JP2011202968A - Method and device for measurement of oxide film thickness on surface of steel plate - Google Patents

Method and device for measurement of oxide film thickness on surface of steel plate Download PDF

Info

Publication number
JP2011202968A
JP2011202968A JP2010067751A JP2010067751A JP2011202968A JP 2011202968 A JP2011202968 A JP 2011202968A JP 2010067751 A JP2010067751 A JP 2010067751A JP 2010067751 A JP2010067751 A JP 2010067751A JP 2011202968 A JP2011202968 A JP 2011202968A
Authority
JP
Japan
Prior art keywords
infrared light
steel sheet
steel plate
film thickness
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010067751A
Other languages
Japanese (ja)
Inventor
Takahiko Oshige
貴彦 大重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010067751A priority Critical patent/JP2011202968A/en
Publication of JP2011202968A publication Critical patent/JP2011202968A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To propose a method and device for measurement of an oxide film thickness on the surface of a steel plate, capable of performing an accurate on-line and continuous measurement of the film thickness of an iron-based oxide formed on the surface of the steel plate, from outside a heating furnace being far from the steel plate.SOLUTION: The surface of the steel plate is irradiated intermittently with infrared light. When irradiated with the infrared light, the energy being the total of spontaneous light radiation energy radiated from the surface of the steel plate and reflected light energy of the radiated infrared light from the surface of the steel plate is detected in two different infrared wavelength bands. When irradiation with the infrared light is intercepted, only the spontaneous radiation energy from the steel plate is detected likewise. Out of detection values detected by the intermittent irradiation with the infrared light, the detection value detected upon interception of the infrared light is deducted from that detected upon irradiation, so as to calculate the reflected light energy. As to the calculated reflected light energy, the ratio between the energies in the two different infrared wavelength bands is computed on the entrance and exit sides of the heating furnace, and the ratio between them computed on these sides is computed.

Description

本発明は、鋼板表面に生成される鉄系酸化物の膜厚をオンラインで連続的に測定する鋼板表面の酸化膜厚計測方法及び装置であって、特に、溶融亜鉛めっき鋼板製造工程の焼鈍工程である直火加熱炉出側に適用して好適な鋼板表面の酸化膜厚計測方法および装置に関するものである。   The present invention relates to a method and an apparatus for measuring the thickness of an iron-based oxide film on the surface of an iron-based oxide continuously formed on the surface of a steel sheet, and in particular, an annealing process of a hot-dip galvanized steel sheet manufacturing process. The present invention relates to a method and apparatus for measuring an oxide film thickness on the surface of a steel sheet, which is suitable for application to the direct-fired heating furnace exit side.

溶融亜鉛めっき鋼板は、優れた耐食性、加工性、表面美観などの特性を有し、例えば自動車用鋼板として大量に使用されている。自動車の外板、内板などに使用される自動車用溶融亜鉛めっき鋼板に対しては、衝突安全特性の向上や軽量化などの目的から同一の板厚でも高い強度が要求されている。このような要求を満足させるため、近年では高張力鋼板を原板に使用した高張力溶融亜鉛めっき鋼板(以下、ハイテンGA鋼板という)が自動車用部材の一部に使用されてきており、その使用比率は高まりつつある。   The hot dip galvanized steel sheet has excellent properties such as corrosion resistance, workability, and surface aesthetics, and is used in large quantities, for example, as a steel sheet for automobiles. For hot dip galvanized steel sheets for automobiles used for automobile outer plates, inner plates, etc., high strength is required even with the same plate thickness for the purpose of improving collision safety characteristics and reducing weight. In order to satisfy these requirements, in recent years, high-tensile hot-dip galvanized steel sheets (hereinafter referred to as high-ten GA steel sheets) that use high-strength steel sheets as original sheets have been used in some automotive parts, and the usage ratio Is growing.

また、使用部材によって様々なハイテンGA鋼板、すなわち、強度値の異なる鋼板が選択されている。ハイテンGA鋼板の製造においては、強度を向上させるためにSi、Mn等の易酸化性元素が鋼板中に添加されている。これらの易酸化性元素は、溶融亜鉛めっき鋼板製造工程の中間工程である焼鈍中に鋼板表面で選択的に酸化され、焼鈍の後工程であるめっき工程で鋼板表面にめっきを施す際、めっき特性に悪影響を与えることが知られている。すなわち、Si、Mn等の成分が酸化して、鋼板表面に生成される鉄系酸化物が不めっき等の原因となることがある。   Further, various high-tensile GA steel plates, that is, steel plates having different strength values are selected depending on the members used. In the production of high-tensile GA steel plates, oxidizable elements such as Si and Mn are added to the steel plates in order to improve the strength. These easily oxidizable elements are selectively oxidized on the surface of the steel sheet during annealing, which is an intermediate process of the hot-dip galvanized steel sheet manufacturing process, and when plating is performed on the surface of the steel sheet in the plating process, which is a post-annealing process, It is known to adversely affect That is, components such as Si and Mn are oxidized, and iron-based oxides generated on the surface of the steel sheet may cause non-plating.

一方、焼鈍を行う直火加熱炉は、設備のコンパクト性、鋼板の通板性向上、熱応答特性等に優れ、経済的なメリットが大きく、また良好なめっき性を確保できる、Si、Mnの添加限界を高められる利点もある。このために、溶融亜鉛めっき鋼板製造ラインに設置された直火加熱炉は、鋼板の成分設計の自由度を広げ、より優れた材質特性を有する溶融亜鉛めっき鋼板の製造を可能にする特徴がある。直火加熱炉は、複数のゾーンに分かれ、負荷に応じた燃焼パターンが設定可能である。分割されたゾーンでは酸化促進加熱、還元加熱が連続して行われるが負荷に応じてゾーン単位で燃焼時間が制御され、加熱炉出側では鋼板温度として、数百℃以上までの加熱が達成される。短時間で急速に加熱された鋼板は、次工程の輻射管加熱炉にて焼鈍され、その後にめっき工程に導かれる。   On the other hand, the direct-fired heating furnace that performs annealing is superior in the compactness of equipment, the improvement of sheet passing, thermal response characteristics, etc., has great economic merit, and can secure good plating properties. There is also an advantage that the addition limit can be increased. For this reason, the direct-fired heating furnace installed in the hot dip galvanized steel sheet production line has the feature of expanding the degree of freedom in designing the components of the steel sheet and enabling the production of hot dip galvanized steel sheets with better material properties. . The direct-fired heating furnace is divided into a plurality of zones, and a combustion pattern according to the load can be set. In the divided zones, oxidation promotion heating and reduction heating are performed continuously, but the combustion time is controlled in units of zones according to the load, and heating up to several hundred degrees Celsius is achieved as the steel plate temperature on the heating furnace exit side. The The steel sheet heated rapidly in a short time is annealed in a radiant tube heating furnace in the next process, and then guided to the plating process.

前述したようにハイテンGA鋼板の製造では、易酸化性元素の酸化をいかに防ぐかが重要なポイントの1つになるが、590MPa級以上のハイテンGA材では、Si、Mnの添加量も多くなるので、易酸化性元素の酸化防止はめっき性向上のためには必須である。この課題に対処するためにも直火加熱は有効な手段であることがわかってきている。すなわち、直火加熱炉後の輻射加熱炉ゾーンで、鋼板表面に生成される鉄系酸化物を純鉄層に変化させることでSi、Mnの表面酸化を防止し、めっき特性を向上させることができるというものである。   As mentioned above, in the production of high-tensile GA steel sheets, one of the important points is how to prevent oxidation of easily oxidizable elements, but in high-tensile GA materials of 590 MPa class and higher, the amount of Si and Mn added is also large. Therefore, prevention of oxidation of easily oxidizable elements is essential for improving plating properties. In order to cope with this problem, it has been found that direct fire heating is an effective means. In other words, in the radiant heating furnace zone after the direct-fired heating furnace, by changing the iron-based oxide produced on the steel sheet surface to a pure iron layer, the surface oxidation of Si and Mn can be prevented and the plating characteristics can be improved. It can be done.

従って、最終的なハイテンGA材のめっき特性の向上のためには、直火加熱炉後に生成されている酸化物層の特性把握が重要になる。また、ハイテンGA材に添加されている易酸化性元素の量は、強度など材質特性に応じて異なるので、ハイテンGA材毎に、生成される酸化物層の厚みも異なる。   Therefore, in order to improve the plating characteristics of the final high-tensile GA material, it is important to understand the characteristics of the oxide layer generated after the direct-fired heating furnace. Moreover, since the amount of the easily oxidizable element added to the high-tensile GA material varies depending on the material characteristics such as strength, the thickness of the oxide layer to be generated is different for each high-ten GA material.

従来から行われてきた解析方法としては、めっき特性と直火加熱条件との関係を、Si、Mn添加量毎に詳細に調査して加熱条件の変化量である空気比やバーナー火炎強度、燃焼ガス組成などを適正化するものであった。しかし、この方法では実際の溶融亜鉛めっき鋼板の製造工程においてプロセス量の変動が激しいこと、バーナー詰りや火炎異常などの発生、ガス組成変動などの影響により、実際に直火加熱炉出側で最適な酸化物層形成がなされていることを確認することが困難であった。   As a conventional analysis method, the relationship between the plating characteristics and the direct flame heating conditions is investigated in detail for each addition amount of Si and Mn, and the air ratio, burner flame strength, and combustion, which are the changes in the heating conditions The gas composition was optimized. However, with this method, the actual variation in the amount of process in the actual hot dip galvanized steel sheet manufacturing process, the occurrence of burner clogging and flame abnormalities, and the effects of gas composition fluctuations are actually optimal on the outlet side of a direct-fired heating furnace. It was difficult to confirm that an oxide layer was formed properly.

このため、酸化物層の膜厚を直接測定することが有用とされ、これまでにも多くの、酸化物膜厚の計測方法が提案されてきている。   For this reason, it is useful to directly measure the thickness of the oxide layer, and many methods for measuring the thickness of the oxide have been proposed.

