JP2009174958A - Temperature-measuring device of steel plate - Google Patents

Temperature-measuring device of steel plate Download PDF

Info

Publication number
JP2009174958A
JP2009174958A JP2008012894A JP2008012894A JP2009174958A JP 2009174958 A JP2009174958 A JP 2009174958A JP 2008012894 A JP2008012894 A JP 2008012894A JP 2008012894 A JP2008012894 A JP 2008012894A JP 2009174958 A JP2009174958 A JP 2009174958A
Authority
JP
Japan
Prior art keywords
temperature
steel plate
measured
plate
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008012894A
Other languages
Japanese (ja)
Inventor
Keiichi Yamashita
圭一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008012894A priority Critical patent/JP2009174958A/en
Publication of JP2009174958A publication Critical patent/JP2009174958A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature-measuring device of a steel plate capable of measuring the temperature of the steel plate rapidly and with accuracy, without being affected by variations and changes with the passage of time, in each emissivity of a steel plate to be measured and a reflecting plate. <P>SOLUTION: The temperature-measuring device of a steel plate includes: a channel 8 constituted of the reflecting plate 2, partition walls 4a, 4b, and a backplane 5; an electric heater 20 provided in the channel 8; a cooling gas 50 flowing in the channel 8; a power supply 25 for electric heaters for allowing current to flow to the electric heater 20; a solenoid valve 55 and a regulator 56 for supplying the cooling gas 50; a control means 30 for sending a command to them; and a steel plate temperature arithmetic circuit 60 for calculating an approximate value T<SB>1</SB>', which is regarded as steel plate temperature, based on radiosity temperature Tg, obtained by a radiation thermometer 3 from radiosity reflected between the reflecting plate 2 and the steel plate and reflecting plate temperature T<SB>2</SB>which is measured by a thermocouple 40. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば連続焼鈍設備や合金化溶融亜鉛メッキ設備に使用され、非接触にて鋼板の温度が測定できる鋼板の温度測定装置に関する。   The present invention relates to a steel plate temperature measuring apparatus that can be used in, for example, continuous annealing equipment and alloyed hot dip galvanizing equipment and can measure the temperature of the steel sheet in a non-contact manner.

鋼板を連続熱処理する連続焼鈍設備や溶融メッキの後に合金化処理する合金化溶融亜鉛メッキ設備においては、多品種の鋼板は連続処理される。このため、品種ごとに異なる鋼板の機械的特性(強度や伸びなど)やメッキ特性(合金化度など)を安定化させるためには、加熱・冷却を伴う熱処理プロセス後の鋼板温度を目標温度に精度良く制御することが重要である。   In continuous annealing equipment for continuously heat-treating steel sheets and galvannealed equipment for galvanizing after hot-dip plating, various types of steel sheets are continuously processed. For this reason, in order to stabilize the mechanical properties (strength, elongation, etc.) and plating properties (degree of alloying, etc.) of steel plates that differ for each product type, the steel plate temperature after the heat treatment process with heating / cooling is set to the target temperature. It is important to control accurately.

これらの設備において連続的に搬送される鋼板の温度測定は、非接触による放射温度計を用いた測定が一般的である。放射温度計を用いる場合、被測定対象物である鋼板の放射率の設定が必要である。ところが、鋼板の放射率は鋼種、表面性状など鋼板自体の物理的性状の他、鋼板温度など種々の要因によって変動するため、実用上、このような変動に対応させて鋼板の放射率を設定することは非常に困難である。その結果、鋼板温度の測定に誤差が生じやすく、鋼板温度を目標温度に精度良く制御できない問題があった。   In general, the temperature of a steel sheet continuously conveyed in these facilities is measured using a non-contact radiation thermometer. When using a radiation thermometer, it is necessary to set the emissivity of the steel sheet that is the object to be measured. However, the emissivity of the steel sheet varies depending on various factors such as the steel sheet temperature, the physical properties of the steel sheet itself, such as the steel type and the surface properties, and in practice, the emissivity of the steel sheet is set corresponding to such fluctuations. It is very difficult. As a result, there is a problem that an error is likely to occur in the measurement of the steel plate temperature, and the steel plate temperature cannot be accurately controlled to the target temperature.

上記のような鋼板の放射率の変動の影響を極力排除し、鋼板温度の測定を高精度に行なうことを目的とする鋼板の温度測定装置として、次のようなものが提案されている。「反射板と鋼板との間で多重反射を行なわせると見かけ上放射率が高くなるという知見」と反射板の裏面に加熱手段を設置して反射板の温度を制御することで反射板の放射率の経時変化にも影響されないようにするという意図」のもとに構成された鋼板の温度測定装置が提案されている(例えば、特許文献1を参照)。   The following is proposed as a steel plate temperature measuring device for eliminating the influence of the emissivity fluctuation of the steel plate as much as possible and measuring the steel plate temperature with high accuracy. "Knowing that multiple reflections between a reflector and a steel plate increase the apparent emissivity" and the radiation of the reflector by controlling the temperature of the reflector by installing heating means on the back of the reflector An apparatus for measuring a temperature of a steel sheet has been proposed that is configured under the “intent to be unaffected by changes in the rate over time” (see, for example, Patent Document 1).

また、万一炉内で鋼板の破断等が発生し、比較板が破損しても炉壁レンガの破損等が起きないようにすることを目的とする鋼板の温度測定装置として、次のようなものが提案されている。「鋼板と近接して設置された、気体によって冷却可能な比較板と、この比較板に設けた表面温度を測定するための温度検出器と、鋼板からの放射と、比較板からの放射とを測定する放射温度計とを備え、放射温度計の測定値から鋼板の温度を求めるように構成された鋼板の温度測定装置が提案されている(例えば、特許文献2を参照)。   In addition, as a temperature measuring device for a steel plate intended to prevent breakage of a furnace wall brick, etc. even if the steel plate breaks in the furnace and the comparative plate breaks, Things have been proposed. “A comparison plate installed close to the steel plate that can be cooled by gas, a temperature detector for measuring the surface temperature provided on this comparison plate, radiation from the steel plate, and radiation from the comparison plate There has been proposed a temperature measuring device for a steel plate that includes a radiation thermometer for measurement and is configured to obtain the temperature of the steel plate from the measurement value of the radiation thermometer (see, for example, Patent Document 2).

しかし、特許文献1に記載された鋼板の温度測定装置では、原理的に精度の良い温度測定を可能にするためには、多重反射回数が無限大(または、無限大とみなせるよう)にしなければならない。また、このように構成した場合は、鋼板の温度、放射温度計で測定された多重反射温度と反射板の温度との間に四次式が成立する。しかし、この四次式を解いて鋼板の温度を求める場合は、演算に長時間を要してしまう。そこで、一次近似式を用いて演算を行なう。ところが、放射温度計で測定された多重反射温度と反射板の温度との間にずれがあると、鋼板の温度を精度良く求める上では、一次近似式内の微小項も無視できなくなる。しかし、この温度測定装置では、反射板に加熱手段しか備えていないため、放射温度計で測定された多重反射温度と反射板の温度とを迅速に一致させることができない。したがって、鋼板の温度を迅速かつ精度良く求めることはできない。特に、反射板を加熱手段で加熱し過ぎた場合には、冷却手段を備えていないため、目標とする反射板の温度と放射温度計で測定された多重反射温度を一致させるのに極めて長時間を要してしまうという問題がある。   However, in the steel plate temperature measuring device described in Patent Document 1, in order to enable temperature measurement with high accuracy in principle, the number of multiple reflections must be infinite (or considered to be infinite). Don't be. Moreover, when comprised in this way, a quaternary type | formula is materialized between the temperature of a steel plate, the multiple reflection temperature measured with the radiation thermometer, and the temperature of a reflecting plate. However, it takes a long time to calculate the temperature of the steel sheet by solving this quaternary equation. Therefore, calculation is performed using a first-order approximation formula. However, if there is a difference between the multiple reflection temperature measured by the radiation thermometer and the temperature of the reflecting plate, a minute term in the linear approximation formula cannot be ignored in obtaining the temperature of the steel plate with high accuracy. However, in this temperature measuring device, since only the heating means is provided on the reflection plate, the multiple reflection temperature measured by the radiation thermometer cannot be quickly matched with the temperature of the reflection plate. Therefore, the temperature of the steel sheet cannot be obtained quickly and accurately. In particular, when the reflector is heated too much by the heating means, since the cooling means is not provided, it takes a very long time to match the target reflector temperature and the multiple reflection temperature measured by the radiation thermometer. There is a problem that it requires.

また、特許文献2に記載された鋼板の温度測定装置では、比較板に冷却手段を備えているものの加熱手段を備えていないため、目標とする反射板の温度に迅速に制御できないばかりか、そもそもこの装置では、原理的に鋼板、反射板の各放射率の変動および経時変化の影響に配慮されていない。したがって、鋼板の温度を迅速かつ精度良く測定できないという問題がある。
特開平5−203497号公報 特開昭52−44681号公報
In addition, the steel plate temperature measuring device described in Patent Document 2 has a cooling means on the comparison plate but no heating means, so that it cannot be quickly controlled to the target reflector temperature, but in the first place. In principle, this apparatus does not take into account the effects of fluctuations in emissivity and changes with time of the steel plate and reflector. Therefore, there is a problem that the temperature of the steel sheet cannot be measured quickly and accurately.
JP-A-5-203497 JP 52-44681 A

本発明の目的は、被測定鋼板、反射板の各放射率の変動および経時変化の影響を受けることなく、鋼板温度を迅速かつ精度良く測定できる鋼板の温度測定装置を提供することを目的とする。   An object of the present invention is to provide a steel plate temperature measuring apparatus capable of measuring a steel plate temperature quickly and accurately without being affected by variations in emissivity and changes with time of the steel plate to be measured and the reflector. .

