present invention has been made based on the above circumstances, and an object of the present invention is to provide a method for accurately and easily estimating the average film thickness of an oxide film by removing the influence of background radiation from the emissivity. ..

上記課題を解決するためになされた発明は、酸化処理中に鋼板に形成される酸化膜の平均膜厚推定方法であって、鋼板表面の温度を測定する板温計及び放射温度計と、背景放射を抑止する冷却板とを用い、上記板温計及び上記放射温度計により測定される温度から見かけの放射率を算出する工程と、上記見かけの放射率を補正する工程と、上記補正工程後の放射率から酸化膜の平均膜厚を推定する工程とを備える。 The invention made to solve the above problems is a method for estimating the average thickness of an oxide film formed on a steel plate during an oxidation treatment, which is a plate thermometer and a radiation thermometer for measuring the temperature of the surface of the steel plate, and a background. A step of calculating the apparent emissivity from the temperature measured by the plate thermometer and the radiation thermometer using a cooling plate that suppresses radiation, a step of correcting the apparent emissivity, and a step of correcting the apparent emissivity, and after the correction step. It is provided with a step of estimating the average film thickness of the oxide film from the emissivity of.

当該酸化膜の平均膜厚推定方法では、まず冷却板を用いることで背景放射を抑止する。さらに、当該酸化膜の平均膜厚推定方法では、冷却板を用いても抑止し切れない背景放射について、補正工程で、放射率を補正することにより除去するので、精度よくかつ簡便に酸化膜の平均膜厚を推定できる。 In the method for estimating the average film thickness of the oxide film, background radiation is first suppressed by using a cooling plate. Further, in the method for estimating the average film thickness of the oxide film, background radiation that cannot be suppressed even by using a cooling plate is removed by correcting the emissivity in the correction step, so that the oxide film can be accurately and easily suppressed. The average film thickness can be estimated.

上記補正工程で、補正に下記式(1)を用いるとよい。このように上記補正工程で、補正に下記式(1)を用いるので、さらに簡便に酸化膜の平均膜厚を推定できる。

Figure 2021113765
ここで、εは補正後の放射率、ε’は上記見かけの放射率、aは酸化処理条件により定まる定数である。 In the above correction step, the following formula (1) may be used for the correction. As described above, since the following formula (1) is used for the correction in the above correction step, the average film thickness of the oxide film can be estimated more easily.
Figure 2021113765
Here, ε is the corrected emissivity, ε'is the apparent emissivity, and a is a constant determined by the oxidation treatment conditions.

波長の異なる複数の放射温度計を用いるとよい。放射温度計の波長により酸化膜の平均膜厚に対する補正後の放射率の感度が変化する。このため酸化膜の平均膜厚に応じて感度の高い波長を用いて平均膜厚を推定することで、酸化膜の平均膜厚の推定精度を高めることができる。 It is advisable to use a plurality of radiation thermometers having different wavelengths. The sensitivity of the corrected emissivity to the average film thickness of the oxide film changes depending on the wavelength of the radiation thermometer. Therefore, by estimating the average film thickness using a wavelength having high sensitivity according to the average film thickness of the oxide film, it is possible to improve the estimation accuracy of the average film thickness of the oxide film.

以上説明したように、本発明の酸化膜の平均膜厚推定方法を用いることで、放射率から背景放射の影響を除去し、精度よくかつ簡便に酸化膜の平均膜厚を推定することができる。 As described above, by using the method for estimating the average thickness of the oxide film of the present invention, the influence of background radiation can be removed from the emissivity, and the average thickness of the oxide film can be estimated accurately and easily. ..

図1は、本発明の一実施形態に係る酸化膜の平均膜厚推定方法を示すフロー図である。FIG. 1 is a flow chart showing a method for estimating the average film thickness of an oxide film according to an embodiment of the present invention. 図2は、図1の酸化膜の平均膜厚推定方法で用いる酸化帯を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing an oxidation zone used in the method for estimating the average film thickness of the oxide film of FIG. 図3は、放射率と酸化膜厚との関係を説明するグラフである。FIG. 3 is a graph for explaining the relationship between the emissivity and the oxide film thickness. 図4は、実施例で用いた実験装置のレイアウトを示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing the layout of the experimental apparatus used in the examples. 図5は、実施例で用いた放射温度計の放射率と酸化膜の平均膜厚との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the emissivity of the radiation thermometer used in the examples and the average film thickness of the oxide film. 図6は、実施例における放射率のリファレンス値との相関を示すグラフである。FIG. 6 is a graph showing the correlation of the emissivity with the reference value in the examples. 図7は、比較例における放射率のリファレンス値との相関を示すグラフである。FIG. 7 is a graph showing the correlation of the emissivity with the reference value in the comparative example.

以下、本発明の実施の形態について適宜図面を参照しつつ詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

図1に示す酸化膜の平均膜厚推定方法は、酸化処理中に鋼板に形成される酸化膜の平均膜厚推定方法であって、算出工程S1と、補正工程S2と、推定工程S3とを備える。 The method for estimating the average thickness of the oxide film shown in FIG. 1 is a method for estimating the average thickness of the oxide film formed on the steel sheet during the oxidation treatment, and includes a calculation step S1, a correction step S2, and an estimation step S3. Be prepared.

<酸化炉>
当該酸化膜の平均膜厚推定方法は、図2に示すような酸化還元法で使用される焼鈍炉の酸化帯1で生成される酸化膜の平均膜厚の推定に用いることができる。酸化帯1は、ロール11を有し、酸化帯入口1aから装入される帯状の鋼板Mをロール11により送給し、酸化帯出口1bより送出する。
<Oxidation furnace>
The method for estimating the average film thickness of the oxide film can be used to estimate the average film thickness of the oxide film produced in the oxidation zone 1 of the annealing furnace used in the redox method as shown in FIG. The oxide zone 1 has a roll 11, and the strip-shaped steel plate M charged from the oxide zone inlet 1a is fed by the roll 11 and sent out from the oxide zone outlet 1b.