通常、鋼板表面に生成される鉄系酸化物の膜厚をオンラインで連続的に測定する鋼板表面の酸化膜厚計測方法としては、蛍光X線を用いる方法や偏光解析法(エリプソメトリー法)、反射・吸収法などが応用されている。しかしながら、これらの方法を直火加熱炉の出側に適用する場合には、鋼板が数百℃以上に加熱されているため、鋼板自体から熱放射があることから温度変化が誤差要因になること、さらに設置上の熱対策が複雑になること、設置コストが高くなることなどの経済的な観点からも適用が難しいという問題があった。   Usually, the method of measuring the oxide film thickness on the steel sheet surface, which continuously measures the film thickness of the iron-based oxide generated on the steel sheet surface, includes methods using X-ray fluorescence, ellipsometry (ellipsometry), Reflection and absorption methods are applied. However, when these methods are applied to the outlet side of a direct-fired heating furnace, the steel sheet is heated to several hundred degrees Celsius or higher, so that there is thermal radiation from the steel sheet itself, which causes an error factor. Furthermore, there is a problem that it is difficult to apply from an economical point of view, such as complicated heat countermeasures for installation and high installation costs.

そこで、新たな方式として、カラーセンサを応用した方法(特許文献1)が開示されている。特許文献1のカラーセンサを応用した鋼板表面の酸化膜厚計測方法では、酸化膜厚値と鋼板の明度や色相の値が関係することから、それらの関係を事前に求めておいて、酸化膜厚を推定するものである。   Therefore, a method using a color sensor (Patent Document 1) is disclosed as a new method. In the method of measuring the oxide film thickness on the steel sheet surface using the color sensor of Patent Document 1, since the oxide film thickness value and the brightness and hue value of the steel sheet are related, the relationship is obtained in advance. Thickness is estimated.

また、別の方法として、異なる測定条件で測定される2つの分光放射輝度間の関係と測定対象の放射率変化との関係式を予め求めておいて、放射率を推定した上で酸化膜厚を測定する方法(特許文献2)が開示されている。この場合、異なる測定条件としては、2つの波長での測定であるケース、2つの異なる測定角度での測定であるケースや2つの偏光成分での測定であるケースなどであり、放射率変動条件下で温度を測定するTrace温度計の応用である。   As another method, a relational expression between a relationship between two spectral radiances measured under different measurement conditions and a change in emissivity of a measurement target is obtained in advance, and after estimating the emissivity, the oxide film thickness (Patent Document 2) is disclosed. In this case, the different measurement conditions include a case where the measurement is performed at two wavelengths, a case where the measurement is performed at two different measurement angles, and a case where the measurement is performed with two polarization components. This is an application of the Trace thermometer that measures the temperature.

また、別の方法として、鋼板の表面に赤外光を間欠的に照射し、赤外光を照射したときと赤外光が遮断されたときにそれぞれ受光した複数の波長の赤外光の信号により酸化膜厚を測定する方法(特許文献3)が開示されている。   Another method is to irradiate the surface of the steel sheet with infrared light intermittently, and receive infrared light signals of multiple wavelengths received when the infrared light is irradiated and when the infrared light is blocked. Discloses a method of measuring the oxide film thickness (Patent Document 3).

さらに、別の方法として、熱延鋼板の酸化膜厚測定装置ではあるが、前記特許文献3と同様に、鋼板表面に赤外光を間欠的に照射し、8μm以上の特定の一波長の反射光を15度以上の立体角で測定し、鋼板の表面粗さの影響を受けずに酸化膜厚を測定する装置(特許文献4)が開示されている。   Furthermore, as another method, although it is an apparatus for measuring the oxide film thickness of a hot-rolled steel sheet, similarly to Patent Document 3, the infrared light is intermittently irradiated on the surface of the steel sheet, and reflection at a specific wavelength of 8 μm or more. An apparatus (Patent Document 4) that measures light at a solid angle of 15 degrees or more and measures the oxide film thickness without being affected by the surface roughness of the steel sheet is disclosed.

The scattering of electromagnetic waves from rough surfaces、Beckmann、Pergamon Press, 1963The scattering of electromagnetic waves from rough surfaces, Beckmann, Pergamon Press, 1963

特開平4−43905号公報JP-A-4-43905 特開平7−18341号公報Japanese Patent Laid-Open No. 7-18341 特開2007−10464号公報JP 2007-10464 A 特開平10−206125号公報JP-A-10-206125

しかしながら、特許文献1のカラーセンサを応用した鋼板表面の酸化膜厚計測方法、および特許文献2の放射率補正式温度計を応用した鋼板表面の酸化膜厚計測方法を、直火加熱炉出側での鋼板表面の酸化膜厚計測に適用する場合には、鉄系酸化物の一部が還元され、表層部に還元Feが点在するので、酸化膜厚を正確に測定できないという問題があることが分った。すなわち、前述したように直火加熱炉の後段ゾーンでは還元雰囲気での加熱がなされるために、前段ゾーンで生成された鉄系酸化物の一部が還元され、表層に還元Feが点在して残ってしまうのである。   However, the method for measuring the oxide film thickness on the steel sheet surface using the color sensor of Patent Document 1 and the method for measuring the oxide film thickness on the steel sheet surface using the emissivity correction thermometer described in Patent Document 2 When applied to the measurement of the oxide film thickness on the steel sheet surface, there is a problem that the oxide film thickness cannot be measured accurately because part of the iron-based oxide is reduced and the reduced Fe is scattered in the surface layer portion. I found out. That is, as described above, in the latter zone of the direct-fired heating furnace, heating is performed in a reducing atmosphere, so that a part of the iron-based oxide generated in the former zone is reduced, and reduced Fe is scattered on the surface layer. It will remain.

また、特許文献3の酸化膜計測装置では、還元Feの課題は解決されているが、水冷式遮光管を炉内に設置し、鋼板表面に近接させて用いるため、エンジニアリングが難しいという課題とともに、鋼板表面から離し炉外から測定すると、測定精度が低下するという課題もあった。   In addition, in the oxide film measuring apparatus of Patent Document 3, the problem of reduced Fe has been solved, but since the water-cooled light-shielding tube is installed in the furnace and used close to the steel sheet surface, engineering is difficult, There was also a problem that when the measurement was performed from the outside of the furnace away from the steel plate surface, the measurement accuracy was lowered.

さらに、特許文献4の酸化膜厚さ測定装置では、反射光を受光する立体角を大きく取ることにより、鋼板表面粗さの影響を小さくする光学系が提案されているものの、やはり装置を鋼板表面に近接して設置しなければならないという課題があった。   Furthermore, in the oxide film thickness measuring apparatus of Patent Document 4, an optical system has been proposed in which the effect of the steel sheet surface roughness is reduced by taking a large solid angle for receiving reflected light. There was a problem that it had to be installed close to.

本発明は、鋼板製造工程の焼鈍工程である直火加熱炉に適用して、鋼板表面に生成された鉄系酸化物の膜厚を、鋼板から遠く離れた加熱炉外からオンラインで連続的に精度良く測定することができる鋼板表面の酸化膜厚計測方法及び装置を提案することを課題とする。   The present invention is applied to a direct-fired heating furnace, which is an annealing process of a steel sheet manufacturing process, and the film thickness of the iron-based oxide generated on the steel sheet surface is continuously and continuously online from outside the heating furnace far from the steel sheet. It is an object of the present invention to propose a method and an apparatus for measuring an oxide film thickness on a steel sheet surface that can be measured with high accuracy.

上記課題は、以下の手段により解決することができる。   The above problem can be solved by the following means.

[1] 加熱炉を備えた連続焼鈍工程で、鋼板の表面に生成される酸化物の膜厚を測定する鋼板表面の酸化膜厚計測方法であって、
鋼板の表面に赤外光を間欠的に照射し、前記赤外光の照射時には鋼板表面から放射される自発光放射エネルギーと照射した赤外光の鋼板表面からの反射光エネルギーの合計されたエネルギーを、前記赤外光の照射が遮断される時には鋼板からの自発光放射エネルギーのみを、2つの異なる赤外波長帯域にてそれぞれ検出し、
前記赤外光の間欠照射によって検出される検出値のうち赤外光の照射時の検出値から遮断される時の検出値を減じることにより反射光エネルギーを算出し、算出された反射光エネルギーについて2つの異なる赤外波長帯域間の比を前記加熱炉の入側及び出側でそれぞれ演算し、それらの比を演算することにより膜厚を求めることを特徴とする鋼板表面の酸化膜厚計測方法。
[1] A method for measuring an oxide film thickness on a steel sheet surface, in which a film thickness of an oxide generated on the surface of the steel sheet is measured in a continuous annealing step provided with a heating furnace,
Energy obtained by intermittently irradiating the surface of the steel plate with infrared light, and the sum of the self-luminous radiant energy radiated from the surface of the steel plate and the reflected light energy of the irradiated infrared light from the surface of the steel plate when irradiated with the infrared light. Detecting only the self-luminous radiant energy from the steel sheet in two different infrared wavelength bands when the irradiation of infrared light is interrupted,
The reflected light energy is calculated by subtracting the detected value when shut off from the detected value at the time of infrared light irradiation among the detected values detected by the intermittent irradiation of infrared light, and the calculated reflected light energy A method for measuring an oxide film thickness on a surface of a steel sheet, wherein a ratio between two different infrared wavelength bands is calculated on an inlet side and an outlet side of the heating furnace, and a film thickness is obtained by calculating a ratio between them. .

[2] 加熱炉を備えた連続焼鈍ラインに設置する鋼板表面の酸化膜厚計測装置であって、
鋼板の表面に向けて赤外光を照射するための赤外光源と、
該赤外光源からの赤外光を間欠的に照射するための光遮断装置と、
前記赤外光が鋼板表面に照射される赤外光の照射時には鋼板表面から放射される自発光放射エネルギーと照射された赤外光の鋼板表面からの反射光エネルギーとの合計されたエネルギーを、前記赤外光の照射が遮断される時には鋼板表面から放射される自発光放射エネルギーのみを、2つの異なる赤外波長帯域にてそれぞれ検出する光検出装置と、
前記2つの異なる赤外波長帯域それぞれについて、赤外光の照射時の検出値から赤外光の照射が遮断される時の検出値を減じて反射エネルギーを算出し、更に、前記2つの異なる波長帯域間の比を演算する演算処理装置と、を具備し、
前記加熱炉の入側及び出側の両方に設置され、前記入側及び出側の演算装置からの出力の比から膜厚を求めることを特徴とする鋼板表面の酸化膜厚計測装置。
[2] A device for measuring an oxide film thickness on a steel sheet surface installed in a continuous annealing line equipped with a heating furnace,
An infrared light source for irradiating the surface of the steel plate with infrared light;
A light blocking device for intermittently irradiating infrared light from the infrared light source;
When the infrared light is irradiated on the steel sheet surface when the infrared light is irradiated, the total energy of the self-luminous radiant energy emitted from the steel sheet surface and the reflected light energy from the steel sheet surface of the irradiated infrared light, A photodetection device that detects only self-luminous radiant energy emitted from the steel sheet surface in two different infrared wavelength bands when the infrared light irradiation is interrupted;
For each of the two different infrared wavelength bands, the reflected energy is calculated by subtracting the detected value when the infrared light is blocked from the detected value when the infrared light is irradiated, and further, the two different wavelengths are calculated. An arithmetic processing unit that calculates a ratio between the bands,
An apparatus for measuring an oxide film thickness on the surface of a steel sheet, which is installed on both the entry side and the exit side of the heating furnace and obtains the film thickness from a ratio of outputs from the entry side and exit side arithmetic units.