この目的を達成するために、本発明の請求項1に記載の発明は、被測定鋼板に対向して設置され、かつ、流路が設けられた反射板と、前記流路に設けられたヒータまたは前記流路に高温媒体を流すための高温媒体供給手段と、前記流路に低温媒体を流すための低温媒体供給手段と、前記ヒータまたは高温媒体供給手段と低温媒体供給手段とを制御するための制御手段と、前記反射板の温度(以下、「反射板温度」という。)Tを直接測定する温度検出器と、前記被測定鋼板と前記反射板のそれぞれから放射される放射エネルギーが前記反射板と前記被測定鋼板との間で所定の回数反射される角度となるように前記被測定鋼板に向けて設置され、この角度で前記被測定鋼板から放出されるエネルギーが測定され、この測定されたエネルギーと等価なエネルギーを放射する黒体の温度に相当する等価温度Tに換算され出力するための放射温度計と、下記式(1)より前記被測定鋼板の温度(以下、「鋼板温度」という。)の近似値T’を算出する鋼板温度演算回路と、を備え、
前記流路は前記反射板の前記被測定鋼板側とは反対側の面(以下、「裏面」という)に設けられ、前記反射板温度Tが前記近似値T’に一致するように前記制御手段により、前記ヒータまたは高温媒体供給手段と、前記低温媒体供給手段とが制御され、前記近似値T’が前記鋼板温度とみなされるように構成されたことを特徴とする鋼板の温度測定装置である。
’=T+K(T−T) ――― 式(1)
ここに、Kは、別途の測定または文献値から求めた前記反射板および前記被測定鋼板の各放射率の推定値に基づく補正係数である。
In order to achieve this object, the invention according to claim 1 of the present invention includes a reflector provided opposite to a steel plate to be measured and provided with a flow path, and a heater provided in the flow path. Or a high temperature medium supply means for flowing a high temperature medium through the flow path, a low temperature medium supply means for flowing a low temperature medium through the flow path, and the heater or the high temperature medium supply means and the low temperature medium supply means. and control means, the temperature of the reflection plate (hereinafter, referred to as "reflective plate temperature".) and a temperature detector for measuring T 2 directly, the radiant energy emitted from each of said reflecting plate to be measured steel sheet wherein It is installed toward the steel plate to be measured so that the angle is reflected a predetermined number of times between the reflector and the steel plate to be measured, and the energy released from the steel plate to be measured is measured at this angle, and this measurement is performed. Energy and A radiation thermometer for converting to an equivalent temperature Tr corresponding to the temperature of a black body that radiates equivalent energy and outputting it, and the temperature of the steel plate to be measured (hereinafter referred to as “steel plate temperature”) from the following equation (1). A steel plate temperature calculation circuit for calculating an approximate value T 1 ′ of
The flow path is provided on a surface of the reflector opposite to the steel plate to be measured (hereinafter referred to as “back surface”), and the reflector temperature T 2 matches the approximate value T 1 ′. The temperature measurement of the steel sheet, wherein the heater or the high temperature medium supply means and the low temperature medium supply means are controlled by the control means, and the approximate value T 1 ′ is regarded as the steel plate temperature. Device.
T 1 ′ = T r + K (T r −T 2 ) ——Expression (1)
Here, K is a correction coefficient based on estimated values of the emissivities of the reflector and the steel plate to be measured, which are obtained from separate measurements or literature values.

請求項2に記載の発明は、請求項1に記載の発明において、前記測定されたエネルギーは、前記被測定鋼板と前記反射板のそれぞれから放射される放射エネルギーが前記反射板と前記被測定鋼板との間で反射する回数が1または2回である場合の射度であり、前記等価温度Tは、前記射度と等価なエネルギーを放射する黒体の温度に換算して求めた射度温度Tである。 The invention according to claim 2 is the invention according to claim 1, wherein the measured energy is obtained by radiating energy radiated from each of the steel plate to be measured and the reflecting plate, and the steel plate to be measured and the steel plate to be measured. And the equivalent temperature T r is an emissivity obtained by converting to the temperature of a black body that radiates energy equivalent to the emissivity. a temperature T g.

請求項3に記載の発明は、請求項1に記載の発明において、前記測定されたエネルギーは、前記被測定鋼板と前記反射板のそれぞれから放射される放射エネルギーが前記反射板と前記被測定鋼板との間で多重反射する場合の前記被測定鋼板からの放射エネルギーあり、前記等価温度Tは、前記多重反射した場合の放射エネルギーと等価なエネルギーを放射する黒体の温度に換算して求めた多重反射温度Tである。 The invention according to claim 3 is the invention according to claim 1, wherein the measured energy is obtained by radiating energy radiated from each of the steel plate to be measured and the reflecting plate, and the steel plate to be measured and the steel plate to be measured. Radiant energy from the steel sheet to be measured when multiple reflection is performed between the two and the equivalent temperature T r is obtained by converting to the temperature of a black body that radiates energy equivalent to the radiant energy when the multiple reflection is performed. and a multiple reflection temperature T m.

請求項4に記載の発明は、請求項1乃至3に記載の発明において、前記流路は、前記反射板と、前記反射板の裏面に接するように設けられた複数の仕切壁と、前記反射板の裏面に対向するように設けられた背面板と、この背面板側に前記低温媒体または高温媒体が供給される供給口と排出される排出口とを有した構成よりなり、前記ヒータは、電気ヒータであり、この電気ヒータが前記流路の全域に渡って配設され、前記反射板の厚さtと前記複数の仕切壁間の間隔W、および、前記仕切壁の厚さHと高さLとの関係は、下記式(2)、(3)を満たすように構成されている。
2≦W/t≦10 ――― 式(2)
1≦L/H≦20 ――― 式(3)
According to a fourth aspect of the present invention, in the first to third aspects of the invention, the flow path includes the reflection plate, a plurality of partition walls provided so as to contact the back surface of the reflection plate, and the reflection. The back plate provided to face the back surface of the plate, and the back plate side has a configuration having a supply port to which the low-temperature medium or the high-temperature medium is supplied and a discharge port to be discharged. An electric heater, which is disposed over the entire flow path, and the thickness t of the reflector and the interval W between the plurality of partition walls, and the thickness H and the height of the partition walls. The relationship with the length L is configured to satisfy the following expressions (2) and (3).
2 ≦ W / t ≦ 10 ――― Formula (2)
1 ≦ L / H ≦ 20 ――― Formula (3)

請求項5に記載の発明は、請求項4に記載の発明において、前記供給口は前記流路の中央部近傍に設けられ、前記排出口は前記流路の両端側に設けられ、前記低温媒体または高温媒体が前記中央部近傍から前記両端部に向かって流れるように構成されている。   The invention according to claim 5 is the invention according to claim 4, wherein the supply port is provided in the vicinity of the center of the flow path, the discharge ports are provided at both ends of the flow path, and the low-temperature medium is provided. Alternatively, the high-temperature medium is configured to flow from the vicinity of the central portion toward the both end portions.

請求項6に記載の発明は、請求項5に記載の発明において、前記低温媒体は、低温ガスであり、前記制御手段の指令により低温媒体供給手段から前記低温ガスの流量を複数のレベルで供給できるように構成されている。   According to a sixth aspect of the present invention, in the fifth aspect of the present invention, the low temperature medium is a low temperature gas, and the flow rate of the low temperature gas is supplied from the low temperature medium supply means at a plurality of levels according to a command from the control means. It is configured to be able to.