酸化帯1は、例えば直火バーナー12を有し、この直火バーナー12により鋼板Mの表面を酸化し、鋼板Mの表面に鉄の酸化膜を形成する。このように直火バーナー12を用いることで、空気比の制御により酸素濃度の調整が可能であり、酸化膜の膜厚を容易に制御することができる。また、鋼板Mの昇温速度を高めることができるので、酸化帯1の炉長を短くして加熱炉を省スペース化したり、鋼板Mの送給速度を高めて製造効率を高めたりすることができる。 The oxidation zone 1 has, for example, a direct flame burner 12, and the direct flame burner 12 oxidizes the surface of the steel sheet M to form an iron oxide film on the surface of the steel sheet M. By using the direct flame burner 12 in this way, the oxygen concentration can be adjusted by controlling the air ratio, and the film thickness of the oxide film can be easily controlled. Further, since the heating rate of the steel sheet M can be increased, the furnace length of the oxide zone 1 can be shortened to save space in the heating furnace, or the feeding rate of the steel sheet M can be increased to improve the manufacturing efficiency. can.

当該酸化膜の平均膜厚推定方法の対象となる鋼板Mは、Si、Mn、P、Al等が添加された母材鋼板であるとよい。これらの元素が添加された母材鋼板に対して鋼板のめっき密着性を改善する際、めっき密着性を確保するためには酸化膜の平均膜厚が特に重要であり、当該酸化膜の平均膜厚推定方法を好適に用いることができる。 The steel sheet M to be used in the method for estimating the average film thickness of the oxide film is preferably a base steel sheet to which Si, Mn, P, Al and the like are added. When improving the plating adhesion of a steel sheet to a base steel sheet to which these elements are added, the average film thickness of the oxide film is particularly important for ensuring the plating adhesion, and the average film thickness of the oxide film is particularly important. The thickness estimation method can be preferably used.

鋼板MにSiが添加されている場合、Si含有量の下限としては、0.3質量%が好ましく、1.0質量%がより好ましい。一方、Si含有量の上限としては、3.0質量%が好ましく、2.5質量%がより好ましい。Si含有量が上記下限未満であると、強度及び加工性を両立させるために他の合金元素が必要となり、製造コストが増大するおそれがある。逆に、Si含有量が上記上限を超えると、酸化膜の形成が抑制されるため、Si酸化物によりめっき密着性が低下するおそれがある。 When Si is added to the steel sheet M, the lower limit of the Si content is preferably 0.3% by mass, more preferably 1.0% by mass. On the other hand, the upper limit of the Si content is preferably 3.0% by mass, more preferably 2.5% by mass. If the Si content is less than the above lower limit, other alloying elements are required in order to achieve both strength and workability, which may increase the manufacturing cost. On the contrary, when the Si content exceeds the above upper limit, the formation of the oxide film is suppressed, so that the plating adhesion may be lowered by the Si oxide.

また、鋼板Mは、上述のSiやMn等以外には、C、Cr、Ti、S等を含有してもよい。なお、鋼板Mの残部は鉄及び不可避的不純物である。 Further, the steel sheet M may contain C, Cr, Ti, S and the like in addition to the above-mentioned Si, Mn and the like. The rest of the steel sheet M is iron and unavoidable impurities.

酸化帯1で形成される酸化膜の平均膜厚の下限としては、0.1μmが好ましく、0.3μmがより好ましい。一方、上記酸化膜の平均膜厚の上限としては、1.1μmが好ましく、0.8μmがより好ましい。上記酸化膜の平均膜厚が上記下限未満であると、めっき密着性の改善効果が不十分となるおそれがある。逆に、上記酸化膜の平均膜厚が上記上限を超えると、酸化膜が不必要に厚く、酸化帯1に続く還元帯での還元時間が長くなり、製造効率を低下させるおそれがある。 The lower limit of the average film thickness of the oxide film formed in the oxide zone 1 is preferably 0.1 μm, more preferably 0.3 μm. On the other hand, the upper limit of the average film thickness of the oxide film is preferably 1.1 μm, more preferably 0.8 μm. If the average film thickness of the oxide film is less than the above lower limit, the effect of improving the plating adhesion may be insufficient. On the contrary, when the average film thickness of the oxide film exceeds the above upper limit, the oxide film is unnecessarily thick, the reduction time in the reduction zone following the oxide zone 1 becomes long, and the production efficiency may be lowered.

当該酸化膜の平均膜厚推定方法には、図2に示すように、鋼板M表面の温度を測定する板温計13及び放射温度計14と、背景放射を抑止する冷却板15とを用いる。 As shown in FIG. 2, as a method for estimating the average film thickness of the oxide film, a plate thermometer 13 and a radiation thermometer 14 for measuring the temperature of the surface of the steel plate M and a cooling plate 15 for suppressing background radiation are used.

板温計13は、放射量の影響を受けず鋼板M表面の温度を直接的に測定可能な温度計である。板温計13としては、熱電対、接触温度計、ロール多重板温計等の公知の温度計を用いることができる。 The plate thermometer 13 is a thermometer capable of directly measuring the temperature of the surface of the steel sheet M without being affected by the amount of radiation. As the plate thermometer 13, a known thermometer such as a thermocouple, a contact thermometer, or a roll multiple plate thermometer can be used.