本発明によれば、鋼板製造工程の焼鈍工程である直火加熱炉出側で、鋼板から遠く離れた加熱炉外からでも、鋼板表面粗さなどの影響を受けずに、鋼板表面に生成された鉄系酸化物の膜厚をオンラインで連続的に精度良く測定することができる。また、従来の直火加熱条件の管理・制御に代わり、本発明を用いることにより、直火加熱炉出側の鋼板表面に生成された鉄系酸化物の膜厚の情報に基づき、鋼板の放射率を推定することにより直火加熱炉出側の鋼板温度も同時に正確に推定することができるようになるから、より正確な直火燃焼制御も実現できる。   According to the present invention, it is generated on the surface of the steel sheet without being affected by the surface roughness of the steel sheet, even from the outside of the heating furnace far from the steel sheet, on the outlet side of the direct heating furnace that is an annealing process of the steel sheet manufacturing process. In addition, the thickness of the iron-based oxide can be continuously and accurately measured online. In addition, by using the present invention instead of the conventional control and control of direct fire heating conditions, the radiation of the steel sheet is radiated based on the information on the thickness of the iron-based oxide generated on the steel sheet surface on the exit side of the direct fire heating furnace. By estimating the rate, the temperature of the steel plate on the outlet side of the direct-fired heating furnace can be accurately estimated at the same time, so that more accurate direct-fire combustion control can be realized.

その結果、連続溶融亜鉛めっき鋼板製造工程に適用することにより、溶融亜鉛めっき鋼板の成分、連続溶融亜鉛めっきラインを走行する鋼板速度によらず、正確な直火燃焼制御を実現でき、鋼板速度を抑制する場合も少なくなり、生産性の向上とめっき特性の向上を達成することが可能となる。   As a result, by applying it to the continuous hot-dip galvanized steel sheet manufacturing process, accurate direct-fire combustion control can be realized regardless of the components of the hot-dip galvanized steel sheet and the speed of the steel sheet running on the continuous hot-dip galvanizing line. The number of cases to be suppressed is reduced, and it becomes possible to achieve an improvement in productivity and an improvement in plating characteristics.

本発明に係る鋼板表面の酸化膜厚計測装置の設置例を示す図である。It is a figure which shows the example of installation of the oxide film thickness measuring apparatus of the steel plate surface concerning this invention. 鋼板表面に生成された酸化膜の膜厚が異なる鋼板での反射スペクトル特性を表す図である。It is a figure showing the reflection spectrum characteristic in the steel plate from which the film thickness of the oxide film produced | generated on the steel plate surface differs. 反射・放射光強度検出装置の装置構成例を示す図である。It is a figure which shows the apparatus structural example of a reflected and emitted light intensity detection apparatus. 酸化膜厚計測装置および測定窓部の構成例を示す図である。It is a figure which shows the structural example of an oxide film thickness measuring apparatus and a measurement window part. 酸化膜厚計測装置を鋼板に近接して設置した場合の、酸化膜厚と測定値との関係を示す特性図である。It is a characteristic view which shows the relationship between an oxide film thickness and a measured value at the time of installing an oxide film thickness measuring apparatus close to a steel plate. 酸化膜厚計測装置を鋼板から遠く離して設置した場合の、酸化膜厚と測定値との関係を示す特性図である。It is a characteristic view which shows the relationship between an oxide film thickness and a measured value at the time of installing an oxide film thickness measuring apparatus far away from a steel plate. 本発明による場合の、酸化膜厚と測定値との関係を示す特性図である。It is a characteristic view which shows the relationship between an oxide film thickness and a measured value in the case of this invention. gパラメータと反射の関係を示す図である。It is a figure which shows the relationship between g parameter and reflection. 特許文献3にて開示された酸化膜厚計測装置を鋼板から遠く離れた位置に設置し、鋼板表面に生成される鉄系酸化物の膜厚を測定する状況を示す図である。It is a figure which shows the condition which installs the oxide film thickness measuring apparatus disclosed by patent document 3 in the position far away from the steel plate, and measures the film thickness of the iron-type oxide produced | generated on the steel plate surface.

以下本発明を説明する前に、特許文献3にて開示された酸化膜厚計測装置を、水冷式遮光管なしで、鋼板から遠く離れた位置から、鋼板表面に生成される鉄系酸化物の膜厚を測定する場合の実施の形態について説明を行う。   Before explaining the present invention below, the oxide film thickness measuring device disclosed in Patent Document 3 is not equipped with a water-cooled light-shielding tube. An embodiment for measuring the film thickness will be described.

図9は、特許文献3にて開示された酸化膜厚計測装置を鋼板から遠く離れた位置に設置し、鋼板表面に生成される鉄系酸化物の膜厚を測定する状況を示す図である。   FIG. 9 is a diagram illustrating a situation in which the oxide film thickness measuring device disclosed in Patent Document 3 is installed at a position far away from the steel sheet and the film thickness of the iron-based oxide generated on the steel sheet surface is measured. .

図中、1は走行鋼板、2は直火加熱炉、4は酸化膜厚計測装置、5はロール、および6は測定窓部をそれぞれ表す。   In the figure, 1 is a traveling steel plate, 2 is a direct-fired heating furnace, 4 is an oxide film thickness measuring device, 5 is a roll, and 6 is a measurement window.

直火加熱炉2は、その内部が耐火物などの断熱材で覆われており、複数のゾーンに配置された直火バーナーにより走行する鋼板1を連続的に加熱する。空気比やガス組成、バーナー火炎条件を変えた複数のゾーンがラインに沿って直列に配置されている。このような直火加熱炉2によって、走行鋼板1が所定の燃焼パターンに従って加熱される。酸化膜厚計測装置4は、走行鋼板1の表面の酸化膜厚を測定窓部6を介して計測する。   The interior of the direct-fired heating furnace 2 is covered with a heat insulating material such as a refractory, and continuously heats the steel plate 1 traveling by a direct-fire burner arranged in a plurality of zones. A plurality of zones with different air ratios, gas compositions, and burner flame conditions are arranged in series along the line. The traveling steel plate 1 is heated according to a predetermined combustion pattern by such a direct fire heating furnace 2. The oxide film thickness measuring device 4 measures the oxide film thickness on the surface of the traveling steel plate 1 through the measurement window 6.

また、パスライン変動の影響を避けるため、測定位置は炉内ロール5の近くとしている。既設のロールがない場合には、サポートロールを新設してもよい。また、図9では鋼板が垂直となっているパスにて測定する説明になっているが、水平パスでも構わない。   Further, the measurement position is set near the in-furnace roll 5 in order to avoid the influence of the pass line fluctuation. If there is no existing roll, a support roll may be newly provided. In FIG. 9, the measurement is performed using a path in which the steel plate is vertical, but a horizontal path may be used.

図4は、酸化膜厚計測装置および測定窓部の構成例を示す図である。図中、1は走行鋼板、2は直火加熱炉、3は反射・放射光強度検出装置、4は酸化膜厚計測装置、6は測定窓部、33は増幅処理装置、41は赤外光源、42は回転チョッパー、43はハーフミラー、45は回転タイミング検出装置、61はNパージ吹込部、62は赤外透過窓ガラス、および63は断熱材をそれぞれ表す。 FIG. 4 is a diagram illustrating a configuration example of the oxide film thickness measuring device and the measurement window. In the figure, 1 is a traveling steel plate, 2 is a direct-fired heating furnace, 3 is a reflected / radiant light intensity detector, 4 is an oxide film thickness measuring device, 6 is a measurement window, 33 is an amplification processing device, and 41 is an infrared light source. , 42 is a rotating chopper, 43 is a half mirror, 45 is a rotation timing detecting device, 61 is an N 2 purge blowing unit, 62 is an infrared transmission window glass, and 63 is a heat insulating material.

酸化膜厚計測装置4は直火加熱炉2の炉外に配置され、直火加熱炉2の断熱材63を貫くように炉体に設置された測定窓部6を介して測定を行う。測定窓部6は、例えばBaFなどの赤外光を透過する赤外透過窓ガラス62により密閉され、窓ガラスが汚れないよう、Nパージ吹込部61からNパージなどを行っている。なお、反射・放射光強度検出装置3の受光窓の中心と、測定窓部6の中心とを結ぶ直線が走行鋼板1の表面と直交するように設置されている。 The oxide film thickness measuring device 4 is disposed outside the direct-fired heating furnace 2 and performs measurement through a measurement window 6 installed in the furnace body so as to penetrate the heat insulating material 63 of the direct-fired heating furnace 2. Measuring window section 6 is, for example, sealed by infrared-transparent window glass 62 that transmits infrared light, such as BaF 2, so as not dirty window glass is performed and N 2 purged from the N 2 purge blower unit 61. The straight line connecting the center of the light receiving window of the reflected / radiant light intensity detection device 3 and the center of the measurement window 6 is installed so as to be orthogonal to the surface of the traveling steel plate 1.

回転チョッパー42により、赤外光源41からの赤外光を2つの経路に分岐するハーフミラー43を介して間欠的に走行鋼板1の表面に照射する。このため、回転タイミング検出装置45は回転チョッパー42の回転タイミングを検出している。   The rotating chopper 42 intermittently irradiates the surface of the traveling steel plate 1 with the infrared light from the infrared light source 41 via the half mirror 43 that branches into two paths. For this reason, the rotation timing detection device 45 detects the rotation timing of the rotation chopper 42.

図3は、反射・放射光強度検出装置の装置構成例を示す図である。図中、3は反射・放射光強度検出装置、21は集光レンズ系、22〜24はハーフミラー、25〜28は分光素子、29〜32は光検出素子、33は増幅処理装置、34は演算処理装置、35は出力装置をそれぞれ表す。   FIG. 3 is a diagram illustrating a device configuration example of the reflected / radiated light intensity detection device. In the figure, 3 is a reflected / radiant light intensity detecting device, 21 is a condensing lens system, 22-24 are half mirrors, 25-28 are spectroscopic elements, 29-32 are light detecting elements, 33 is an amplification processing device, 34 is An arithmetic processing unit 35 and an output unit are shown.