以上のように、本発明の鋼板の温度測定装置は、被測定鋼板に対向して設置され、かつ、流路が設けられた反射板と、前記流路に設けられたヒータまたは前記流路に高温媒体を流すための高温媒体供給手段と、前記流路に低温媒体を流すための低温媒体供給手段と、前記ヒータまたは高温媒体供給手段と低温媒体供給手段とを制御するための制御手段と、前記反射板の温度(以下、「反射板温度」という。)Tを直接測定する温度検出器と、前記被測定鋼板と前記反射板のそれぞれから放射される放射エネルギーが前記反射板と前記被測定鋼板との間で所定の回数反射される角度となるように前記被測定鋼板に向けて設置され、この角度で前記被測定鋼板から放出されるエネルギーが測定され、この測定されたエネルギーと等価なエネルギーを放射する黒体の温度に相当する等価温度Tに換算され出力するための放射温度計と、下記式(1)より前記被測定鋼板の温度(以下、「鋼板温度」という。)の近似値T’を算出する鋼板温度演算回路と、を備え、
前記流路は前記反射板の前記被測定鋼板側とは反対側の面(以下、「裏面」という)に設けられ、前記反射板温度Tが前記近似値T’に一致するように前記制御手段により、前記ヒータまたは高温媒体供給手段と、前記低温媒体供給手段とが制御され、前記近似値T’が前記鋼板温度とみなされるように構成されているため、被測定鋼板、反射板の各放射率の変動および経時変化の影響を受けることなく、鋼板温度を迅速かつ精度良く測定できる。
’=T+K(T−T) ――― 式(1)
ここに、Kは、別途の測定または文献値から求めた前記反射板および前記被測定鋼板の各放射率の推定値に基づく補正係数である。
As described above, the steel plate temperature measuring device according to the present invention is installed on the reflecting plate provided opposite to the steel plate to be measured and provided with the flow path, and the heater or the flow path provided in the flow path. A high temperature medium supply means for flowing a high temperature medium, a low temperature medium supply means for flowing a low temperature medium through the flow path, a control means for controlling the heater or the high temperature medium supply means and the low temperature medium supply means, the temperature of the reflector (hereinafter, referred to as "reflective plate temperature".) the temperature detector for measuring the T 2 directly, the radiant energy emitted from each of said reflecting plate to be measured steel plate and the reflective plate to be Installed toward the steel plate to be measured so that the angle is reflected a predetermined number of times from the measuring steel plate, and the energy released from the steel plate to be measured is measured at this angle and is equivalent to the measured energy. Energy And a radiation thermometer for converting to an equivalent temperature Tr corresponding to the temperature of a black body that emits light, and the temperature of the steel plate to be measured (hereinafter referred to as “steel plate temperature”) from the following equation (1). A steel sheet temperature calculation circuit for calculating an approximate value T 1 ′,
The flow path is provided on a surface of the reflector opposite to the steel plate to be measured (hereinafter referred to as “back surface”), and the reflector temperature T 2 matches the approximate value T 1 ′. The control means controls the heater or the high temperature medium supply means and the low temperature medium supply means, and the approximate value T 1 ′ is regarded as the steel plate temperature. The steel plate temperature can be measured quickly and accurately without being affected by fluctuations in emissivity and changes with time.
T 1 ′ = T r + K (T r −T 2 ) ——Expression (1)
Here, K is a correction coefficient based on estimated values of the emissivities of the reflector and the steel plate to be measured, which are obtained from separate measurements or literature values.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本発明に係る鋼板の温度測定装置は、被測定鋼板に対向して設置され、かつ、流路が設けられた反射板と、前記流路に設けられたヒータまたは前記流路に高温媒体を流すための高温媒体供給手段と、前記流路に低温媒体を流すための低温媒体供給手段と、前記ヒータまたは高温媒体供給手段と低温媒体供給手段とを制御するための制御手段と、前記反射板の温度(以下、「反射板温度」という。)Tを直接測定する温度検出器と、前記被測定鋼板と前記反射板のそれぞれから放射される放射エネルギーが前記反射板と前記被測定鋼板との間で所定の回数反射される角度となるように前記被測定鋼板に向けて設置され、この角度で前記被測定鋼板から放出されるエネルギーが測定され、この測定されたエネルギーと等価なエネルギーを放射する黒体の温度に相当する等価温度Tに換算され出力するための放射温度計と、下記式(1)より前記被測定鋼板の温度(以下、「鋼板温度」という。)の近似値T’を算出する鋼板温度演算回路と、を備え、
前記流路は前記反射板の前記被測定鋼板側とは反対側の面(以下、「裏面」という)に設けられ、前記反射板温度Tが前記近似値T’に一致するように前記制御手段により、前記ヒータまたは高温媒体供給手段と、前記低温媒体供給手段とが制御され、前記近似値T’が前記鋼板温度とみなされるように構成されていることを特徴とする。これにより、被測定鋼板、反射板の各放射率の変動および経時変化の影響を受けることなく、鋼板温度を迅速かつ精度良く測定できる。
’=T+K(T−T) ――― 式(1)
ここに、Kは、別途の測定または文献値から求めた前記反射板および前記被測定鋼板の各放射率の推定値に基づく補正係数である。
A temperature measuring apparatus for a steel sheet according to the present invention is installed opposite to a steel sheet to be measured and has a reflector provided with a flow path and a heater provided in the flow path or a high temperature medium flowing through the flow path. A high-temperature medium supply means, a low-temperature medium supply means for flowing a low-temperature medium through the flow path, a control means for controlling the heater or the high-temperature medium supply means and the low-temperature medium supply means, A temperature detector that directly measures temperature (hereinafter referred to as “reflecting plate temperature”) T 2 , and radiant energy radiated from each of the steel plate to be measured and the reflecting plate is measured between the reflecting plate and the steel plate to be measured. It is installed toward the steel plate to be measured so that the angle is reflected a predetermined number of times, and the energy released from the steel plate to be measured is measured at this angle, and the energy equivalent to the measured energy is radiated. You A radiation thermometer for converting to an equivalent temperature Tr corresponding to the temperature of the black body and outputting it, and an approximate value T of the temperature of the steel plate to be measured (hereinafter referred to as “steel plate temperature”) from the following equation (1). A steel sheet temperature calculation circuit for calculating 1 ',
The flow path is provided on a surface of the reflector opposite to the steel plate to be measured (hereinafter referred to as “back surface”), and the reflector temperature T 2 matches the approximate value T 1 ′. The control means controls the heater or the high-temperature medium supply means and the low-temperature medium supply means, and the approximate value T 1 ′ is regarded as the steel plate temperature. As a result, the steel plate temperature can be measured quickly and accurately without being affected by variations in emissivity and changes with time of the steel plate to be measured and the reflecting plate.
T 1 ′ = T r + K (T r −T 2 ) ——Expression (1)
Here, K is a correction coefficient based on estimated values of the emissivities of the reflector and the steel plate to be measured, which are obtained from separate measurements or literature values.

以下に、上記構成に至った理由について詳述する。   Hereinafter, the reason for the above configuration will be described in detail.

本発明者らは、反射板の裏面に単に加熱手段または冷却手段を設けて温度制御するだけでは、反射板の温度Tを目標値(すなわち、鋼板温度の上記近似値T’)に迅速に近づけることができず、どうしても上記等価温度Tと反射板の温度Tとの間にずれが発生してしまうことを明らかにした。また、このずれが、一次近似式を用いて鋼板の温度を迅速かつ精度良く求める場合の阻害要因であることも突き止めた。そこで、反射板の裏面に流路を設け、この流路を活用して反射板を応答性良く、かつ、均一に加熱、冷却する構成を採用したならば、反射板の温度Tを目標値(すなわち、鋼板温度の上記近似値T’)に迅速に近づけることができるのではないかと発想した。その結果、一次近似式を用いる場合の演算の高速化の効果と相俟って、鋼板温度を迅速かつ精度良く測定できるようになった。 The present inventors have found that by merely temperature control by providing a heating means or cooling means on the rear surface of the reflector quickly to the target value of the temperature T 2 of the reflector (i.e., the approximate value T 1 of the steel plate temperature ') can not be brought close to, inevitably deviation between the temperature T 2 of the reflective plate and the equivalent temperature T r is revealed that occur. It has also been found that this deviation is an impediment when obtaining the temperature of the steel sheet quickly and accurately using a first order approximation. Therefore, the flow path on the back surface of the reflector plate is provided, a good response reflectors by utilizing the passage, and uniformly heated, if adopting a structure for cooling the target value the temperature T 2 of the reflector The idea was that it would be possible to quickly approach (that is, the approximate value T 1 ′ of the steel plate temperature). As a result, the temperature of the steel sheet can be measured quickly and accurately, coupled with the effect of speeding up the calculation when using the primary approximation formula.

次に、上記本発明に係る鋼板の温度測定装置を用いることで、鋼板、反射板の各放射率の変動および経時変化の影響を受けることなく、鋼板温度を迅速かつ精度良く測定できることの理論的裏づけの説明を行なう。   Next, by using the steel plate temperature measuring apparatus according to the present invention, it is theoretically possible to quickly and accurately measure the steel plate temperature without being affected by variations in emissivity and aging of the steel plate and the reflector. I will explain the support.

2枚の有限の平板である鋼板および反射板の射度(以下、鋼板と反射板のそれぞれから放射される放射エネルギーが反射板と鋼板との間で反射する回数が1または2回である場合の射度に関して説明する。)は、2枚の有限平板の周囲からの背景放射を無視すると下記式(11)および(12)のように表される。

Figure 2009174958
The radiance of the steel plate and the reflecting plate which are two finite flat plates (hereinafter, when the number of times the radiant energy radiated from each of the steel plate and the reflecting plate is reflected between the reflecting plate and the steel plate is 1 or 2 times) ) Will be expressed as the following equations (11) and (12) when the background radiation from the periphery of the two finite plates is ignored.
Figure 2009174958

ここに、F12およびF21はそれぞれ、鋼板から反射板への形態係数および反射板から鋼板への形態係数で、鋼板および反射板の幾何学的形状および位置関係より決まる値である。 Here, F 12 and F 21 are a shape factor from the steel plate to the reflecting plate and a shape factor from the reflecting plate to the steel plate, respectively, and are values determined from the geometric shapes and positional relationships of the steel plate and the reflecting plate.