板温計13は、後述する放射温度計14の測定位置から1m以内、より好ましくは0.5m以内の位置で鋼板Mの温度を測定するように配設されるとよい。板温計13は、温度の整合性の観点から、放射温度計14が測定する鋼板Mの表面と同じ表面を測定することが好ましいが、配置が困難である場合、図2に示すように、放射温度計14が測定する鋼板Mの表面と反対側の面で測定することも可能である。 The plate thermometer 13 may be arranged so as to measure the temperature of the steel plate M at a position within 1 m, more preferably within 0.5 m, from the measurement position of the radiation thermometer 14 described later. From the viewpoint of temperature consistency, the plate thermometer 13 preferably measures the same surface as the surface of the steel plate M measured by the radiation thermometer 14, but when it is difficult to arrange the plate thermometer 13, as shown in FIG. It is also possible to measure on the surface opposite to the surface of the steel plate M measured by the radiation thermometer 14.

放射温度計14は、物体から放射される赤外線や可視光線の強度を測定して、物体の温度に換算する温度計である。具体的には、放射温度計14は、物体から放射された赤外線をレンズで集光し、その光量を検出素子により温度に換算する。なお、上記検出素子は、赤外線を吸収すると温められ、その温められた温度に応じて電気信号を発生するものである。または、上記検出素子として、光エネルギーによる光電効果により出力が出るもの用いることもできる。 The radiation thermometer 14 is a thermometer that measures the intensity of infrared rays or visible light emitted from an object and converts it into the temperature of the object. Specifically, the radiation thermometer 14 collects infrared rays emitted from an object with a lens, and converts the amount of light into temperature by a detection element. The detection element is warmed when it absorbs infrared rays, and generates an electric signal according to the warmed temperature. Alternatively, as the detection element, an element that outputs an output due to the photoelectric effect due to light energy can also be used.

放射温度計14は、図2に示すように、例えば温度計本体14aと、測定筒14bとから構成される。測定筒14bはその一端側が酸化帯1内に位置し、他端側が酸化帯1外に位置する。また、測定筒14bは、少なくとも一端側が冷却板15に囲まれるように配置される。放射温度計本体14aは、測定筒14bの他端側、つまり酸化帯1の外側に配置され、放射温度計14が測定筒14bを介して鋼板M表面の測定を行えるよう構成されている。 As shown in FIG. 2, the radiation thermometer 14 is composed of, for example, a thermometer main body 14a and a measuring cylinder 14b. One end side of the measuring cylinder 14b is located inside the oxide zone 1, and the other end side is located outside the oxide zone 1. Further, the measuring cylinder 14b is arranged so that at least one end side thereof is surrounded by the cooling plate 15. The radiation thermometer main body 14a is arranged on the other end side of the measuring cylinder 14b, that is, outside the oxide zone 1, and is configured so that the radiation thermometer 14 can measure the surface of the steel plate M via the measuring cylinder 14b.

放射温度計14の鋼板M表面でのスポット径(放射温度計14が集光する範囲の直径)は、放射温度計14と鋼板M表面との距離や、放射温度計14の測定角度により決まるが、例えば5mm以上30mm以下とされる。 The spot diameter (the diameter of the range that the radiation thermometer 14 collects) on the steel plate M surface of the radiation thermometer 14 is determined by the distance between the radiation thermometer 14 and the steel plate M surface and the measurement angle of the radiation thermometer 14. For example, it is 5 mm or more and 30 mm or less.

当該酸化膜の平均膜厚推定方法では、波長の異なる複数の放射温度計14を用いるとよい。酸化膜の平均膜厚に対する補正後の放射率の感度は、放射温度計14の波長により異なる。このため酸化膜の平均膜厚に応じて感度の高い波長を用いて平均膜厚を推定することで、酸化膜の平均膜厚の推定精度を高めることができる。 In the method for estimating the average film thickness of the oxide film, it is preferable to use a plurality of radiation thermometers 14 having different wavelengths. The sensitivity of the corrected emissivity to the average film thickness of the oxide film depends on the wavelength of the radiation thermometer 14. Therefore, by estimating the average film thickness using a wavelength having high sensitivity according to the average film thickness of the oxide film, it is possible to improve the estimation accuracy of the average film thickness of the oxide film.

複数の放射温度計14を用いる場合、鋼板M表面の同一のスポットを測定することが好ましい。このため、放射温度計14の使用本数の上限としては、5本が好ましく、4本がより好ましい。放射温度計14の使用本数が上記上限を超えると、同一のスポットを測定するように複数の放射温度計14を配置することが困難となるおそれがある。逆に、放射温度計14の使用本数の下限としては、2本が好ましく、3本がより好ましい。放射温度計14の使用本数が上記下限未満であると、複数の放射温度計14を用いる効果が不十分となるおそれがある。 When a plurality of radiation thermometers 14 are used, it is preferable to measure the same spot on the surface of the steel sheet M. Therefore, as the upper limit of the number of radiation thermometers 14 used, 5 is preferable, and 4 is more preferable. If the number of radiation thermometers 14 used exceeds the above upper limit, it may be difficult to arrange a plurality of radiation thermometers 14 so as to measure the same spot. On the contrary, as the lower limit of the number of radiation thermometers 14 used, two are preferable, and three are more preferable. If the number of radiation thermometers 14 used is less than the above lower limit, the effect of using a plurality of radiation thermometers 14 may be insufficient.