反射・放射光強度検出装置3は、集光レンズ系21を有し、赤外光の照射時には、走行鋼板1の鋼板表面から放射される自発光放射エネルギーと、赤外光源41から照射された赤外光の鋼板表面からの反射光エネルギーとの合計されたエネルギーを、分光素子25〜28及び光検出素子29〜32を含む反射・放射光強度検出装置3(光検出装置ともいう)で測定するように構成されている。一方、赤外光の照射が遮断した時には、走行鋼板1の鋼板表面から放射される自発光放射エネルギーのみを、分光素子25〜28及び光検出素子29〜32を含む光検出装置で測定するように構成されている。   The reflected / radiant light intensity detection device 3 has a condensing lens system 21, and is irradiated from the infrared light source 41 and the self-luminous radiant energy radiated from the steel plate surface of the traveling steel plate 1 when irradiated with infrared light. The total energy of the reflected light energy from the steel sheet surface of infrared light is measured by the reflected / radiated light intensity detection device 3 (also referred to as a light detection device) including the spectroscopic elements 25 to 28 and the light detection elements 29 to 32. Is configured to do. On the other hand, when the infrared light irradiation is interrupted, only the self-luminous radiant energy radiated from the steel plate surface of the traveling steel plate 1 is measured by the light detection device including the spectroscopic elements 25 to 28 and the light detection elements 29 to 32. It is configured.

増幅処理装置33は、分光素子25〜28及び光検出素子29〜32を含む反射・放射光強度検出装置3からの信号を電気的に増幅する。そして、増幅処理装置33で増幅された信号は演算処理装置34に送られる。演算処理装置34では、後述する所定の演算処理を行うことにより、走行鋼板1の表面に形成された膜厚や走行鋼板1の温度を求め、出力装置35に出力するように構成されている。   The amplification processing device 33 electrically amplifies the signal from the reflected / radiated light intensity detection device 3 including the spectroscopic elements 25 to 28 and the light detection elements 29 to 32. Then, the signal amplified by the amplification processing device 33 is sent to the arithmetic processing device 34. The arithmetic processing unit 34 is configured to obtain a film thickness formed on the surface of the traveling steel plate 1 and a temperature of the traveling steel plate 1 by performing predetermined arithmetic processing described later, and to output it to the output device 35.

次いで反射・放射光強度検出装置を具備した酸化膜厚計測装置により、走行鋼板の表面に生成される鉄系酸化物の膜厚を連続的に測定する方法につき、その経緯を含めて説明する。図2は、鋼板表面に生成された酸化膜の膜厚が異なる鋼板での反射スペクトル特性を表す図である。   Next, a method for continuously measuring the film thickness of the iron-based oxide generated on the surface of the traveling steel sheet by the oxide film thickness measuring apparatus equipped with the reflected / radiant light intensity detection apparatus will be described including the background. FIG. 2 is a diagram showing the reflection spectrum characteristics of steel plates having different thicknesses of oxide films generated on the steel plate surface.

直火加熱炉2の加熱条件(例えば空気比や燃焼温度・時間など)を変化させて、鋼板表面に生成される鉄系酸化物の膜厚を5段階に変えた鋼板サンプルを作成し、膜厚の異なる鋼板サンプルの赤外反射スペクトルを、鉄系酸化物が形成されていない下地鋼板に対する相対反射率をフーリエ分光光度計(FTIR)にて測定した結果を示している。   A steel plate sample was prepared by changing the heating conditions (for example, air ratio, combustion temperature, time, etc.) of the direct-fired heating furnace 2 and changing the film thickness of the iron-based oxide generated on the steel plate surface in five stages. The infrared reflectance spectrum of the steel plate sample from which thickness differs is shown as a result of having measured the relative reflectance with respect to the base steel plate in which the iron-type oxide is not formed with the Fourier spectrophotometer (FTIR).

鋼板上の酸化物の膜厚の実測としては、標準サンプルの化学分析結果とグロー放電分析装置(GDS)による分析結果との対比から検量線を作成しておき、任意の鋼板サンプルの膜厚値をGDS分析により破壊測定した結果を用いた。この鋼板は、Si含有量が0.25%である。膜厚の単位としては、化学分析で得られるg/m2であり、単位面積当たりに換算した鉄系酸化物、例えばFe2O3、Fe3O4、FeOなどの総量(重量換算)である。グロー放電分析装置(GDS)による分析で測定した酸化物の膜厚は、図2中、(1)のものが最も鉄系酸化物の膜厚が厚く、次いで膜厚が(2)、(3)、(4)の順に薄くなり、(5)のものが最も鉄系酸化物の膜厚が薄い。 To measure the oxide film thickness on the steel sheet, create a calibration curve based on the comparison between the chemical analysis results of the standard sample and the analysis results of the glow discharge analyzer (GDS). The result of fracture measurement by GDS analysis was used. This steel sheet has a Si content of 0.25%. The unit of film thickness is g / m 2 obtained by chemical analysis, and is the total amount (weight conversion) of iron-based oxides converted per unit area, such as Fe 2 O 3 , Fe 3 O 4 , and FeO. is there. The film thickness of the oxide measured by analysis with the glow discharge analyzer (GDS) is (1) in Fig. 2 with the largest film thickness of iron-based oxide, followed by (2), (3 ) And (4) become thinner in order, and (5) has the thinnest thickness of the iron-based oxide.

図2に示す結果から、酸化膜厚が増加するのに応じて干渉現象が起こり、反射率が極大及び極小となる波長が、長波長側にシフトする傾向が見られる。この結果からある特定の赤外波長を選択すると、酸化膜厚と反射率とは一定の関係が得られた。従って、反射率を測定することにより、鋼板上の酸化膜厚が推定可能性があることがわかる。このような反射率測定を膜厚測定に利用する方法は一般的である。   From the result shown in FIG. 2, an interference phenomenon occurs as the oxide film thickness increases, and the wavelength at which the reflectance becomes maximum and minimum tends to shift to the longer wavelength side. From this result, when a specific infrared wavelength was selected, a certain relationship was obtained between the oxide film thickness and the reflectance. Therefore, it can be seen that the oxide film thickness on the steel sheet may be estimated by measuring the reflectance. A method of using such reflectance measurement for film thickness measurement is common.

また、オンラインでの測定に際して測定対象の振動、バタツキの影響を除去したり、照射光源変動の影響を少なくする目的で、特定の2つの波長での反射比(反射光強度比)を利用する方式も一般的に用いられている。この対策の利点を考慮することにより、前記の鋼板表面の酸化膜厚測定に対しても2波長反射比を膜厚測定に利用することが可能である。本発明では、基本的にはこの方式を応用するものである。   A method that uses the reflection ratio (reflected light intensity ratio) at two specific wavelengths in order to eliminate the effects of vibration and flickering of the measurement object during online measurement and reduce the effects of fluctuations in the irradiation light source. Are also commonly used. By considering the advantage of this measure, it is possible to use the two-wavelength reflection ratio for the film thickness measurement even for the oxide film thickness measurement on the steel sheet surface. In the present invention, this method is basically applied.

すなわち、測定される2波長反射比R(λ2)/R(λ1)から鋼板上の酸化膜厚[d]を推定するようにしている。ここでλ2<λ1である。 That is, the oxide film thickness [d] on the steel sheet is estimated from the measured two-wavelength reflection ratio R (λ 2 ) / R (λ 1 ). Here, λ 21 .

ここで、もともとの鋼板の表面粗さが異なった場合の影響を考える。実測値で算術平均粗さRaが0.27μm(自乗平均平方根粗さRqが0.35μm)、0.51(同0.64)、0.88(同1.08)の3サンプルにつき、図4と同じ配置にて測定を行った結果を図6に示す。酸化膜厚計測装置を鋼板から200mm程度まで十分に近づけて測定した場合の結果が図5である。このように、鋼板から遠く離れた加熱炉外から測定した図6の場合は、反射率比の値自体が小さくなり、表面粗さの違いによる測定値のばらつきが相対的に大きくなっていることがわかる。ここで、このような結果となった原因について検討した。   Here, the influence when the surface roughness of the original steel sheet is different will be considered. The measured average arithmetic roughness Ra is 0.27 μm (root mean square roughness Rq is 0.35 μm), 0.51 (0.64), and 0.88 (1.08). FIG. 6 shows the result of measurement performed in the same arrangement as that in FIG. FIG. 5 shows the result when the oxide film thickness measuring device is measured sufficiently close to about 200 mm from the steel plate. Thus, in the case of FIG. 6 measured from outside the heating furnace far from the steel plate, the value of the reflectance ratio itself is small, and the variation in the measured value due to the difference in surface roughness is relatively large. I understand. Here, the cause of such a result was examined.

図8は、gパラメータと反射の関係を示す図である。前述の非特許文献1によれば、図8に示すように、反射光の反射パタンは、入射角、表面粗さ、波長を引数とするgパラメータにより決定される。そして、例えば、gの値が0か、1に対して十分小さいか、1以上か、1より十分大きいかという区分に対する反射パタンが明示されている。   FIG. 8 is a diagram illustrating the relationship between the g parameter and reflection. According to Non-Patent Document 1 described above, as shown in FIG. 8, the reflection pattern of the reflected light is determined by the g parameter having arguments of the incident angle, the surface roughness, and the wavelength. Then, for example, the reflection pattern for the classification of whether the value of g is 0, sufficiently small with respect to 1, 1 or more, or sufficiently larger than 1 is specified.

今回の粗さの異なる3水準のサンプルについてgパラメータを計算したところ、図8の表に示すようになった。なお図8では、参考のため、後述するλ3として3.5μm、λ4として2.5μmについても計算結果を示している。また、図4に対応して、入射角θ=0としている。 When the g parameter was calculated for the three levels of samples with different roughnesses, the results are shown in the table of FIG. For reference, FIG. 8 also shows the calculation results for λ 3 of 3.5 μm and λ 4 of 2.5 μm, which will be described later. Corresponding to FIG. 4, the incident angle θ = 0.