上記式(11)および(12)より反射板の射度Gを消去してE(T)を求めると、下記式(13)が得られ、鋼板の黒体放射エネルギーを求める式が得られる。

Figure 2009174958
When E (T 1 ) is obtained by eliminating the reflectance G 2 of the reflector from the above equations (11) and (12), the following equation (13) is obtained, and the equation for obtaining the black body radiant energy of the steel plate is obtained. It is done.
Figure 2009174958

ここで、Kは下記式(14)で定義され、鋼板および反射板の放射率から決まる補正係数である。

Figure 2009174958
Here, K is a correction coefficient defined by the following formula (14) and determined from the emissivities of the steel plate and the reflecting plate.
Figure 2009174958

ここで、F12およびF21がともに1にほぼ等しい場合は、式(13)は、F12=F21=1とおくことにより下記式(15)に簡略化される。

Figure 2009174958
Here, when both F 12 and F 21 are substantially equal to 1, equation (13) is simplified to the following equation (15) by setting F 12 = F 21 = 1.
Figure 2009174958

また、鋼板の射度Gと、これと等価なエネルギーを放射する黒体の温度(以下、「射度温度」という。)Tとの間には、G=σT の関係があるので、上記式(15)より下記式(16)が導かれ、鋼板温度Tは上記等価温度Tとしての射度温度Tおよび反射板温度Tから算出できることとなる。

Figure 2009174958
Further, there is a relationship of G 1 = σT g 4 between the steel sheet's emissivity G 1 and the temperature of a black body that emits energy equivalent to this (hereinafter referred to as “ejectivity temperature”) T g . Therefore, the following equation (16) is derived from the above equation (15), and the steel plate temperature T 1 can be calculated from the emissivity temperature T g and the reflector plate temperature T 2 as the equivalent temperature T r .
Figure 2009174958

また、上記式(16)より、
=(1+K)T −KT
=T +K(T −T
=T [1+K(1−(T/T)]
となり、さらに、T/T=aとおくと、
=T [1+K(1−a)]
=T [1+K(1−a)(1+a)(1+a)]
となり、a≒1の場合は、
≒T [1+4K(1−a)]
となる。
From the above equation (16),
T 1 4 = (1 + K) T g 4 −KT 2 4
= T g 4 + K (T g 4 -T 2 4)
= T g 4 [1 + K (1- (T 2 / T g) 4)]
Furthermore, if T 2 / T g = a,
T 1 4 = T g 4 [1 + K (1-a 4 )]
= T g 4 [1 + K (1-a) (1 + a) (1 + a 2 )]
If a ≒ 1, then
T 1 4 ≈T g 4 [1 + 4K (1-a)]
It becomes.

したがって、
≒T[1+4K(1−a)]1/4
となる。
Therefore,
T 1 ≈T g [1 + 4K (1-a)] 1/4
It becomes.

ここで、b≒0の場合、(1−b)=(1−4b+6b−4b+b)≒(1−4b)であるから、1−b≒(1−4b)1/4となる。この関係を上式に適用する。 Here, when b≈0, (1−b) 4 = (1−4b + 6b 2 −4b 3 + b 4 ) ≈ (1−4b), so that 1−b≈ (1−4b) 1/4 Become. This relationship is applied to the above equation.

したがって、
≒T[1+K(1−a)]
=T[1+K(1−T/T)]
=T+K(T−T
となり、TをT’と置き換えることにより、上記式(1)が導かれる。
Therefore,
T 1 ≈T g [1 + K (1-a)]
= T g [1 + K (1-T 2 / T g )]
= T g + K (T 2 -T g)
Thus, by replacing T 1 with T 1 ′, the above equation (1) is derived.

ここに、Kは、上記式(14)で示したように、鋼板および反射板の放射率ε、εのみの関数からなる補正係数である。このため、補正係数K自体は、鋼板および反射板の放射率変動の影響を受けることになるが、反射板温度Tを射度温度Tに一致するように(すなわち、反射板温度Tを鋼板温度の上記近似値T’に一致するように)制御するので、補正係数Kによる誤差が除外され鋼板温度の高精度な測定が可能となる。 Here, K is a correction coefficient composed of a function of only the emissivities ε 1 and ε 2 of the steel plate and the reflecting plate, as shown in the above formula (14). For this reason, the correction coefficient K itself is affected by the emissivity fluctuations of the steel plate and the reflector, but the reflector temperature T 2 is made to coincide with the emissivity temperature T g (that is, the reflector temperature T 2. Is controlled so as to coincide with the above approximate value T 1 ′ of the steel plate temperature, the error due to the correction coefficient K is excluded, and the steel plate temperature can be measured with high accuracy.

したがって、補正係数Kは、厳密な設定を要しないが、測定された鋼板温度が所定の精度に達するのに要する時間には影響があるので、ある程度の精度は必要である。このため、鋼板および反射板の放射率ε、εの推定値として、例えば別途オフラインで測定した値または文献値から想定される変動の範囲における平均的な値を採用し、これらの値を上記式(14)に代入して算出したものを補正係数Kとして用いればよい。 Therefore, the correction coefficient K does not need to be set strictly, but has a certain degree of accuracy because it affects the time required for the measured steel plate temperature to reach a predetermined accuracy. For this reason, as the estimated values of the emissivities ε 1 and ε 2 of the steel plate and the reflector, for example, values measured separately off-line or average values in the range of fluctuations assumed from literature values are adopted, and these values are used. What is calculated by substituting into the above equation (14) may be used as the correction coefficient K.

また、上記本発明に係る鋼板の温度測定装置では、反射板の裏面に流路が設けられたているため、反射板温度Tが鋼板温度の上記近似値T’に一致するように、この流路を活用して反射板を応答性良く、かつ、均一に加熱、冷却できる。したがって、反射板温度Tと射度温度Tとの差ΔTを短時間で零に近づけることができる。よって、射度温度Tと鋼板温度の上記近似値T’が当然短時間で一致する。すなわち、鋼板温度の上記近似値T’を鋼板温度Tとみなすことができることになる。上述したように、上記本発明に係る鋼板の温度測定装置であれば、鋼板、反射板の各放射率の変動および経時変化の影響を受けることなく、鋼板温度を迅速かつ精度良く測定できる。 Moreover, in the steel plate temperature measuring device according to the present invention, since the flow path is provided on the back surface of the reflector, the reflector temperature T 2 is matched with the approximate value T 1 ′ of the steel plate temperature. By utilizing this flow path, the reflector can be heated and cooled uniformly with good responsiveness. Therefore, the difference ΔT between the reflection plate temperature T 2 and id temperature T g short time can be brought close to zero. Therefore, Id temperature T g and the approximate value of the steel sheet temperature T 1 'coincides with naturally short time. That is, the approximate value T 1 ′ of the steel plate temperature can be regarded as the steel plate temperature T 1 . As described above, the steel plate temperature measuring apparatus according to the present invention can quickly and accurately measure the steel plate temperature without being affected by variations in emissivity and changes with time of the steel plate and the reflector.

上記本発明に係る鋼板の温度測定装置において、鋼板、反射板の各放射率の変動および経時変化の影響を受けることなく、鋼板温度を迅速かつ精度良く測定できることの理論的裏づけに関する説明は、鋼板と反射板のそれぞれから放射される放射エネルギーが反射板と鋼板との間で反射する回数が1または2回である場合の射度を用いて説明したが、特にこれに限定されるものではない。例えば、上記射度の代わりに、鋼板と反射板のそれぞれから放射される放射エネルギーが反射板と鋼板との間で多重反射する場合の鋼板からの放射エネルギーを用いることも可能である。この多重反射した場合の放射エネルギーと等価なエネルギーを放射する黒体の温度である多重反射温度Tを上記等価温度Tに採用すれば、上記式(1)がそのまま適用できる。 In the temperature measuring apparatus for steel sheets according to the present invention, the explanation on the theoretical support that the steel sheet temperature can be measured quickly and accurately without being affected by fluctuations in emissivity and changes with time of the steel sheet and the reflecting plate is as follows. The radiant energy radiated from each of the reflecting plate and the reflecting plate is described using the emissivity when the number of times of reflection between the reflecting plate and the steel plate is 1 or 2, but is not particularly limited to this. . For example, instead of the above-mentioned emissivity, it is also possible to use the radiant energy from the steel plate when the radiant energy radiated from each of the steel plate and the reflecting plate is multiple-reflected between the reflecting plate and the steel plate. By employing the multiple reflection temperature T m is the temperature of a black body that emits radiant energy equivalent energy in the case of the multiple reflection in the equivalent temperature T r, the formula (1) can be directly applied.