放射温度計14の波長は、測定したい酸化膜の平均膜厚に応じて適宜決定され、例えば0.8μm以上15μm以下の範囲から選択される。複数の放射温度計14を用いる場合、それらの波長は、酸化膜の平均膜厚に対する補正後の放射率の感度が高い領域が、それぞれの放射温度計14で異なるように決定される。波長の選択は、放射温度計14の検出素子の種類により行うことができる。例えば3本の放射温度計14を用いる場合であれば、各検出素子として、例えばSi検出素子(波長:1μm)、InSb検出素子(波長:5μm)、サーモパイル検出素子(波長:11μm)を用いることができる。 The wavelength of the radiation thermometer 14 is appropriately determined according to the average film thickness of the oxide film to be measured, and is selected from, for example, a range of 0.8 μm or more and 15 μm or less. When a plurality of radiation thermometers 14 are used, their wavelengths are determined so that the region where the corrected emissivity with respect to the average film thickness of the oxide film is highly sensitive is different in each radiation thermometer 14. The wavelength can be selected according to the type of the detection element of the radiation thermometer 14. For example, when three radiation thermometers 14 are used, for example, a Si detection element (wavelength: 1 μm), an InSb detection element (wavelength: 5 μm), and a thermopile detection element (wavelength: 11 μm) are used as each detection element. Can be done.

冷却板15は、例えば円環状であり、放射温度計14の周囲を取り囲むように炉の外壁に沿って設けられる。冷却板15は、図2に示すように、その一部が炉内に位置してもよい。冷却板15により放射温度計14に入ってくる背景放射を抑止できる。冷却板15としては、例えば水冷板を用いることができる。 The cooling plate 15 is, for example, an annular shape, and is provided along the outer wall of the furnace so as to surround the radiation thermometer 14. As shown in FIG. 2, a part of the cooling plate 15 may be located in the furnace. The cooling plate 15 can suppress the background radiation entering the radiation thermometer 14. As the cooling plate 15, for example, a water cooling plate can be used.

冷却板15が円環状である場合、冷却板15の外径の下限としては、100mmが好ましく、130mmがより好ましい。一方、冷却板15の外径の上限としては、300mmが好ましく、200mmがより好ましい。冷却板15の外径が上記下限未満であると、背景放射の抑止効果が不十分となるおそれがある。逆に、冷却板15の外径が上記上限を超えると、背景放射の抑止効果の向上に対して冷却板15が不必要に大きくなり過ぎるおそれがある。なお、冷却板15の外径は、鋼板M表面から冷却板15までの距離が大きいほど大きくすることが好ましく、冷却板15の外径は、鋼板M表面から冷却板15までの距離の4倍以上6倍以下とするとよい。 When the cooling plate 15 is annular, the lower limit of the outer diameter of the cooling plate 15 is preferably 100 mm, more preferably 130 mm. On the other hand, the upper limit of the outer diameter of the cooling plate 15 is preferably 300 mm, more preferably 200 mm. If the outer diameter of the cooling plate 15 is less than the above lower limit, the effect of suppressing background radiation may be insufficient. On the contrary, if the outer diameter of the cooling plate 15 exceeds the above upper limit, the cooling plate 15 may become unnecessarily large in order to improve the effect of suppressing background radiation. The outer diameter of the cooling plate 15 is preferably increased as the distance from the surface of the steel plate M to the cooling plate 15 is larger, and the outer diameter of the cooling plate 15 is four times the distance from the surface of the steel plate M to the cooling plate 15. It should be 6 times or more and 6 times or less.

鋼板M表面から冷却板15までの離間距離(測定距離)の下限としては、50mmが好ましく、100mmがより好ましい。一方、上記測定距離の上限としては、300mmが好ましく、200mmがより好ましい。上記測定距離が上記下限未満であると、冷却板15が鋼板Mと接触し鋼板Mに擦り傷が生じるおそれがある。逆に、上記測定距離が上記上限を超えると、背景放射が放射温度計14の測定筒14bに入り易くなるため、放射温度計14の測定精度が低下するおそれがある。 The lower limit of the separation distance (measurement distance) from the surface of the steel plate M to the cooling plate 15 is preferably 50 mm, more preferably 100 mm. On the other hand, as the upper limit of the measurement distance, 300 mm is preferable, and 200 mm is more preferable. If the measurement distance is less than the above lower limit, the cooling plate 15 may come into contact with the steel plate M and the steel plate M may be scratched. On the contrary, when the measurement distance exceeds the upper limit, the background radiation easily enters the measurement cylinder 14b of the radiation thermometer 14, so that the measurement accuracy of the radiation thermometer 14 may decrease.

<算出工程>
算出工程S1では、板温計13及び放射温度計14により測定される温度から見かけの放射率ε’を算出する。
<Calculation process>
In the calculation step S1, the apparent emissivity ε'is calculated from the temperatures measured by the plate thermometer 13 and the radiation thermometer 14.

物体から放射される赤外線の量は同じ温度の物体であっても、物体の材質や表面状態によって異なる。放射温度計14では、物体から放射される赤外線量から物体の温度を測定するため、物体によってこの放射の割合を補正する必要があり、この割合を「放射率」という。放射率は、0以上1以下の範囲の数値をとり、理想的な黒体で1、黒体と逆で完全に赤外線を反射又は透過してしまうもの(例えば空気など)で0となる。 The amount of infrared rays emitted from an object differs depending on the material and surface condition of the object even if the object has the same temperature. In the radiation thermometer 14, since the temperature of an object is measured from the amount of infrared rays emitted from the object, it is necessary to correct the ratio of this radiation depending on the object, and this ratio is called "emissivity". The emissivity takes a value in the range of 0 or more and 1 or less, and is 1 for an ideal blackbody, and 0 for an ideal blackbody that completely reflects or transmits infrared rays (for example, air).