いずれの表面粗さに対しても、λ1よりλ2の方がgパラメータが大きくなり、反射パタンの拡散反射成分が大きくなることにより、正反射成分が低下しているということがわかった。そして、λ1、λ2に対するgの上記区分が異なり、更に表面粗さによってλ1、λ2に対する区分が変わるため、酸化膜厚による反射率の低下に加え、表面粗さによる正反射方向の反射率の低下の影響がのってしまっていることがわかった。 It was found that for any surface roughness, the g parameter was larger in λ 2 than in λ 1 , and the diffuse reflection component of the reflection pattern was increased, so that the regular reflection component was reduced. Further, the above-described division of g with respect to λ 1 and λ 2 is different, and further, the division with respect to λ 1 and λ 2 varies depending on the surface roughness. Therefore, in addition to the decrease in the reflectance due to the oxide film thickness, It turned out that the influence of the fall of the reflectance has gone up.

測定距離が小さく、反射光の受光立体角が大きければ拡散反射光も含めて受光できるため、この影響は小さいが、測定距離が大きく、ほとんど正反射光のみしか受光しない程受光立体角が小さい今回の配置のような場合には、大きな影響を与えてしまうことがわかった。   This effect is small if the measurement distance is small and the reflected solid angle of reflected light is large, including diffusely reflected light, but this effect is small, but the measured solid angle is small enough to receive only specularly reflected light. In the case of the arrangement of, it was found that it would have a big influence.

図1は、本発明に係る鋼板表面の酸化膜厚計測装置の設置例を示す図である。上述した影響を補正するために、本発明では、図1に示すように、酸化膜を生成させる前の鋼板についても、同一の装置で測定しておき、酸化膜生成後のR(λ2)/R(λ1)を生成前のR(λ2)/R(λ1)で除することにより、gパラメータによる(表面粗さ、波長による)R(λ2)/R(λ1)の変動を補正することができる。図1と同じ配置にて測定を行った結果を図7に示す。このように、鋼板から遠く離れた加熱炉外から測定した図6との比較はもちろんのこと、200mm程度まで近づけて測定した図5と比べても、表面粗さによるばらつきが小さく抑えられていることがわかる。 FIG. 1 is a diagram showing an installation example of an apparatus for measuring an oxide film thickness on a steel sheet surface according to the present invention. In order to correct the influence described above, in the present invention, as shown in FIG. 1, the steel plate before the oxide film is generated is also measured with the same apparatus, and R (λ 2 ) after the oxide film is generated. / R (lambda 1) is divided by the previous generation R (λ 2) / R ( λ 1), according to g parameter (surface roughness, due to wavelength) R a (λ 2) / R (λ 1) Variations can be corrected. FIG. 7 shows the result of measurement performed in the same arrangement as in FIG. Thus, not only the comparison with FIG. 6 measured from the outside of the heating furnace far away from the steel plate, but also the variation due to the surface roughness is suppressed to a small extent compared with FIG. 5 measured close to about 200 mm. I understand that.

また、特許文献3にて述べられているように、鋼種が異なると被膜物性(屈折率等)が異なるために赤外反射スペクトルが異なることもあり、その場合には、膜厚推定に利用する波長として別の波長を選択することが必要になる。例えば、別の波長λ3を利用して2波長反射比R(λ3)/R(λ2)から鋼板上の酸化物の膜厚[d]の推定が可能である。当然、鋼種が異なっても被膜物性に大きな差がなく、赤外反射スペクトルの違いも無視できる場合もあり、その場合には、λ1、λ2の二波長を用いればすむこともある。 In addition, as described in Patent Document 3, if the steel type is different, the film properties (refractive index, etc.) are different, so that the infrared reflection spectrum may be different, and in that case, it is used for film thickness estimation. It is necessary to select another wavelength as the wavelength. For example, the film thickness [d] of the oxide on the steel sheet can be estimated from the two-wavelength reflection ratio R (λ 3 ) / R (λ 2 ) using another wavelength λ 3 . Naturally, even if the steel type is different, there is no great difference in the film properties, and the difference in the infrared reflection spectrum may be negligible. In that case, it is only necessary to use two wavelengths λ 1 and λ 2 .

ここで、前記の2つの波長を含めて、λ3<λ2<λ1である。また、反射率の測定には、前記の3つの波長λ1、λ2、λ3を含む赤外波長域に、十分な放射強度の赤外光を鋼板表面に照射する必要がある。このような方法を直火加熱炉出側での鋼板表面に生成される酸化膜厚の計測に利用するためには以下に説明する対策が必要である。すなわち、直火加熱炉出側の走行鋼板1は、鋼板自体が数百℃以上に加熱されているため、鋼板表面から赤外波長域で熱を放射している。従って、赤外光源から十分な放射強度の赤外光を鋼板表面に照射した場合には、鋼板表面から放射される自発光放射エネルギーと照射された赤外光の鋼板表面からの反射光エネルギーとの合計されたエネルギーを、酸化膜厚計測装置3が検出することになる。 Here, λ 321 including the two wavelengths. For measuring the reflectance, it is necessary to irradiate the surface of the steel sheet with infrared light having sufficient radiation intensity in the infrared wavelength region including the three wavelengths λ 1 , λ 2 , and λ 3 . In order to use such a method for measuring the oxide film thickness generated on the surface of the steel sheet on the outlet side of the direct heating furnace, the measures described below are required. That is, the traveling steel plate 1 on the direct-fired heating furnace exit side emits heat in the infrared wavelength region from the steel plate surface because the steel plate itself is heated to several hundred degrees Celsius or higher. Therefore, when the steel plate surface is irradiated with infrared light having sufficient radiant intensity from the infrared light source, the self-luminous radiant energy emitted from the steel plate surface and the reflected light energy of the irradiated infrared light from the steel plate surface Thus, the oxide film thickness measuring device 3 detects the total energy.

そこで、本発明では、直火加熱炉出側で走行鋼板1の表面に、赤外光を間欠的に照射し、赤外光の照射時には鋼板表面から放射される自発光放射エネルギーと照射した赤外光の鋼板表面からの反射光エネルギーの合計されたエネルギーを、赤外光の照射が遮断される時には鋼板からの自発光放射エネルギーのみを、赤外波長域の複数の異なる波長帯域にてそれぞれ同時に検出するようにした。   Therefore, in the present invention, the surface of the traveling steel sheet 1 is intermittently irradiated with infrared light on the exit side of the direct-fired heating furnace, and the self-luminous radiant energy radiated from the steel sheet surface when irradiated with infrared light and the irradiated red The total energy of the reflected light energy from the surface of the steel sheet of outside light, when the irradiation of infrared light is interrupted, only the self-emitting radiant energy from the steel sheet, respectively, in a plurality of different wavelength bands in the infrared wavelength range. It was made to detect at the same time.

本発明による酸化膜厚計測方法について、以下、式を用いて説明する。
ただし、記号は以下とする。
Ire(λ,T):光源にて対象を照射した場合の波長λでの測定強度(温度;T)、
Ira(λ,T):波長λでの自発光輝度強度(温度;T)、
R(λ):波長λでの反射率、
ε(λ):波長λでの放射率、
0(λ):波長λでの光源照射強度
The oxide film thickness measuring method according to the present invention will be described below using equations.
However, the symbols are as follows.
Ire (λ, T): measured intensity (temperature; T) at a wavelength λ when the object is irradiated with a light source,
Ira (λ, T): self-luminous intensity at temperature λ (temperature; T),
R (λ): reflectance at wavelength λ,
ε (λ): Emissivity at wavelength λ,
I 0 (λ): Light source irradiation intensity at wavelength λ

先ず、以下のプランクの法則から、式(1)〜(4)の関係を得る。
Lb(λ,T)=(2c/λ5){1/(exp(c2/λT)−1)}
ここで、Lb(λ、T)は、黒体の分光放射輝度、c1、c2は物理定数である。
(i)赤外光源から鋼板表面に赤外光を照射した場合の測定
Ire(λ1,T)=ε(λ1)・Lb(λ1,T)+I0(λ1)・R(λ1) ・・・・・(1)
Ire(λ2,T)=ε(λ2)・Lb(λ2,T)+I0(λ2)・R(λ2) ・・・・・(2)
(ii)赤外光源から鋼板表面に照射する赤外光を遮断した場合の測定(自発光輝度測定)
Ira(λ1,T)=ε(λ1)・Lb(λ1,T) ・・・・・(3)
Ira(λ2,T)=ε(λ2)・Lb(λ2,T) ・・・・・(4)
First, the following formulas (1) to (4) are obtained from the following Planck's law.
Lb (λ, T) = (2c 1 / λ 5 ) {1 / (exp (c 2 / λT) −1)}
Here, Lb (λ, T) is the spectral radiance of the black body, and c 1 and c 2 are physical constants.
(i) Measurement when infrared light is irradiated on the steel sheet surface from an infrared light source Ire (λ 1 , T) = ε (λ 1 ) · Lb (λ 1 , T) + I 0 (λ 1 ) · R (λ 1 (1)
Ire (λ 2 , T) = ε (λ 2 ) · Lb (λ 2 , T) + I 0 (λ 2 ) · R (λ 2 ) (2)
(ii) Measurement when infrared light applied to the steel sheet surface from an infrared light source is cut off (Self-luminance measurement)
Ira (λ 1 , T) = ε (λ 1 ) · Lb (λ 1 , T) (3)
Ira (λ 2 , T) = ε (λ 2 ) · Lb (λ 2 , T) (4)

式(1)から(4)を用いることで、式(5)を得る。
R(λ2)/R(λ1)={Ire(λ2,T)−Ira(λ2、T)}/{Ire(λ1,T)−Ira(λ1,T)} ・I0(λ1)/I0(λ2)・・・・・(5)
Formula (5) is obtained by using Formulas (1) to (4).
R (λ 2 ) / R (λ 1 ) = {Ire (λ 2 , T) −Ira (λ 2 , T)} / {Ire (λ 1 , T) −Ira (λ 1 , T)} I 0 ( λ 1 ) / I 0 (λ 2 ) (5)

反射率比と酸化物の膜厚[d]との関係は前述したように、Si含有量の量に応じてある程度の鋼種に分類すると、想定される膜厚範囲においては特定の一価の関数、すなわち反射率比が決まれば膜厚が一意に定まる関数によって表現できる関係が得られるので、ある鋼種に対しての関係式をf1なる関数とすれば、式(6)と表現できる。
d=f1{R(λ2)/R(λ1)} ・・・・・(6)
別の鋼種に対して同様にして関係式を表す関数をf2とすれば、式(7)と表現できる。
d=f2{R(λ3)/R(λ2)} ・・・・・(7)
As described above, the relationship between the reflectance ratio and the oxide film thickness [d] is classified into a certain grade of steel according to the amount of Si content. That is, if the reflectance ratio is determined, a relationship that can be expressed by a function whose film thickness is uniquely determined is obtained. Therefore, if a relational expression for a certain steel type is a function of f 1, it can be expressed as Expression (6).
d = f 1 {R (λ 2 ) / R (λ 1 )} (6)
If the function representing the relationship in the same manner to another steel grade and f 2, can be expressed as Equation (7).
d = f 2 {R (λ 3 ) / R (λ 2 )} (7)