また、上記反射板の裏面に設けられた流路の形状は、特に限定されるものではないが、反射板の裏面に接するように設けられた複数の仕切壁と、反射板の裏面に対向するように設けられた背面板と、この背面板側に低温媒体または高温媒体が供給される供給口と排出される排出口とを有した構成とするのが好ましい。このようにすることで、反射板を応答性良く、かつ、均一に加熱、冷却できる。また、反射板の厚さTと複数の仕切壁間の間隔W、および、仕切壁の厚さHと高さLとの関係が、下記式(2)、(3)を満たすように構成することで、反射板を応答性良く、かつ、均一に加熱、冷却できるため、反射板内の温度偏差ΔTを所定値以下にすることができ、より好ましい。
2≦W/T≦10 ――― 式(2)
1≦L/H≦20 ――― 式(3)
このような構成とする場合は、前記供給口は前記流路の中央部近傍に設けられ、前記排出口は前記流路の両端側に設けられ、前記低温媒体または高温媒体が前記中央部近傍から前記両端部に向かって流れるように構成するのが、好ましい。このようにすることで、低温媒体および高温媒体のそれぞれの冷却能力、加熱能力が維持できるため、反射板内の小さな領域毎に温度制御が可能である。その結果として、上述のように、反射板内の温度偏差ΔTを所定値以下にすることができる。
Moreover, the shape of the flow path provided on the back surface of the reflector is not particularly limited, but a plurality of partition walls provided so as to be in contact with the back surface of the reflector and the back surface of the reflector are opposed to each other. It is preferable that the back plate is provided with a supply port to which the low temperature medium or the high temperature medium is supplied and a discharge port to be discharged on the back plate side. By doing in this way, a reflector can be heated and cooled uniformly with sufficient responsiveness. Moreover, it comprises so that the relationship between the thickness T of a reflecting plate, the space | interval W between several partition walls, and the thickness H of a partition wall, and height L may satisfy | fill following formula (2), (3). Thus, since the reflecting plate can be heated and cooled uniformly with good responsiveness, the temperature deviation ΔT in the reflecting plate can be set to a predetermined value or less, which is more preferable.
2 ≦ W / T ≦ 10 ――― Formula (2)
1 ≦ L / H ≦ 20 ――― Formula (3)
In such a configuration, the supply port is provided in the vicinity of the central portion of the flow path, the discharge port is provided on both ends of the flow path, and the low temperature medium or the high temperature medium is supplied from the vicinity of the central portion. It is preferable that the gas flow is directed toward the both end portions. By doing so, the cooling ability and heating ability of the low temperature medium and the high temperature medium can be maintained, so that the temperature can be controlled for each small area in the reflector. As a result, as described above, the temperature deviation ΔT in the reflecting plate can be set to a predetermined value or less.

また、上記反射板の形状も特に限定されるものではなく、矩形、円形等さまざまな形状を用いることが可能である。   The shape of the reflector is not particularly limited, and various shapes such as a rectangle and a circle can be used.

また、上述の説明では、加熱手段として高温媒体を利用する場合について、説明したが、特にこれに限定されるものではない。例えば、流路内にヒータを配設しておいても良い。特に、電気ヒータを用いれば、特別な設備も不要になるばかりか、制御性も良い。   In the above description, the case where a high-temperature medium is used as the heating unit has been described. However, the present invention is not particularly limited thereto. For example, a heater may be provided in the flow path. In particular, if an electric heater is used, special equipment is not required and controllability is good.

また、上述の説明では、冷却手段として低温媒体を利用する場合について、説明したが、この低温媒体もさまざまものが使用可能であり、特定のものに限定されない。例えば、低温ガスによる冷却以外にも、空冷、水冷等を用いることも可能である。ただし、低温ガスによる冷却を行なえば、制御性も良いばかりか装置も比較的安価にできるため、何かと好都合である。   In the above description, the case where a low-temperature medium is used as the cooling unit has been described. However, various low-temperature media can be used and are not limited to specific ones. For example, in addition to cooling with a low temperature gas, air cooling, water cooling, or the like can be used. However, if cooling with a low temperature gas is performed, not only the controllability is good, but also the apparatus can be made relatively inexpensive, which is advantageous.

以下、本発明の鋼板の温度測定装置の実施例について図面を参照しながら説明する。   Hereinafter, embodiments of a temperature measuring apparatus for steel sheets according to the present invention will be described with reference to the drawings.

図1は本発明の実施例の鋼板の温度測定装置の測定原理を説明するための概念図、図2は図1に示す反射板の裏面に設けられた流路を背面板を取り外した状態で示した平面模式図、図3は本実施例の鋼板の温度測定装置の概略構成を示すブロック図、図4は図3に示す反射板内の位置と冷却ガス温度、反射板温度の関係を示す特性図、図5は図3に示す流路と比較するために設けた別の流路構成とその特性を示す特性図、図6は図3に示す流路の詳細仕様を説明するための模式図、図7は図6に示す流路の詳細仕様と反射板内の温度偏差の関係を示す特性図、図8は本実施例の流路に流す冷却ガスの流量、電気ヒータ出力と鋼板温度、反射板温度の各挙動を示す特性図、図9は本実施例の別の形態の流路を説明するための説明図である。図1に示すように、鋼板1に対向して平行に反射板2が設けられている。反射板2は、上記式(13)中の形態係数F12およびF21をできるだけ大きくして1に近づけることで測定誤差をより小さくできるので、同じ反射板面積で形態係数が最大となるように鋼板1に対して反射板2を平行に、かつ、できるだけ近づけて設置することが望ましい。ただし、鋼板1が上下にうねる(波打つ)ような場合があるので、鋼板1が反射板2に接触しないように、所定の間隔を設けて設置することが必要である。 FIG. 1 is a conceptual diagram for explaining the measurement principle of a temperature measuring device for a steel plate according to an embodiment of the present invention. FIG. 2 is a view showing a flow path provided on the back surface of the reflector shown in FIG. FIG. 3 is a block diagram showing a schematic configuration of a temperature measuring apparatus for a steel plate of the present embodiment, and FIG. 4 shows the relationship between the position in the reflector shown in FIG. 3, the cooling gas temperature, and the reflector temperature. FIG. 5 is a characteristic diagram showing another flow channel configuration provided for comparison with the flow channel shown in FIG. 3 and its characteristics. FIG. 6 is a schematic diagram for explaining the detailed specifications of the flow channel shown in FIG. FIG. 7 is a characteristic diagram showing the relationship between the detailed specification of the flow path shown in FIG. 6 and the temperature deviation in the reflector. FIG. 8 is the flow rate of the cooling gas flowing through the flow path of this embodiment, the electric heater output and the steel plate temperature. FIG. 9 is an explanatory diagram for explaining a flow path according to another embodiment of the present embodiment. As shown in FIG. 1, a reflecting plate 2 is provided in parallel with the steel plate 1. Since the reflection plate 2 can reduce the measurement error by increasing the shape factors F 12 and F 21 in the above formula (13) as much as possible and approaching 1, the shape factor is maximized with the same reflection plate area. It is desirable to install the reflecting plate 2 parallel to the steel plate 1 and as close as possible. However, since the steel plate 1 may wave up and down (wavy), it is necessary to install the steel plate 1 with a predetermined interval so that the steel plate 1 does not contact the reflection plate 2.

また、鋼板1の射度を受取れるように、放射温度計3を反射板2と鋼板1との隙間から鋼板1の表面に向けて設置し、鋼板1と反射板2のそれぞれから放射される放射エネルギーが反射板2と鋼板1との間で交互に反射する回数がそれぞれで1または2回となるように鋼板1に対する放射温度計3の設置角度θを調整する。反射板2と鋼板1との間での放射エネルギーの反射回数をそれぞれで少なくとも1回とした理由は、放射エネルギーが反射板2で1回も反射することなく放射温度計3で受取られると、炉内壁など背景からの放射エネルギーが直接鋼板1で反射されて鋼板1の射度の一部(反射エネルギー)となるため、測定誤差が大きくなるのに対し、反射板2で少なくとも1回反射させてから鋼板1で反射させることで背景からの放射エネルギーの影響が無視できる程度に小さくなり、測定誤差が十分小さくなるからである。また、反射板2と鋼板1との間での放射エネルギーの反射回数をそれぞれで多くとも2回とした理由は、3回以上反射させても背景からの放射エネルギーの影響はすでに十分小さくなっており、測定誤差の改善効果は少なく、そのわりに反射板2が大きくなるためである。   Further, the radiation thermometer 3 is installed from the gap between the reflector 2 and the steel plate 1 toward the surface of the steel plate 1 so that the emissivity of the steel plate 1 can be received, and is emitted from each of the steel plate 1 and the reflector 2. The installation angle θ of the radiation thermometer 3 with respect to the steel plate 1 is adjusted so that the number of times the radiant energy is alternately reflected between the reflecting plate 2 and the steel plate 1 is 1 or 2 respectively. The reason why the number of reflections of the radiant energy between the reflector 2 and the steel plate 1 is at least once each is that when the radiant energy is received by the radiation thermometer 3 without being reflected by the reflector 2 once, Radiation energy from the background, such as the inner wall of the furnace, is directly reflected by the steel plate 1 and becomes part of the radiance of the steel plate 1 (reflected energy), so that the measurement error increases, but the reflection plate 2 reflects it at least once. This is because the influence of the radiant energy from the background becomes small enough to be ignored by reflecting the steel plate 1 afterwards, and the measurement error becomes sufficiently small. Also, the reason that the number of reflections of the radiant energy between the reflector 2 and the steel plate 1 is at most twice is that the influence of the radiant energy from the background is already sufficiently small even if it is reflected three times or more. This is because the effect of improving the measurement error is small, and the reflector 2 becomes larger instead.