一方、板温計13は、物体の温度を直接測定するものであるから、放射率を加味した放射温度計14の示す測定温度と、板温計13の示す測定温度とが等しくなる放射率を算出すれば、測定物体の放射率を決定できる。 On the other hand, since the plate thermometer 13 directly measures the temperature of an object, the emissivity is such that the measured temperature indicated by the radiation thermometer 14 in consideration of the emissivity is equal to the measured temperature indicated by the plate thermometer 13. By calculation, the emissivity of the object to be measured can be determined.

当該酸化膜の平均膜厚推定方法では、冷却板15を用いて放射温度計14に入ってくる背景放射を抑止しているが、この背景放射を完全に除去できるわけではない。上述のようにして算出された放射率は、測定物体単体の放射率ではなく、放射温度計14に入ってきた背景放射を含むものである。つまり、この算出工程S1で算出される放射率は、真の値とは誤差を持つ「見かけの放射率ε’」である。 In the method for estimating the average thickness of the oxide film, the cooling plate 15 is used to suppress the background radiation entering the radiation thermometer 14, but this background radiation cannot be completely removed. The emissivity calculated as described above includes not the emissivity of the measurement object alone but the background radiation entering the radiation thermometer 14. That is, the emissivity calculated in this calculation step S1 is an "apparent emissivity ε'" having an error from the true value.

<補正工程>
補正工程S2では、見かけの放射率ε’を補正する。
<Correction process>
In the correction step S2, the apparent emissivity ε'is corrected.

補正工程S2で、補正に下記式(1)を用いる。このように補正工程S2で、補正に下記式(1)を用いるので、さらに簡便に酸化膜の平均膜厚を推定できる。

Figure 2021113765
ここで、εは補正後の放射率、ε’は上記見かけの放射率、aは酸化処理条件により定まる定数である。 In the correction step S2, the following equation (1) is used for correction. As described above, since the following formula (1) is used for the correction in the correction step S2, the average film thickness of the oxide film can be estimated more easily.
Figure 2021113765
Here, ε is the corrected emissivity, ε'is the apparent emissivity, and a is a constant determined by the oxidation treatment conditions.

以下、上記式(1)で放射率が補正できる理由について詳説する。 Hereinafter, the reason why the emissivity can be corrected by the above equation (1) will be described in detail.

放射温度計14には、測定する鋼板M表面の測定点(測定スポット)から放射されるエネルギーに加え、周囲(背景放射や冷却板15)からの反射エネルギーが入射する。そこで、上記測定スポット、背景放射面、冷却板面の3面で放射伝達計算式を立てると、下記式(2)となる。

Figure 2021113765
ここで、G:射度、ε:放射率、L:黒体放射エネルギー、T:温度、C:指向性放射率係数、F:形態係数を表す。また、添え字は、1:鋼板M、2:冷却板15、3:背景放射面を指す。 In addition to the energy radiated from the measurement point (measurement spot) on the surface of the steel plate M to be measured, the radiation thermometer 14 receives the reflected energy from the surroundings (background radiation and the cooling plate 15). Therefore, when the radiation transmission calculation formula is established on the three surfaces of the measurement spot, the background radiation surface, and the cooling plate surface, the following formula (2) is obtained.
Figure 2021113765
Here, G: Emissivity, ε: Emissivity, L b : Blackbody radiation energy, T: Temperature, C: Directivity emissivity coefficient, F: View factor. The subscripts refer to 1: steel plate M, 2: cooling plate 15, 3: background radiation surface.

背景放射面は、仮想面でありε=1とできる。これと上記式(2)とからGについて解くと、下記式(3)が得られる。

Figure 2021113765
The background radiation surface is a virtual surface and can be set to ε 3 = 1. Solving for G 1 from this and the equation (2), the following equation (3) is obtained.
Figure 2021113765

一方、放射温度計14について、放射率εを用いて、G=ε(T)の関係がある。さらに、冷却板15が十分に大きく、F21≒0と近似できるので、これらと上記式(3)とからεについて解くと、下記式(4)が得られる。なお、添え字mは、放射温度計を指す。

Figure 2021113765
On the other hand, for the radiation thermometer 14, there is a relationship of G 1 = ε m L b (T m ) using the emissivity ε m. Further, since the cooling plate 15 is sufficiently large and can be approximated to F21≈0, the following equation (4) can be obtained by solving ε 1 from these and the above equation (3). The subscript m refers to a radiation thermometer.
Figure 2021113765

ここで、背景放射を除去しない場合の黒体放射エネルギーに対する放射温度計14の見かけの放射率ε’は、ε’=L(T)/L(T)で表されるから、右辺の逆数(L(T)/L(T))をε’に乗じると1となる。これを利用して上記式(4)を変形すると、下記(5)が得られる。

Figure 2021113765
Here, the emissivity epsilon 1 of the black body radiation thermometer 14 apparent to radiant energy in the case of not removing the background radiation 'is, epsilon 1' is represented by = L b (T m) / L b (T 1) Therefore, multiplying ε 1'by the inverse number on the right side (L b (T 1 ) / L b (T m )) gives 1. By transforming the above equation (4) using this, the following (5) is obtained.
Figure 2021113765

さらに、下記式(6)で定義される定数aを用いると、下記式(7)のように変形できる。

Figure 2021113765
Figure 2021113765
Further, by using the constant a defined by the following equation (6), it can be transformed as in the following equation (7).
Figure 2021113765
Figure 2021113765