また、(6)、(7)の各式をまとめて一般化すると、以下の1つの式(8)として表現可能である。
d=A×f1{R(λ2)/R(λ1)}+A×f2{R(λ3)/R(λ2)}・・・・・(8)
Further, when the expressions (6) and (7) are generalized, they can be expressed as the following expression (8).
d = A 1 × f 1 {R (λ 2 ) / R (λ 1 )} + A 2 × f 2 {R (λ 3 ) / R (λ 2 )} (8)

高張力鋼板での鋼種としてはSi、Mn等の成分含有量に応じて複数種類存在するが、(8)式での係数;A、Aを適宜設定することにより、反射率比と酸化物の膜厚[d]とを結びつける関係式を導くことが可能である。ここで、関数式f1やf2としては、例えば2次関数などが用いられる。 There are several types of high-strength steel sheets depending on the content of components such as Si and Mn, but by appropriately setting the coefficients in formula (8); A 1 and A 2 , the reflectivity ratio and oxidation It is possible to derive a relational expression that links the film thickness [d] of the object. Here, as the function expressions f 1 and f 2 , for example, a quadratic function is used.

以上に説明した方法は、直火加熱炉の前段ゾーンで生成された鉄系酸化物の一部が後段ゾーンで還元されることで生成される還元Feが少ない場合には、十分な精度で鉄系酸化物の膜厚推定が可能であることが確認されている。しかし、実際に製造される溶融亜鉛めっき鋼板は、直火加熱炉の前段ゾーンで生成された鉄系酸化物の一部が直火加熱炉の後段のゾーンで還元性雰囲気で加熱処理されるため、前段ゾーンで生成された鉄系酸化物の最表面に還元Feが点在している例が多い。   The above-described method can be used with sufficient accuracy when there is little reduced Fe produced by reducing some of the iron-based oxides produced in the former zone of the direct-fired heating furnace in the latter zone. It has been confirmed that the film thickness of the system oxide can be estimated. However, in actual hot-dip galvanized steel sheets, some of the iron-based oxides produced in the front zone of the direct-fired heating furnace are heat-treated in a reducing atmosphere in the zone after the direct-fired heating furnace. In many cases, reduced Fe is scattered on the outermost surface of the iron-based oxide produced in the preceding zone.

従って、これまでに説明した3つの波長を選択して、溶融亜鉛めっき鋼板製造工程の中間工程である直火加熱炉出側に適用して、鋼板表面に生成された鉄系酸化物の膜厚をオンラインで連続的に測定した場合には、大きな誤差が生じることがある。すなわち、前段ゾーンで生成された鉄系酸化物の一部が還元され、表層部に、還元Feが点在しているので、最表層を覆ってしまうことはない。しかし、鉄系酸化物の一部が還元され、表層部に還元Feが点在している状態となった場合には、鋼板表面での反射特性が異なるだけでなく、酸化物層への光の侵入状態も変化するため、表層部に還元Feが点在していない場合に比べて酸化物層での光の吸収特性も異なってくる。   Therefore, the film thickness of the iron-based oxide generated on the steel sheet surface is selected by selecting the three wavelengths described so far and applying it to the direct heating furnace exit side, which is an intermediate process of the hot dip galvanized steel sheet manufacturing process. When measuring on-line continuously, large errors may occur. That is, a part of the iron-based oxide generated in the preceding zone is reduced, and reduced Fe is scattered in the surface layer portion, so that the outermost surface layer is not covered. However, when a part of the iron-based oxide is reduced and reduced Fe is scattered on the surface layer, not only the reflection characteristics on the steel sheet surface are different, but also the light to the oxide layer Therefore, the light absorption characteristics in the oxide layer are different from those in the case where the reduced Fe is not scattered in the surface layer portion.

そこで、鋼板表面に生成された鉄系酸化物層のより最表部での感度が相対的に優れた第4の波長λ4での反射情報の融合を試みた。すなわち、赤外光源から第4の波長λ4の赤外光を照射することによって鋼板表面に生成された鉄系酸化物の表層での反射状態を間接的に測定して補正に活用できるのか、否かを調査した結果、(8)式の関係式に、補正項として第4の波長λ4の反射情報を加えることで、鋼板表面に生成された鉄系酸化物の膜厚をオンラインで連続的に精度良く測定することができることを確認した。得られた補正項として第4の波長λ4の反射比の情報を含む(9)式を下記に示す。 Therefore, an attempt was made to fuse reflection information at the fourth wavelength λ 4 where the sensitivity at the outermost part of the iron-based oxide layer formed on the steel plate surface was relatively excellent. That is, whether the reflection state on the surface of the iron-based oxide generated on the steel sheet surface by irradiating infrared light of the fourth wavelength λ 4 from the infrared light source can be indirectly measured and utilized for correction, As a result of investigating whether or not, by adding the reflection information of the fourth wavelength λ 4 as a correction term to the relational expression (8), the film thickness of the iron-based oxide generated on the surface of the steel plate is continuously online. It was confirmed that the measurement can be performed with high accuracy. Equation (9) including information on the reflection ratio of the fourth wavelength λ 4 as the correction term obtained is shown below.

d=A×f1{R(λ2)/R(λ1)}+A×f2{R(λ3)/R(λ2)}
+A×f3{R(λ4)/R(λ3)} ・・・・・(9)
ここで、前述の3波長を含めてλ4<λ3<λ2<λ1である。
d = A 1 × f 1 {R (λ 2 ) / R (λ 1 )} + A 2 × f 2 {R (λ 3 ) / R (λ 2 )}
+ A 3 × f 3 {R (λ 4 ) / R (λ 3 )} (9)
Here, λ 4321 including the aforementioned three wavelengths.

以上説明したように、4つの波長を組み合わせて測定される反射率比と、予め得られている関係式とを組み合わせることで、最表面に還元Feが点在している状態となった場合でも鋼板表面に生成された鉄系酸化物の膜厚dを精度良く測定できる。また、表層部に還元Feが点在していない場合については、λ4なしに、λ1、λ2もしくは、それにλ3を加えた情報のみで膜厚が精度よく測定できる場合もある。 As described above, by combining a reflectance ratio measured by combining four wavelengths and a relational expression obtained in advance, even when reduced Fe is scattered on the outermost surface, It is possible to accurately measure the film thickness d of the iron-based oxide generated on the steel plate surface. Further, the case where the reduction in the surface layer portion Fe is not scattered, without λ 4, λ 1, λ 2 or, it is a film thickness only information plus lambda 3 in some cases can be measured accurately.

また、放射率と鋼板表面に生成された鉄系酸化物の膜厚とは鋼種毎にほぼ一定の関係があるので、f4をその関係を表す関数にすることにより、例えばλ4の放射率ε(λ4)は以下の(10)式から求めることが可能になる。
ε(λ4)=f4(d)・・・・・(10)
このように、放射率が同定され、式(3)などと同様で実測されるIra(λ4,T)と同定されたε(λ4)とから温度Tが求められる。
Further, since the emissivity and the film thickness of the iron-based oxide generated on the steel sheet surface have a substantially constant relationship for each steel type, for example, by making f 4 a function representing the relationship, emissivity of λ 4 , for example ε (λ 4 ) can be obtained from the following equation (10).
ε (λ 4 ) = f 4 (d) (10)
In this way, the emissivity is identified, and the temperature T is obtained from Ira (λ 4 , T) measured in the same manner as in the equation (3) and the identified ε (λ 4 ).

従って、従来の直火加熱条件の管理・制御に代わり、本発明を用いることにより、直火加熱炉出側で走行鋼板1の鋼板表面に生成された鉄系酸化物の膜厚を精度良く測定することができる。また、本発明によれば、鋼板表面に生成された鉄系酸化物の膜厚の情報に基づき、鋼板の放射率を推定することも可能になるため、直火加熱炉出側で走行鋼板1の温度の測定も可能となり、直火加熱炉の燃焼制御をより厳密に行うことができる。   Therefore, by using the present invention instead of the conventional direct fire heating condition management and control, the film thickness of the iron-based oxide generated on the steel plate surface of the traveling steel plate 1 on the direct fire heating furnace exit side is accurately measured. can do. In addition, according to the present invention, it becomes possible to estimate the emissivity of the steel sheet based on the information on the film thickness of the iron-based oxide generated on the steel sheet surface. Temperature can be measured, and the combustion control of the direct-fired heating furnace can be performed more strictly.

その場合、図3、4に示すように、窓部を有する回転チョッパー42を用い、走行鋼板の表面に赤外光を間欠的に照射し、また、複数のハーフミラー22〜24により光路を分岐させ、4つの波長域で同時にエネルギーを検出する光検出装置とするのが好ましい。   In that case, as shown in FIGS. 3 and 4, a rotating chopper 42 having a window is used, the surface of the traveling steel plate is intermittently irradiated with infrared light, and the optical path is branched by a plurality of half mirrors 22 to 24. It is preferable to use a photodetection device that simultaneously detects energy in four wavelength ranges.

この理由は、走行鋼板1の表面での酸化膜の膜厚の長手方向変動が急激である場合でも、短い時間間隔で、走行鋼板の表面に赤外光を間欠的に照射することができ、また4つの波長域で同時にエネルギーを検出することができるから、赤外光の間欠照射によって検出される異なる8つの検出値を用い、演算により膜厚を迅速に求めることができる。従って、応答性に優れる鋼板表面の酸化膜厚計測装置とすることができる。   The reason for this is that even when the longitudinal variation of the thickness of the oxide film on the surface of the traveling steel plate 1 is abrupt, it is possible to intermittently irradiate the surface of the traveling steel plate with infrared light at short time intervals, Moreover, since energy can be detected simultaneously in four wavelength regions, the film thickness can be quickly obtained by calculation using eight different detection values detected by intermittent irradiation of infrared light. Therefore, it can be set as the oxide film thickness measurement apparatus of the steel plate surface excellent in responsiveness.