鋼板1に対する放射温度計3の設置角度θは、反射板2と鋼板1との間での放射エネルギーの反射回数をそれぞれで1または2回となるように、反射板2の大きさ、鋼板1と反射板2との距離等に応じて適宜調整すればよいが、鋼板表面の指向放射率を高めて射度を受取りやすくすること、放射温度計3の設置スペースなどの設備制約等を考慮して、5°以上60°未満、さらには10〜50°、特に20〜40°の範囲で適宜調整するとよい。   The installation angle θ of the radiation thermometer 3 with respect to the steel plate 1 is such that the size of the reflector 2 and the steel plate 1 are such that the number of reflections of radiant energy between the reflector 2 and the steel plate 1 is 1 or 2 respectively. May be adjusted as appropriate according to the distance between the reflector 2 and the reflecting plate 2, etc., taking into account the equipment restrictions such as the installation space of the radiation thermometer 3, etc. Therefore, it may be adjusted as appropriate in the range of 5 ° or more and less than 60 °, further 10 to 50 °, and particularly 20 to 40 °.

また、放射温度計3で測定される放射エネルギーと鋼板1の射度との関係は、下記式で表される。

Figure 2009174958
Moreover, the relationship between the radiation energy measured with the radiation thermometer 3 and the emissivity of the steel plate 1 is represented by the following equation.
Figure 2009174958

すなわち、F=εとすると、G=Eとなる。したがって、放射温度計3に鋼板1から放射温度計3への形態係数Fに相当する放射率εを設定することにより、鋼板1の射度Gと等価なエネルギーを放射する黒体の温度に相当する等価温度Tとしての射度温度Tに放射温度計3で換算され出力される。 That is, when F g = ε r , G 1 = E r . Therefore, by setting an emissivity ε r corresponding to the form factor F g from the steel sheet 1 to the radiation thermometer 3 in the radiation thermometer 3, a black body that emits energy equivalent to the emissivity G 1 of the steel sheet 1 is set. It is translated at id temperature T g in the radiation thermometer 3 as equivalent temperature T r corresponding to the temperature is output.

鋼板1から放射温度計3への形態係数Fは、両者の幾何学的形状および位置関係と鋼板1の指向放射率より決定されるため、理論的に求めることも可能であるが、別途、例えばオフラインにて同様な幾何学的形状および位置関係にて実験的に決定することも可能である。 Since the shape factor F g from the steel plate 1 to the radiation thermometer 3 is determined from the geometric shape and positional relationship between the two and the directional emissivity of the steel plate 1, it can be theoretically determined. For example, it can be determined experimentally in the same geometric shape and positional relationship offline.

図2において、4aは矩形状の反射板2の裏面に反射板2の長手方向に略平行で、かつ、略垂直な状態で設けられた仕切壁、4bは仕切壁4aと略直交するように、かつ、反射板2の端部側に設けられた仕切壁である。また、流路8は、反射板2、仕切壁4a、4b、背面板5(後記図3を参照)から複数構成されている。また、図2に示すように、流路8内には流路8の長手方向に向かって、反射板2の裏面の端から端まで電気ヒータ20(破線で示す)が配設されている。また、流路8内には電気ヒータ20に平行し、かつ、流路8の中央部(正確には、後記図3に示す供給口6側:○印で示す)から両端部(正確には、後記図3に示す排出口7側:●印で示す)に向かって、低温媒体としての冷却用ガス50(実線で示す。詳細は後記図3を参照)が流れる様子を模式的に示す。   In FIG. 2, reference numeral 4a denotes a partition wall provided in a substantially vertical state on the back surface of the rectangular reflector 2 and substantially perpendicular to the longitudinal direction of the reflector 2, and 4b is substantially perpendicular to the partition wall 4a. And it is the partition wall provided in the edge part side of the reflecting plate 2. FIG. The flow path 8 is composed of a plurality of reflectors 2, partition walls 4 a and 4 b, and a back plate 5 (see FIG. 3 described later). As shown in FIG. 2, an electric heater 20 (shown by a broken line) is disposed in the flow path 8 from the end to the end of the back surface of the reflection plate 2 in the longitudinal direction of the flow path 8. In addition, the flow path 8 is parallel to the electric heater 20, and from the center of the flow path 8 (to be precise, the supply port 6 side shown in FIG. FIG. 3 schematically shows a state in which a cooling gas 50 (shown by a solid line, see FIG. 3 for details) flows as a low-temperature medium toward the outlet 7 side shown in FIG.

図3のブロック図内に描かれた流路8の模式断面のように、断面コ字状の背面板5が反射板2の裏面に対向するように配設されている。これにより、反射板2の裏面側に接近した短く、かつ、体積の小さな流路8が多数形成可能になる。また、反射板2の裏面の見かけ上の面積が増加したことにもなるので、実質的に加熱及び冷却能力が向上したことにもなる。また、この流路8には、反射板2の裏面の中央部近傍に対応する位置に冷却用ガスの供給口6、両端部近傍に対応する位置に冷却用ガスの排出兼電気ヒータ20の接続スペースを兼ねた排出口7を備えることも可能となる。   Like the schematic cross section of the flow path 8 depicted in the block diagram of FIG. 3, the back plate 5 having a U-shaped cross section is disposed so as to face the back surface of the reflector 2. This makes it possible to form a large number of short and small-sized flow paths 8 that are close to the back surface side of the reflecting plate 2. Moreover, since the apparent area of the back surface of the reflecting plate 2 is increased, the heating and cooling capabilities are substantially improved. The flow path 8 is connected to a cooling gas supply port 6 at a position corresponding to the vicinity of the center of the back surface of the reflector 2 and a cooling gas discharge / electric heater 20 at positions corresponding to the vicinity of both ends. It is also possible to provide a discharge port 7 that also serves as a space.

図3において、25は電気ヒータ用電源、30は制御手段、40は反射板2の温度を直接測定するための温度検出器としての熱電対、50は冷却ガス、55は電磁弁、56はレギュレータ、60は鋼板温度演算回路である。電気ヒータ20は、電気ヒータ用電源25に接続され、制御手段50からの指令により流路8内が加熱され、反射板2の温度が上昇する。また、制御手段50からの指令により低温媒体供給手段としての電磁弁55が開かれ冷却ガス50が中央部近傍の供給口6から供給され流路8内を流れ、両端部近傍の排出口7から排出される。これにより、流路8内が冷却され、反射板2の温度が降下する。さらに、電磁弁55にはレギュレータ56が併設されているため、冷却ガス50の流量を常に一定に保つこともできる。   In FIG. 3, 25 is a power source for an electric heater, 30 is a control means, 40 is a thermocouple as a temperature detector for directly measuring the temperature of the reflector 2, 50 is a cooling gas, 55 is a solenoid valve, and 56 is a regulator. , 60 is a steel plate temperature calculation circuit. The electric heater 20 is connected to the electric heater power supply 25, and the inside of the flow path 8 is heated by a command from the control means 50, and the temperature of the reflector 2 rises. Further, the electromagnetic valve 55 as the low temperature medium supply means is opened by a command from the control means 50, and the cooling gas 50 is supplied from the supply port 6 near the center and flows through the flow path 8, and from the discharge ports 7 near both ends. Discharged. Thereby, the inside of the flow path 8 is cooled, and the temperature of the reflecting plate 2 falls. Further, since the solenoid valve 55 is provided with the regulator 56, the flow rate of the cooling gas 50 can always be kept constant.