上記式(7)でεε’は、算出工程S1で算出される「見かけの放射率ε’」を表し、εは鋼板Mの真の放射率εを表すから、上述の式(1)で放射率が補正できる。なお、定数aは、予め実験的に求めることが可能である。具体的には、以下の手順による。板温計13、放射温度計14の測定結果から求まる見かけの放射率ε’(=εε’)を算出する。また、その測定結果を得た酸化膜の平均膜厚を求める。この酸化膜の平均膜厚から、予め他の手法で分析された酸化膜の平均膜厚と放射率との関係から、真の放射率εを求め、上記式(7)が成立するようにaを決定することができる。 The equation (7) ε m ε 1 'is calculated by the calculating process S1 "emissivity apparent epsilon' represent ', epsilon 1 is from represents the epsilon true emissivity of the steel sheet M, the above-mentioned formula ( The emissivity can be corrected in 1). The constant a can be obtained experimentally in advance. Specifically, the procedure is as follows. The apparent emissivity ε'(= ε m ε 1 ') obtained from the measurement results of the plate thermometer 13 and the radiation thermometer 14 is calculated. In addition, the average film thickness of the oxide film obtained from the measurement result is obtained. From the average film thickness of this oxide film, the true emissivity ε 1 is obtained from the relationship between the average film thickness and the emissivity of the oxide film analyzed in advance by another method, and the above equation (7) is established. a can be determined.

このaの値は、鋼板Mの温度、炉温、測定器(板温計13、放射温度計14及び冷却板15)のレイアウトといった酸化処理条件に依存して決まる。つまり、これらの酸化処理条件が同等であれば、aの値は流用が可能となる。 The value of a is determined depending on the oxidation treatment conditions such as the temperature of the steel plate M, the furnace temperature, and the layout of the measuring instruments (plate thermometer 13, radiation thermometer 14 and cooling plate 15). That is, if these oxidation treatment conditions are the same, the value of a can be diverted.

<推定工程>
推定工程S3では、補正工程S2後の放射率から酸化膜の平均膜厚を推定する。
<Estimation process>
In the estimation step S3, the average film thickness of the oxide film is estimated from the emissivity after the correction step S2.

補正工程S2で算出した放射率εは、例えば図3に示すように、酸化膜の平均厚さに応じて変化する。従って、放射率εを知れば、酸化膜の平均膜厚を推定することができる。 The emissivity ε calculated in the correction step S2 changes according to the average thickness of the oxide film, for example, as shown in FIG. Therefore, if the emissivity ε is known, the average film thickness of the oxide film can be estimated.

例えば図3の関係であれば、酸化膜の平均厚さに対する放射率εの変化(感度)が大きい0.2μm以上0.8μm以下の平均厚さの酸化膜を測定する場合の精度が高い。この精度が高い領域は、酸化処理条件が同一であっても放射温度計14の波長により異なる。従って、波長の異なる複数の放射温度計14を用いる場合にあっては、複数の放射温度計14の測定結果を、精度の高さに応じて使い分けることで、広い範囲の酸化膜の平均膜厚保を精度よく推定することができる。 For example, in the case of the relationship shown in FIG. 3, the accuracy is high when measuring an oxide film having an average thickness of 0.2 μm or more and 0.8 μm or less, in which the change (sensitivity) of the emissivity ε with respect to the average thickness of the oxide film is large. This region of high accuracy differs depending on the wavelength of the radiation thermometer 14 even if the oxidation treatment conditions are the same. Therefore, when a plurality of radiation thermometers 14 having different wavelengths are used, the average film thickness of the oxide film in a wide range can be maintained by properly using the measurement results of the plurality of radiation thermometers 14 according to the high accuracy. Can be estimated accurately.

<利点>
当該酸化膜の平均膜厚推定方法では、まず冷却板15を用いることで背景放射を抑止する。さらに、当該酸化膜の平均膜厚推定方法では、冷却板15を用いても抑止し切れない背景放射について、補正工程S2で、放射率を補正することにより除去するので、精度よくかつ簡便に酸化膜の平均膜厚を推定できる。
<Advantage>
In the method for estimating the average film thickness of the oxide film, background radiation is suppressed by first using the cooling plate 15. Further, in the method for estimating the average thickness of the oxide film, the background radiation that cannot be suppressed even by using the cooling plate 15 is removed by correcting the emissivity in the correction step S2, so that the oxidation is accurate and easy. The average film thickness can be estimated.

[その他の実施形態]
なお、本発明は、上記実施形態に限定されるものではない。
[Other Embodiments]
The present invention is not limited to the above embodiment.

上記実施形態では、酸化還元法の酸化帯で用いる場合を説明したが、本発明の酸化膜の平均膜厚推定方法は、これに限定されるものではなく、他の方法で鋼板に形成される酸化膜の平均膜厚の推定を行うこともできる。 In the above embodiment, the case of using the oxide film in the oxidation-reduction method has been described, but the method for estimating the average thickness of the oxide film of the present invention is not limited to this, and is formed on the steel plate by another method. It is also possible to estimate the average thickness of the oxide film.

上記実施形態では、補正工程で、補正に上述の式(1)を用いる場合を説明したが、他の計算式で補正することも可能である。例えば、上述の式(5)において、指向性放射率係数Cや形態係数Fを特定して、補正することも可能である。 In the above embodiment, the case where the above-mentioned formula (1) is used for the correction in the correction step has been described, but the correction can be performed by another calculation formula. For example, in the above equation (5), the directional emissivity coefficient C and the view factor F can be specified and corrected.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

[実施例]
鋼板を酸化させて鋼板の放射率の変化から酸化膜の平均膜厚を推定する実験を行った。実施例で用いた装置のレイアウトを図4に示す。この実験装置は、冷却室2と加熱室3とを備え、鋼板Mが両室を行き来できるように構成されている。
[Example]
An experiment was conducted in which the steel sheet was oxidized and the average thickness of the oxide film was estimated from the change in the emissivity of the steel sheet. The layout of the apparatus used in the examples is shown in FIG. This experimental apparatus includes a cooling chamber 2 and a heating chamber 3 so that the steel plate M can move back and forth between the two chambers.