ただし、走行鋼板1の表面での酸化膜の膜厚の長手方向変動が緩やかである場合には、以下のような単一の光路での測定方法とすることもできる。例えば、FTIR分光器を用いて遠隔でスペクトルを連続測定して必要な波長情報を取り出す方法、連続式分光フィルターを回転させスペクトルを順次測定する方法、検出波長帯の透過型干渉フィルターを複数個装着した回転板を回転させて各検出波長帯での測定を順次行う方式などが挙げられる。   However, when the longitudinal fluctuation of the thickness of the oxide film on the surface of the traveling steel plate 1 is moderate, the following measurement method using a single optical path can be used. For example, using a FTIR spectrometer to remotely measure the spectrum to extract the necessary wavelength information, rotating the continuous spectral filter to measure the spectrum sequentially, and mounting multiple transmission interference filters for the detection wavelength band For example, a method of sequentially performing measurement in each detection wavelength band by rotating the rotating plate.

直火加熱炉2を備えた連続溶融亜鉛めっき鋼板の製造ラインに設置して好適な鋼板表面の酸化膜厚計測装置の構成を図3により説明する。図3中、21は、分光素子25〜28及び光検出素子29〜32を含む光検出装置である反射・放射光強度検出装置3の集光レンズ系を示す。この直火加熱炉2の出側に設置して好適な実施例の光検出装置には、第一の波長として12μmを、第二の波長として7μmを、第三の波長として3.5μmを、第四の波長として2.5μmを使用し、分光素子25〜28及び光検出素子29〜32により、それぞれの波長に対する反射光強度及び放射輝度を同時に測定する。   The configuration of a suitable apparatus for measuring the oxide film thickness on the surface of a steel sheet installed in a production line for a continuous hot-dip galvanized steel sheet equipped with a direct-fired heating furnace 2 will be described with reference to FIG. In FIG. 3, reference numeral 21 denotes a condensing lens system of the reflected / radiated light intensity detecting device 3 which is a light detecting device including the spectroscopic elements 25 to 28 and the light detecting elements 29 to 32. The photodetector of the preferred embodiment installed on the exit side of the direct-fired heating furnace 2 has a first wavelength of 12 μm, a second wavelength of 7 μm, a third wavelength of 3.5 μm, Using 2.5 μm as the fourth wavelength, the reflected light intensity and radiance for each wavelength are simultaneously measured by the spectroscopic elements 25 to 28 and the light detecting elements 29 to 32.

集光レンズ系21を透過した光は、第一のハーフミラー22により、2つの経路に分けられ、第二のハーフミラー23に一部の光が導かれ、残りの光が第三のハーフミラー24に導かれる。前記第二のハーフミラー23で光は、さらに2つの経路に分岐され、第二のハーフミラー23を透過した光が、干渉フィルター等の分光素子25を透過して12μm用検出素子である光検出素子29により反射光強度及び放射輝度測定される。   The light that has passed through the condenser lens system 21 is divided into two paths by the first half mirror 22, a part of the light is guided to the second half mirror 23, and the remaining light is sent to the third half mirror. Led to 24. The light is further branched into two paths by the second half mirror 23, and the light transmitted through the second half mirror 23 is transmitted through the spectroscopic element 25 such as an interference filter and is a 12 μm detection element. The reflected light intensity and radiance are measured by the element 29.

第二のハーフミラー23で反射された光は、分光素子26を透過して7μm用検出素子である光検出素子30により反射光強度及び放射輝度測定される。第一のハーフミラー22を透過した光は、第三のハーフミラー24で2つの経路に分岐され、第三のハーフミラー24で反射した光が分光素子27を経て3.5μm用検出素子である光検出素子31により反射光強度及び放射輝度測定される。第三のハーフミラー24を透過した光が分光素子28を経て2.5μm用検出素子である光検出素子32により反射光強度及び放射輝度測定される。以上の4組の分光素子25〜28及び光検出素子29〜32により、それぞれの波長に対する反射光強度及び放射輝度が同時に測定され、測定された光強度信号は増幅処理装置33に送られる。   The light reflected by the second half mirror 23 passes through the spectroscopic element 26, and the reflected light intensity and radiance are measured by the light detection element 30 which is a 7 μm detection element. The light transmitted through the first half mirror 22 is branched into two paths by the third half mirror 24, and the light reflected by the third half mirror 24 passes through the spectroscopic element 27 and is a detection element for 3.5 μm. The detection element 31 measures reflected light intensity and radiance. The light transmitted through the third half mirror 24 passes through the spectroscopic element 28, and the reflected light intensity and radiance are measured by the light detection element 32 which is a detection element for 2.5 μm. The four sets of spectroscopic elements 25 to 28 and the light detection elements 29 to 32 measure the reflected light intensity and radiance for each wavelength at the same time, and the measured light intensity signals are sent to the amplification processing device 33.

ここではλ1〜λ4の4波長を用いる実施例を示したが、前述のようにλ1〜λ3の3波長、あるいはλ1とλ2の2波長で足りる場合もある。また、本実施例では、集光レンズ系を透過した光をハーフミラーで分割して検出する光学系を用いたが、ハーフミラーで分割した後に各波長毎に集光レンズ系を有する複数の検出装置で検出することも考えられる。 It mentioned example here using four wavelengths of lambda 1 to [lambda] 4, in some cases suffice lambda 3 wavelengths of 1 to [lambda] 3 or lambda 1 and lambda 2 of 2 wavelengths, as described above. In this embodiment, an optical system is used that detects the light transmitted through the condensing lens system by dividing it with a half mirror. However, after the light is divided by the half mirror, a plurality of detections having a condensing lens system for each wavelength are used. It is also conceivable to detect with an apparatus.

その後、増幅された信号は演算処理装置34へ送られるが、演算処理装置34へは、酸化膜生成前の信号も既に入力されており、鋼板の位置をトラッキングして対応するデータの比を取ることにより、表面粗さの影響を補正する。さらに、予め記憶されている測定対象の鋼種毎に前述した関係式f1、f2、f3や各係数A、A、A、さらにf4の関係式の情報を用いて所定の演算処理が実施されて、走行鋼板1の表面に生成された酸化膜の膜厚や走行鋼板1の温度の値が求められ、その結果が出力装置35に出力される。その際、走行鋼板1の表面には、赤外光源41から赤外光が間欠的に照射される。 Thereafter, the amplified signal is sent to the arithmetic processing unit 34. The signal before the oxide film generation is already input to the arithmetic processing unit 34, and the position of the steel sheet is tracked to obtain the ratio of the corresponding data. Thus, the influence of the surface roughness is corrected. Furthermore, the relational expressions f 1 , f 2 , f 3 , the coefficients A 1 , A 2 , A 3 , and the relational information of f 4 described above are stored for each steel type to be measured in advance. The arithmetic processing is performed, the thickness of the oxide film generated on the surface of the traveling steel plate 1 and the temperature value of the traveling steel plate 1 are obtained, and the results are output to the output device 35. At that time, the surface of the traveling steel plate 1 is intermittently irradiated with infrared light from the infrared light source 41.

図4を用いて説明する。赤外光源41からの赤外光は、回転チョッパー42の窓を経てハーフミラー43にて分けられ、走行鋼板1の表面に一部の赤外光が垂直に照射される。回転チョッパーには窓が形成されており、窓のない部分が回転して来て、赤外光源41からの赤外光が遮断された場合には、鋼板表面に光が照射されない。回転チョッパー42には、窓が一定の角度ごとに複数個開けられていてもかまわない。一定の角度ごとに、窓の有り、無し部を形成すれば、一定の時間毎に間欠的に赤外光が鋼板表面に照射される。回転タイミング装置45で、回転チョッパー42の窓部の通過を検出するようにすれば、照射のタイミングが検出される。   This will be described with reference to FIG. Infrared light from the infrared light source 41 is divided by the half mirror 43 through the window of the rotating chopper 42, and a part of the infrared light is vertically irradiated on the surface of the traveling steel plate 1. A window is formed in the rotating chopper, and when the portion without the window rotates and the infrared light from the infrared light source 41 is blocked, the surface of the steel plate is not irradiated with light. In the rotating chopper 42, a plurality of windows may be opened at a certain angle. If a window is formed at a certain angle and a window is formed, infrared light is intermittently applied to the surface of the steel sheet every certain time. If the rotation timing device 45 detects the passage of the rotation chopper 42 through the window, the irradiation timing is detected.

鋼板表面で反射した赤外光は垂直に戻り、ハーフミラー43を再度透過して、分光素子25〜28及び光検出素子29〜32により、それぞれの波長に対する反射光強度及び放射輝度が同時に測定される。なお、回転タイミング検出装置45による検出信号は、図3に示した増幅処理装置33に送られて、4つの検出素子での測定タイミング制御に活用される。以上の説明では垂直照射の例を示したが、ある角度を持たせて赤外光の照射と、鋼板表面で反射した赤外光の受光を行うようにしてもよい。   Infrared light reflected on the surface of the steel sheet returns vertically, passes through the half mirror 43 again, and the reflected light intensity and radiance for each wavelength are simultaneously measured by the spectroscopic elements 25 to 28 and the light detecting elements 29 to 32. The The detection signal from the rotation timing detection device 45 is sent to the amplification processing device 33 shown in FIG. 3 and used for measurement timing control with four detection elements. In the above description, an example of vertical irradiation is shown. However, infrared light irradiation and infrared light reflected on the surface of the steel sheet may be received with a certain angle.

また、酸化膜の膜厚を算出する関係式としては、2つの波長での反射率比の関数を3つ求めて、それらに一定の係数を乗算した重み付けをしているが、3組の反射率比の値から多重回帰式を算出した1つの関数式で代用することも可能である。   As a relational expression for calculating the thickness of the oxide film, three functions of the reflectance ratio at two wavelengths are obtained and weighted by multiplying them by a certain coefficient. It is also possible to substitute one function formula that calculates a multiple regression formula from the value of the rate ratio.