次に、本実施例の鋼板の温度測定装置の動作について、以下に説明する。本装置の動作初期においては、例えば、反射板2の初期設定温度を、例えば鋼板1の目標温度Tにすればよい。この場合、初期設定温度(鋼板1の目標温度T)と熱電対40で実測された反射板温度Tとの間には大きな温度差があるため、制御手段50から電気ヒータ用電源25に指令が送られ、電気ヒータ20により流路8内が急速に加熱される。その後、熱電対40で実測された温度上昇した反射板温度Tと放射温度計3から出力された射度温度Tが鋼板温度演算回路60内に入力され、上記式(1)に基づき演算され、鋼板温度Tの近似値T’が算出される。この近似値T’が以降、反射板2の目標の設定温度として制御手段50内で用いられる。その後、近似値T’と反射板温度Tが一致するまで、電気ヒータ20により、加熱し続ける。その結果、反射板温度Tと射度温度Tとの差ΔTが次第に小さくなり0に近づき、反射板温度Tと近似値T’とが一致した場合は、この近似値T’を鋼板温度Tとみなす。ただし、反射板温度Tが射度温度Tを超えてしまった場合は、鋼板温度演算回路60内で算出された近似値T’が、反射板2の目標の設定温度として新たに制御手段30内に設定される。これにより、制御手段30から電磁弁55を開く指令が送られ、直ちに冷却ガス50が中央部近傍の供給口6から流路8内に流され、冷却を開始する。したがって、反射板温度Tと射度温度Tとの差ΔTが速やかに0に近づき、反射板温度Tと近似値T’とが一致する。以上により、鋼板1、反射板2の各放射率の変動および経時変化の影響を受けることなく、鋼板温度Tを迅速かつ精度良く測定できるようになる。 Next, the operation of the steel plate temperature measuring apparatus according to this embodiment will be described below. In the initial operation of the apparatus, for example, the initial set temperature of the reflecting plate 2 may be set to the target temperature T 0 of the steel plate 1, for example. In this case, since there is a large temperature difference between the initial set temperature (target temperature T 0 of the steel plate 1) and the reflector plate temperature T 2 measured by the thermocouple 40, the control means 50 changes the power to the electric heater power supply 25. A command is sent, and the inside of the flow path 8 is rapidly heated by the electric heater 20. Thereafter, the reflector temperature T 2 that has been actually measured by the thermocouple 40 and the emissivity temperature T g output from the radiation thermometer 3 are input into the steel plate temperature calculation circuit 60 and calculated based on the above equation (1). Then, an approximate value T 1 ′ of the steel plate temperature T 1 is calculated. This approximate value T 1 ′ is used in the control means 50 as the target set temperature of the reflector 2 thereafter. Thereafter, heating is continued by the electric heater 20 until the approximate value T 1 ′ matches the reflector temperature T 2 . As a result, close to the reflective plate temperature T 2 and id temperature T g difference between ΔT is gradually reduced 0, reflector temperature T 2 and the approximate value T 1 'when the match, the approximate value T 1' a regarded as a steel sheet temperature T 1. However, when the reflection plate temperature T 2 has exceeded the Id temperature The T g, the steel plate temperature calculation circuit approximation T 1 calculated in the 60 'is newly controlled as the set temperature of the target of the reflector 2 Set in the means 30. As a result, a command to open the electromagnetic valve 55 is sent from the control means 30, and the cooling gas 50 is immediately caused to flow into the flow path 8 from the supply port 6 in the vicinity of the center, and cooling is started. Therefore, the difference ΔT between the reflector temperature T 2 and the emissivity temperature T g quickly approaches 0, and the reflector temperature T 2 and the approximate value T 1 ′ match. Thus, the steel sheet 1, without being affected by variation and aging of the emissivity of the reflection plate 2, so that the steel sheet temperature T 1 of quickly and accurately measured.

図4の場合は、冷却ガス50が中央部近傍の供給口6から流路8内に供給され、両端部近傍の排出口7から排出される構成であるため、個々の流路8の長さが短く、かつ、体積も小さく、流路8内での冷却ガス50の温度上昇が少ないことがわかる。したがって、反射板2内の温度分布も小さくなり、後記図5に示す流路100の構成に比べて、好ましいことがわかる。   In the case of FIG. 4, the cooling gas 50 is supplied into the flow path 8 from the supply port 6 near the center and discharged from the discharge ports 7 near the both ends. And the volume is small, and it can be seen that the temperature rise of the cooling gas 50 in the flow path 8 is small. Therefore, it can be seen that the temperature distribution in the reflector 2 is also small, which is preferable as compared with the configuration of the flow path 100 shown in FIG.

図5(a)に示す流路100は、図3に示す背面板5に代えて断面コ字状の背面板90を用いるだけで構成できるものである。この構成では、反射板2の裏面の一端側から冷却ガス50が供給され、他端側から排出されるため、流路100の長さが流路8の長さの約2倍となり、流路100内での冷却ガス50の温度上昇が流路8の場合に比べて、多少大きくなる。したがって、反射板2を冷却する効果は十分あるものの、図3に示すような流路構成を有する反射板2内の温度分布(図4参照)に比べると多少大きくなる。   The flow path 100 shown in FIG. 5A can be configured only by using a back plate 90 having a U-shaped cross section instead of the back plate 5 shown in FIG. In this configuration, the cooling gas 50 is supplied from one end side of the back surface of the reflecting plate 2 and discharged from the other end side, so that the length of the flow path 100 is approximately twice the length of the flow path 8. The temperature rise of the cooling gas 50 in 100 is slightly larger than that in the flow path 8. Therefore, although the effect of cooling the reflecting plate 2 is sufficient, it is somewhat larger than the temperature distribution (see FIG. 4) in the reflecting plate 2 having the flow path configuration as shown in FIG.

次に、図3に示す本実施例の流路8の詳細仕様と反射板2内の温度偏差ΔT(℃)の詳細な関係について、検討した結果を図6、図7に示す。図6は流路8を反射板2の長手方向から見た、仕切壁4bを取り除いた側面断面模式図である。図7(a)において、横軸は仕切壁4aの間隔(W)/反射板2の厚さ(t)、縦軸の左側は反射板2内の温度偏差ΔT(℃)、縦軸の右側は電気ヒータ用電源25の容量指数(−)である。また、図7(b)において、横軸は仕切壁4aにおける実質的に流路8を構成するのに寄与している高さ(L)/仕切壁4aの厚さ(H)、縦軸の左側は反射板2内の温度偏差ΔT(℃)、縦軸の右側は電気ヒータ用電源25の容量指数(−)である。   Next, FIGS. 6 and 7 show the results of studies on the detailed relationship between the detailed specification of the flow path 8 of the present embodiment shown in FIG. 3 and the temperature deviation ΔT (° C.) in the reflector 2. FIG. 6 is a schematic side cross-sectional view of the flow path 8 as seen from the longitudinal direction of the reflector 2 with the partition wall 4b removed. In FIG. 7A, the horizontal axis is the interval (W) between the partition walls 4a / the thickness (t) of the reflector 2, the left side of the vertical axis is the temperature deviation ΔT (° C.) in the reflector 2, and the right side of the vertical axis. Is the capacity index (−) of the electric heater power supply 25. In FIG. 7B, the horizontal axis indicates the height (L) / the thickness (H) of the partition wall 4a that contributes to substantially constituting the flow path 8 in the partition wall 4a, and the vertical axis. The left side is the temperature deviation ΔT (° C.) in the reflector 2, and the right side of the vertical axis is the capacity index (−) of the electric heater power supply 25.

図7(a)において、仕切壁4aの間隔(W)を小さくすれば、反射板2内の温度偏差ΔTは小さくなることがわかる。しかし、仕切壁4aの間隔(W)の大きさには、実用上限界がある。また、反射板2の厚さ(t)を厚くすると反射板2内の温度偏差ΔTは小さくなることがわかる。しかし、反射板2の厚さ(t)を厚くすると、反射板2を加熱するために必要な電気ヒータ用電源25の容量が大きくなってしまい、装置費用が高くなってしまう。本願発明の目的を達成する上では、図7(a)に示す反射板2内の温度偏差ΔTが1℃以上10℃以下であることが好ましい。これを実現するのは、図7(a)からW/tが2以上10以下であることが好ましいことがわかる。図7(b)において、仕切壁4aの実質的高さ(L)を小さくすれば、反射板2内の温度偏差ΔTは小さくなることがわかる。しかし、仕切壁4aの実質的高さ(L)を小さくするのも実用上限界がある。また、仕切壁4aの厚さ(H)を厚くすると反射板2内の温度偏差ΔTは小さくなることがわかる。しかし、反射板2の厚さ(t)の場合と同様に、仕切壁4aの厚さ(H)を厚くすると、加熱するために必要な電気ヒータ用電源25の容量が大きくなってしまい、装置費用が高くなってしまう。図7(b)に示す反射板2内の温度偏差ΔTが1℃以上10℃以下を実現するためには、L/Hが1以上20以下であることが好ましいことがわかる。   In FIG. 7A, it can be seen that if the interval (W) between the partition walls 4a is reduced, the temperature deviation ΔT in the reflector 2 is reduced. However, there is a practical limit to the size of the interval (W) between the partition walls 4a. It can also be seen that the temperature deviation ΔT in the reflecting plate 2 decreases as the thickness (t) of the reflecting plate 2 increases. However, when the thickness (t) of the reflecting plate 2 is increased, the capacity of the electric heater power source 25 necessary for heating the reflecting plate 2 is increased, and the cost of the apparatus is increased. In order to achieve the object of the present invention, the temperature deviation ΔT in the reflector 2 shown in FIG. 7A is preferably 1 ° C. or more and 10 ° C. or less. It can be seen from FIG. 7A that W / t is preferably 2 or more and 10 or less to realize this. In FIG. 7B, it can be seen that if the substantial height (L) of the partition wall 4a is reduced, the temperature deviation ΔT in the reflector 2 is reduced. However, there is a practical limit to reducing the substantial height (L) of the partition wall 4a. It can also be seen that the temperature deviation ΔT in the reflector 2 decreases as the thickness (H) of the partition wall 4a increases. However, as in the case of the thickness (t) of the reflector 2, if the thickness (H) of the partition wall 4 a is increased, the capacity of the electric heater power supply 25 required for heating increases, and the device The cost will be high. It can be seen that L / H is preferably 1 or more and 20 or less in order to realize the temperature deviation ΔT in the reflection plate 2 shown in FIG.