板温計としては、鋼板Mに熱電対(不図示)を溶接して用いた。放射温度計14としては、波長の異なる3種類の温度計を使用した。使用した波長は、1μm(Si検出素子)、5μm(InSb検出素子)、及び11μm(サーモパイル検出素子)である。放射温度計14の鋼板M表面でのスポット径は10mmとし、鋼板M表面からの放射温度計14の測定距離は50mmとした。これら3種類の放射温度計14の放射率と酸化膜の平均膜厚との関係を図5に示す。また、冷却板15としては、水冷板(直径139.8mm)を用いた。この実験装置の形態係数を表1に示す。 As the plate temperature gauge, a thermocouple (not shown) was welded to the steel plate M and used. As the radiation thermometer 14, three types of thermometers having different wavelengths were used. The wavelengths used were 1 μm (Si detection element), 5 μm (InSb detection element), and 11 μm (thermopile detection element). The spot diameter of the radiation thermometer 14 on the surface of the steel plate M was 10 mm, and the measurement distance of the radiation thermometer 14 from the surface of the steel plate M was 50 mm. The relationship between the emissivity of these three types of radiation thermometers 14 and the average film thickness of the oxide film is shown in FIG. Further, as the cooling plate 15, a water cooling plate (diameter 139.8 mm) was used. The view factors of this experimental device are shown in Table 1.

[比較例]
比較例では、実施例で用いた装置から冷却板15を取り除いたものを用いた。この実験装置の形態係数を表1に示す。
[Comparison example]
In the comparative example, the apparatus used in the example from which the cooling plate 15 was removed was used. The view factors of this experimental device are shown in Table 1.

Figure 2021113765
Figure 2021113765

[実験手順]
上述の2つの実験装置を用いて、以下の手順で実験を行った。最初に熱電対を溶接した鋼板Mを冷却室2に設置した。次に、この鋼板Mを加熱室3に引き上げ、直火バーナー12で加熱した。このとき、熱電対(板温計)及び放射温度計により鋼板Mの温度を測定することができるから、図1に示すフローに従って鋼板Mからの放射率を推定することができる。
[Experimental procedure]
The experiment was carried out according to the following procedure using the above-mentioned two experimental devices. First, the steel plate M to which the thermocouple was welded was installed in the cooling chamber 2. Next, the steel plate M was pulled up to the heating chamber 3 and heated by the direct flame burner 12. At this time, since the temperature of the steel plate M can be measured by the thermocouple (plate thermometer) and the radiation thermometer, the emissivity from the steel plate M can be estimated according to the flow shown in FIG.

所定時間の加熱を行った後、鋼板Mは冷却室2に引き下げて、冷却した。冷却後に、鋼板Mを取り出し、酸化膜の平均膜厚を分析した。この平均膜厚と図5に示すグラフとから決まる放射率をリファレンスとして、加熱中に推定した放射率とを比較した。なお、酸化膜の平均膜厚は、断面SEM写真による分析のほか、グロー放電発光分析装置(GDOES)を用いて酸化膜中の酸素濃度の深さ方向の分析を行い、酸化膜中で想定される酸素濃度(例えば10質量%)が観測される厚さを酸化膜厚とする方法により特定した。 After heating for a predetermined time, the steel plate M was pulled down to the cooling chamber 2 and cooled. After cooling, the steel sheet M was taken out and the average film thickness of the oxide film was analyzed. Using the emissivity determined from this average film thickness and the graph shown in FIG. 5 as a reference, the emissivity estimated during heating was compared. The average thickness of the oxide film is estimated in the oxide film by analyzing the oxygen concentration in the oxide film in the depth direction using a glow discharge emission analyzer (GDOES) in addition to the analysis by the cross-sectional SEM photograph. The thickness at which the oxygen concentration (for example, 10% by mass) was observed was specified by a method of determining the oxide film thickness.

この実験は、同じ種類の鋼板Mを6枚用いて行った。 This experiment was carried out using 6 steel plates M of the same type.

[結果]
実施例の装置を用いた場合の結果を図6に示す。また、比較例の装置を用いた場合の結果を図7に示す。図6及び図7に示す直線は、推定した放射率とリファレンス値とが一致する点を結んだものである。
[result]
The results when the apparatus of the example is used are shown in FIG. Further, FIG. 7 shows the results when the apparatus of the comparative example was used. The straight lines shown in FIGS. 6 and 7 connect the points where the estimated emissivity and the reference value match.

図6の結果から、冷却板を用いたうえで、当該酸化膜の平均膜厚推定方法によって背景放射について放射率を補正することにより除去するので、精度よく酸化膜の平均膜厚を推定できることが分かる。一方、図7の結果は、酸化膜の平均膜厚の推定精度が低い。冷却板を使用していないため、背景放射が大き過ぎ、十分な背景放射の除去ができないためと考えられる。 From the results of FIG. 6, since the background radiation is removed by correcting the emissivity by the method of estimating the average film thickness of the oxide film using the cooling plate, the average film thickness of the oxide film can be estimated accurately. I understand. On the other hand, the result of FIG. 7 shows that the estimation accuracy of the average film thickness of the oxide film is low. It is considered that the background radiation is too large to remove the background radiation sufficiently because the cooling plate is not used.

本発明の酸化膜の平均膜厚推定方法を用いることで、放射率から背景放射の影響を除去し、精度よくかつ簡便に酸化膜の平均膜厚を推定することができる。 By using the method for estimating the average thickness of the oxide film of the present invention, the influence of background radiation can be removed from the emissivity, and the average thickness of the oxide film can be estimated accurately and easily.