1 走行鋼板
2 直火加熱炉
3 反射・放射光強度検出装置
4 酸化膜厚計測装置
5 ロール
6 測定窓部
7 熱電対
8 演算装置
9 記憶装置
10 出力装置
11 プロセス管理用生後装置
21 集光レンズ系
22〜24 ハーフミラー
25〜28 分光素子
29〜32 光検出素子
33 増幅処理装置
34 演算処理装置
35 出力装置
41 赤外光源
42 回転チョッパー
43 ハーフミラー
45 回転タイミング検出装置
61 Nパージ吹込部
62 赤外透過窓ガラス
63 断熱材
DESCRIPTION OF SYMBOLS 1 Traveling steel plate 2 Direct-fired heating furnace 3 Reflection and synchrotron radiation intensity detection apparatus 4 Oxide film thickness measurement apparatus 5 Roll 6 Measurement window part 7 Thermocouple 8 Arithmetic apparatus 9 Storage apparatus 10 Output apparatus 11 Postnatal apparatus for process management 21 Condensing lens System 22-24 Half mirror 25-28 Spectroscopic element 29-32 Photodetection element 33 Amplification processing device 34 Arithmetic processing device 35 Output device 41 Infrared light source 42 Rotation chopper 43 Half mirror 45 Rotation timing detection device 61 N 2 purge blowing part 62 Infrared transmitting window glass 63 Insulation

Claims (2)

加熱炉を備えた連続焼鈍工程で、鋼板の表面に生成される酸化物の膜厚を測定する鋼板表面の酸化膜厚計測方法であって、
鋼板の表面に赤外光を間欠的に照射し、前記赤外光の照射時には鋼板表面から放射される自発光放射エネルギーと照射した赤外光の鋼板表面からの反射光エネルギーの合計されたエネルギーを、前記赤外光の照射が遮断される時には鋼板からの自発光放射エネルギーのみを、2つの異なる赤外波長帯域にてそれぞれ検出し、
前記赤外光の間欠照射によって検出される検出値のうち赤外光の照射時の検出値から遮断される時の検出値を減じることにより反射光エネルギーを算出し、算出された反射光エネルギーについて2つの異なる赤外波長帯域間の比を前記加熱炉の入側及び出側でそれぞれ演算し、それらの比を演算することにより膜厚を求めることを特徴とする鋼板表面の酸化膜厚計測方法。
In the continuous annealing step equipped with a heating furnace, a method for measuring the thickness of an oxide film on the surface of a steel sheet, measuring the thickness of the oxide generated on the surface of the steel sheet,
Energy obtained by intermittently irradiating the surface of the steel plate with infrared light, and the sum of the self-luminous radiant energy radiated from the surface of the steel plate and the reflected light energy of the irradiated infrared light from the surface of the steel plate when irradiated with the infrared light. Detecting only the self-luminous radiant energy from the steel sheet in two different infrared wavelength bands when the irradiation of infrared light is interrupted,
The reflected light energy is calculated by subtracting the detected value when shut off from the detected value at the time of infrared light irradiation among the detected values detected by the intermittent irradiation of infrared light, and the calculated reflected light energy A method for measuring an oxide film thickness on a surface of a steel sheet, wherein a ratio between two different infrared wavelength bands is calculated on an inlet side and an outlet side of the heating furnace, and a film thickness is obtained by calculating a ratio between them. .
加熱炉を備えた連続焼鈍ラインに設置する鋼板表面の酸化膜厚計測装置であって、
鋼板の表面に向けて赤外光を照射するための赤外光源と、
該赤外光源からの赤外光を間欠的に照射するための光遮断装置と、
前記赤外光が鋼板表面に照射される赤外光の照射時には鋼板表面から放射される自発光放射エネルギーと照射された赤外光の鋼板表面からの反射光エネルギーとの合計されたエネルギーを、前記赤外光の照射が遮断される時には鋼板表面から放射される自発光放射エネルギーのみを、2つの異なる赤外波長帯域にてそれぞれ検出する光検出装置と、
前記2つの異なる赤外波長帯域それぞれについて、赤外光の照射時の検出値から赤外光の照射が遮断される時の検出値を減じて反射エネルギーを算出し、更に、前記2つの異なる波長帯域間の比を演算する演算処理装置と、を具備し、
前記加熱炉の入側及び出側の両方に設置され、前記入側及び出側の演算装置からの出力の比から膜厚を求めることを特徴とする鋼板表面の酸化膜厚計測装置。
An apparatus for measuring the oxide film thickness on the surface of a steel plate installed in a continuous annealing line equipped with a heating furnace,
An infrared light source for irradiating the surface of the steel plate with infrared light;
A light blocking device for intermittently irradiating infrared light from the infrared light source;
When the infrared light is irradiated on the steel sheet surface when the infrared light is irradiated, the total energy of the self-luminous radiant energy emitted from the steel sheet surface and the reflected light energy from the steel sheet surface of the irradiated infrared light, A photodetection device that detects only self-luminous radiant energy emitted from the steel sheet surface in two different infrared wavelength bands when the infrared light irradiation is interrupted;
For each of the two different infrared wavelength bands, the reflected energy is calculated by subtracting the detected value when the infrared light is blocked from the detected value when the infrared light is irradiated, and further, the two different wavelengths are calculated. An arithmetic processing unit that calculates a ratio between the bands,
An apparatus for measuring an oxide film thickness on the surface of a steel sheet, which is installed on both the entry side and the exit side of the heating furnace and obtains the film thickness from a ratio of outputs from the entry side and exit side arithmetic units.
JP2010067751A 2010-03-24 2010-03-24 Method and device for measurement of oxide film thickness on surface of steel plate Withdrawn JP2011202968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010067751A JP2011202968A (en) 2010-03-24 2010-03-24 Method and device for measurement of oxide film thickness on surface of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067751A JP2011202968A (en) 2010-03-24 2010-03-24 Method and device for measurement of oxide film thickness on surface of steel plate

Publications (1)

Publication Number Publication Date
JP2011202968A true JP2011202968A (en) 2011-10-13

Family

ID=44879795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067751A Withdrawn JP2011202968A (en) 2010-03-24 2010-03-24 Method and device for measurement of oxide film thickness on surface of steel plate

Country Status (1)

Country Link
JP (1) JP2011202968A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095600A1 (en) * 2018-11-09 2020-05-14 株式会社神戸製鋼所 Oxide film thickness measurement device and method
WO2020095599A1 (en) * 2018-11-09 2020-05-14 株式会社神戸製鋼所 Device and method for measuring oxide film thickness
CN111833345A (en) * 2020-07-29 2020-10-27 广东电网有限责任公司 Method for monitoring thickness of metal surface oxidation layer based on optical image

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805531B (en) * 2018-11-09 2022-04-19 株式会社神户制钢所 Oxide film thickness measuring device and method
KR102486069B1 (en) 2018-11-09 2023-01-06 가부시키가이샤 고베 세이코쇼 Oxide film thickness measurement device and method
KR20210056409A (en) * 2018-11-09 2021-05-18 가부시키가이샤 고베 세이코쇼 Oxide film thickness measuring apparatus and method thereof
JP2020076698A (en) * 2018-11-09 2020-05-21 株式会社神戸製鋼所 Oxide film thickness measuring device and method therefor
EP3848667A4 (en) * 2018-11-09 2021-10-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Device and method for measuring oxide film thickness
KR20210052546A (en) * 2018-11-09 2021-05-10 가부시키가이샤 고베 세이코쇼 Oxide film thickness measuring apparatus and method thereof
CN112805531A (en) * 2018-11-09 2021-05-14 株式会社神户制钢所 Oxide film thickness measuring device and method
EP3848668A4 (en) * 2018-11-09 2021-10-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Oxide film thickness measurement device and method
JP2020076697A (en) * 2018-11-09 2020-05-21 株式会社神戸製鋼所 Oxide film thickness measuring device and method therefor
US11761752B2 (en) * 2018-11-09 2023-09-19 Kobe Steel, Ltd. Device and method for measuring oxide film thickness
CN112823270A (en) * 2018-11-09 2021-05-18 株式会社神户制钢所 Oxide film thickness measuring device and method
US20210356254A1 (en) * 2018-11-09 2021-11-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Device and method for measuring oxide film thickness
WO2020095600A1 (en) * 2018-11-09 2020-05-14 株式会社神戸製鋼所 Oxide film thickness measurement device and method
WO2020095599A1 (en) * 2018-11-09 2020-05-14 株式会社神戸製鋼所 Device and method for measuring oxide film thickness
KR102495420B1 (en) 2018-11-09 2023-02-06 가부시키가이샤 고베 세이코쇼 Oxide film thickness measurement device and method
CN111833345A (en) * 2020-07-29 2020-10-27 广东电网有限责任公司 Method for monitoring thickness of metal surface oxidation layer based on optical image
CN111833345B (en) * 2020-07-29 2024-03-26 广东电网有限责任公司 Optical image-based metal surface oxide layer thickness monitoring method

Similar Documents

Publication Publication Date Title
US4881823A (en) Radiation thermometry
US8388219B2 (en) Method for calibrating a pyrometer, method for determining the temperature of a semiconducting wafer and system for determining the temperature of a semiconducting wafer
JP2007010464A (en) Method and apparatus for measuring thickness of oxide film on surface of sheet steel
EP2299250B1 (en) Pyrometer adapted for detecting UV-radiation and use thereof
JP2011202968A (en) Method and device for measurement of oxide film thickness on surface of steel plate
EP3729026B1 (en) Measurement system for metal strip production line
JP2007292498A (en) Oxide film thickness measuring method, and instrument therefor
CN115979425A (en) Multi-wavelength mobile narrowband window optimization spectrum temperature measurement method
US20230375412A1 (en) Method for estimating the temperature and the oxide thickness of a steel strip
EP4212837A1 (en) Surface temperature measurement method, surface temperature measurement device, method for manufacturing hot-dip galvanized steel sheet, and facility for manufacturing hot-dip galvanized steel sheet
JP2021113765A (en) Method for estimating average film thickness of oxide film
JP5151048B2 (en) Indication value abnormality detection method and detection apparatus for radiation thermometer
ES2713268T3 (en) Procedure for the simultaneous measurement of the thickness and temperature of an oxide layer
JP2022512428A (en) How to measure the crystallinity of a polymer coating on a metal substrate
JPH08219891A (en) Surface condition measuring method for steel sheet and steel sheet temperature measuring method
JPH07174634A (en) Method for measuring temperature of object in furnace
KR102495420B1 (en) Oxide film thickness measurement device and method
JP2007107939A (en) Method and device of measuring temperature of steel plate
KR102486069B1 (en) Oxide film thickness measurement device and method
JP2002303551A (en) Method and device for measuring temperature of in- furnace metallic material
JPH0440329A (en) Oxide film measuring instrument for heat treating furnace for steel belt
JP2024022281A (en) Temperature measurement device and temperature measurement method
Hayk High quality, high accuracy
De Witt Advances and Challenges in Radiation Thermometry
KR100398415B1 (en) Method and apparatus for measuring temperature of heating body

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604