1 酸化帯
1a 入口
1b 出口
11 ロール
12 直火バーナー
13 板温計
14 放射温度計
14a 温度計本体
14b 測定筒
15 冷却板
2 冷却室
3 加熱室

1 Oxidation zone 1a Inlet 1b Outlet 11 Roll 12 Direct fire burner 13 Plate thermometer 14 Radiation thermometer 14a Thermometer body 14b Measuring cylinder 15 Cooling plate 2 Cooling chamber 3 Heating chamber

Claims (3)

酸化処理中に鋼板に形成される酸化膜の平均膜厚推定方法であって、
鋼板表面の温度を測定する板温計及び放射温度計と、背景放射を抑止する冷却板とを用い、
上記板温計及び上記放射温度計により測定される温度から見かけの放射率を算出する工程と、
上記見かけの放射率を補正する工程と、
上記補正工程後の放射率から酸化膜の平均膜厚を推定する工程と
を備える酸化膜の平均膜厚推定方法。
A method for estimating the average film thickness of an oxide film formed on a steel sheet during an oxidation treatment.
Using a plate thermometer and radiation thermometer that measure the temperature of the surface of the steel plate, and a cooling plate that suppresses background radiation,
The process of calculating the apparent emissivity from the temperature measured by the plate thermometer and the radiation thermometer, and
The process of correcting the apparent emissivity and
A method for estimating the average film thickness of an oxide film, which comprises a step of estimating the average film thickness of the oxide film from the emissivity after the above correction step.
上記補正工程で、補正に下記式(1)を用いる請求項1に記載の酸化膜の平均膜厚推定方法。
Figure 2021113765
ここで、εは補正後の放射率、ε’は上記見かけの放射率、aは酸化処理条件により定まる定数である。
The method for estimating the average film thickness of an oxide film according to claim 1, wherein the following formula (1) is used for correction in the correction step.
Figure 2021113765
Here, ε is the corrected emissivity, ε'is the apparent emissivity, and a is a constant determined by the oxidation treatment conditions.
波長の異なる複数の放射温度計を用いる請求項1又は請求項2に記載の酸化膜の平均膜厚推定方法。 The method for estimating the average film thickness of an oxide film according to claim 1 or 2, wherein a plurality of radiation thermometers having different wavelengths are used.
JP2020007115A 2020-01-20 2020-01-20 Method for estimating average thickness of oxide film Active JP7399723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020007115A JP7399723B2 (en) 2020-01-20 2020-01-20 Method for estimating average thickness of oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020007115A JP7399723B2 (en) 2020-01-20 2020-01-20 Method for estimating average thickness of oxide film

Publications (2)

Publication Number Publication Date
JP2021113765A true JP2021113765A (en) 2021-08-05
JP7399723B2 JP7399723B2 (en) 2023-12-18

Family

ID=77077555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020007115A Active JP7399723B2 (en) 2020-01-20 2020-01-20 Method for estimating average thickness of oxide film

Country Status (1)

Country Link
JP (1) JP7399723B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7120834B2 (en) 2018-07-11 2022-08-17 株式会社神戸製鋼所 Oxide film thickness measuring device and method

Also Published As

Publication number Publication date
JP7399723B2 (en) 2023-12-18

Similar Documents

Publication Publication Date Title
ES2872955T3 (en) A procedure for manufacturing aluminized steel parts formed by hot pressing
JP2007010476A (en) Method and apparatus for measuring temperature of sheet steel
JP5640647B2 (en) Method and apparatus for measuring surface temperature of steel in furnace
JP7399723B2 (en) Method for estimating average thickness of oxide film
JP2007010464A (en) Method and apparatus for measuring thickness of oxide film on surface of sheet steel
JP2011202968A (en) Method and device for measurement of oxide film thickness on surface of steel plate
JP5515411B2 (en) Steel heating method, heating control device and program
JPH07270130A (en) Method of measuring thickness of oxide film
JP2023545822A (en) Method for estimating steel strip temperature and oxide thickness
Suleiman et al. Effect of dew point on the evolving spectral emissivity of advanced high strength steel during intercritical annealing
JP2017057447A (en) Production facility and production method for high tensile strength steel plate
JPH10239256A (en) Method for annealing steel plate and method for on-line measuring progress degree of recovery and recrystallization of steel plate during annealing
JP7148438B2 (en) Oxide film thickness measurement method
JPH07174634A (en) Method for measuring temperature of object in furnace
JP2002303551A (en) Method and device for measuring temperature of in- furnace metallic material
JPH0781842B2 (en) Method and apparatus for measuring oxide film thickness of steel strip
JPH11269627A (en) Alloying furnace for galvanized steel sheet, and method for controlling alloying degree of galvanized steel sheet
JP5403041B2 (en) Alloying equipment for hot-dip galvanized steel sheet
KR100398415B1 (en) Method and apparatus for measuring temperature of heating body
TWI496945B (en) Apparatus for galvannealing steel sheet, controlling method for galvannealing thereof and calculating method for alloying degree thereof
JP2981290B2 (en) Manufacturing method of galvannealed steel sheet
JPH05231945A (en) Measuring method of surface temperature and emissivity of hot-dipped zinc-plated steel plate
JPH0682045B2 (en) Oxide film measuring device in heat treatment furnace for steel strip
JP2024022281A (en) Temperature measurement device and temperature measurement method
JPH04193913A (en) Method for controlling heating in continuous heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231206

R150 Certificate of patent or registration of utility model

Ref document number: 7399723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150