図8(a)は、鋼板温度Tが一時的に高くなった場合に、如何にして反射板2を任意の一定温度に保つかを説明するために、流路8に流す冷却ガス50の流量、電気ヒータ20の出力、鋼板温度Tと反射板温度Tの各挙動を示したものである。このように鋼板温度Tが一時的に高くなった場合に、単純に電気ヒータ20の出力を下げる、または、ゼロにするだけでは、反射板2は鋼板1からの輻射熱を受けているため、反射板2を任意の一定温度に保つことができない。しかし、レギュレータ56を用いて、鋼板1からの輻射熱量の大きさに対応するだけの微量の冷却ガス50を常時流しておき、残りは電気ヒータ20の出力を調整する(図8(a)参照)ようにすれば、鋼板温度Tが一時的に高くなっても、反射板2を任意の一定温度に保つことが可能になる。これにより、鋼板温度Tをさらに迅速かつ精度良く測定できるようになる。 8 (a) is, if the steel sheet temperature T 1 of becomes temporarily high, in order to explain how keep a reflector 2 in the how to any given temperature, the cooling gas 50 flowing through the flow path 8 flow rate, the output of the electric heater 20 shows the respective behavior of the steel sheet temperature T 1 of the reflector temperature T 2. Thus if the steel sheet temperature T 1 of becomes temporarily high, simply decrease the output of the electric heater 20, or, only to zero, the reflection plate 2 is subjected to radiant heat from the steel plate 1, The reflector 2 cannot be maintained at an arbitrary constant temperature. However, a small amount of cooling gas 50 corresponding to the amount of radiant heat from the steel plate 1 is always allowed to flow using the regulator 56, and the remainder adjusts the output of the electric heater 20 (see FIG. 8A). if) way, the steel plate temperature T 1 is also turned temporarily high, it is possible to keep the reflective plate 2 to any constant temperature. Thus, as the steel sheet temperature T 1 of it more quickly and accurately measured.

図8(b)は、鋼板温度Tがある一定の高い温度から低下した場合に、如何にして反射板温度Tを鋼板温度Tに追従して下げるかを説明するために、流路8に流す冷却ガス50の流量、電気ヒータ20の出力、鋼板温度Tと反射板温度Tの各挙動を示したものである。このように鋼板温度Tがある一定の高い温度から低下した場合に、単純に電気ヒータ20の出力を下げる、または、ゼロにするだけでは、反射板2は鋼板1からの輻射熱および反射板2自体の蓄熱量があるため、反射板温度Tを急速に下げることができない。しかし、このような場合に、鋼板1からの輻射熱量の大きさに対応するだけの微量の冷却ガス50を常時流しておくだけでなく、反射板2自体の蓄熱量の大きさ、かつ、鋼板温度Tまで急速に下げれるだけの大きさに相当する冷却ガス50をさらに増加させるようにすれば、反射板温度Tを鋼板温度Tに追従して下げることが可能になる。このためには、制御手段30の指令により電磁弁55を開け、冷却ガス50の流量を複数のレベルで供給できるように構成しておけばよい。 FIG. 8 (b), when dropped from constant high temperatures there is a steel sheet temperature T 1, the reflective plate temperature T 2 in the how to explain how lower following the steel sheet temperature T 1, the flow path the flow rate of the cooling gas 50 flowing in the 8, the output of the electric heater 20 shows the respective behavior of the steel sheet temperature T 1 of the reflector temperature T 2. Thus when dropped from the temperature constant high there is a steel sheet temperature T 1, simply decrease the output of the electric heater 20, or, only to zero, the reflection plate 2 is radiant heat from the steel sheet 1 and the reflector 2 since there is a heat storage amount of itself, it can not be lowered a reflector temperature T 2 rapidly. However, in such a case, not only the small amount of cooling gas 50 corresponding to the amount of radiant heat from the steel plate 1 is always allowed to flow, but also the amount of heat stored in the reflector 2 itself, and the steel plate If the cooling gas 50 corresponding to a magnitude that can be rapidly lowered to the temperature T 1 is further increased, the reflector temperature T 2 can be lowered following the steel plate temperature T 1 . For this purpose, the solenoid valve 55 may be opened by a command from the control means 30 so that the flow rate of the cooling gas 50 can be supplied at a plurality of levels.

なお、本実施例においては、図2に示すような、矩形状の反射板2、仕切壁4a、4bと背面板5から構成された流路8、図5に示すような、矩形状の反射板2、仕切壁4a、4bと背面板90から構成された流路100を用いた例について説明したが、特にこれに限定されるものではない。例えば、図9に示すように、円板状の反射板200と、この反射板200の外周に略垂直な状態で設けられた円筒形の仕切壁210aと、この仕切壁210aに接し、反射板200の直径上に略垂直な状態で設けられた仕切壁210bと、この仕切壁210bと直交するような仕切壁210cと、この仕切壁210cに略平行で仕切壁210aから延出するように設けられた仕切壁210dと、反射板200の裏面に対向するように配設された背面板(図示せず)とから構成された流路300など様々な形態が考えられる。また、本実施例においては、ヒータとして電気ヒータ20を用いた例について説明したが、必ずしもこれに限定されるものではない。   In this embodiment, as shown in FIG. 2, the rectangular reflector 2, the flow path 8 composed of the partition walls 4a and 4b and the back plate 5, and the rectangular reflector as shown in FIG. Although the example using the flow path 100 comprised from the board 2, the partition walls 4a and 4b, and the backplate 90 was demonstrated, it is not specifically limited to this. For example, as shown in FIG. 9, a disk-shaped reflecting plate 200, a cylindrical partition wall 210a provided substantially perpendicular to the outer periphery of the reflecting plate 200, and the reflecting plate in contact with the partition wall 210a A partition wall 210b provided in a substantially vertical state on the diameter of 200, a partition wall 210c orthogonal to the partition wall 210b, and provided so as to extend from the partition wall 210a substantially parallel to the partition wall 210c. Various forms such as a flow path 300 constituted by the partition wall 210d formed and a back plate (not shown) disposed so as to face the back surface of the reflection plate 200 are conceivable. In the present embodiment, the example in which the electric heater 20 is used as the heater has been described. However, the present invention is not necessarily limited thereto.

本発明の実施例の鋼板の温度測定装置の測定原理を説明するための概念図である。It is a conceptual diagram for demonstrating the measurement principle of the temperature measuring apparatus of the steel plate of the Example of this invention. 図1に示す反射板の裏面に設けられた流路を背面板を取り外した状態で示した平面模式図である。It is the plane schematic diagram which showed the flow path provided in the back surface of the reflecting plate shown in FIG. 1 in the state which removed the back plate. 本実施例の鋼板の温度測定装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the temperature measuring apparatus of the steel plate of a present Example. 図3に示す反射板内の位置と冷却ガス温度、反射板温度の関係を示す特性図である。It is a characteristic view which shows the relationship between the position in a reflecting plate shown in FIG. 3, cooling gas temperature, and reflecting plate temperature. 図3に示す流路と比較するために設けた別の流路構成とその特性を示す特性図である。It is a characteristic view which shows another channel structure provided in order to compare with the channel shown in FIG. 3, and its characteristic. 図3に示す流路の詳細仕様を説明するための模式図である。It is a schematic diagram for demonstrating the detailed specification of the flow path shown in FIG. 図6に示す流路の詳細仕様と反射板内の温度偏差の関係を示す特性図である。It is a characteristic view which shows the relationship between the detailed specification of the flow path shown in FIG. 6, and the temperature deviation in a reflecting plate. 本実施例の流路に流す冷却ガスの流量、電気ヒータ出力と鋼板温度、反射板温度の各挙動を示す特性図である。It is a characteristic view which shows each behavior of the flow volume of the cooling gas sent through the flow path of an Example, an electric heater output, steel plate temperature, and reflector temperature. 本実施例の別の形態の流路を説明するための説明図である。It is explanatory drawing for demonstrating the flow path of another form of a present Example.

符号の説明Explanation of symbols

1:鋼板
2、200:反射板
3:放射温度計
4a、4b、210a、210b、210c、210d:仕切壁
5、90:背面板
6:供給口
7:排出口
8、100、300:流路
20:電気ヒータ
25:電気ヒータ用電源
30:制御手段
40:熱電対
50:冷却ガス
55:電磁弁
56:レギュレータ
60:鋼板温度演算回路
1: Steel plate 2, 200: Reflector plate 3: Radiation thermometers 4a, 4b, 210a, 210b, 210c, 210d: Partition wall 5, 90: Back plate 6: Supply port 7: Discharge port 8, 100, 300: Flow path 20: Electric heater 25: Electric heater power supply 30: Control means 40: Thermocouple 50: Cooling gas 55: Solenoid valve 56: Regulator 60: Steel plate temperature calculation circuit

Claims (6)

被測定鋼板に対向して設置され、かつ、流路が設けられた反射板と、前記流路に設けられたヒータまたは前記流路に高温媒体を流すための高温媒体供給手段と、前記流路に低温媒体を流すための低温媒体供給手段と、前記ヒータまたは高温媒体供給手段と低温媒体供給手段とを制御するための制御手段と、前記反射板の温度(以下、「反射板温度」という。)Tを直接測定する温度検出器と、前記被測定鋼板と前記反射板のそれぞれから放射される放射エネルギーが前記反射板と前記被測定鋼板との間で所定の回数反射される角度となるように前記被測定鋼板に向けて設置され、この角度で前記被測定鋼板から放出されるエネルギーが測定され、この測定されたエネルギーと等価なエネルギーを放射する黒体の温度に相当する等価温度Tに換算され出力するための放射温度計と、下記式(1)より前記被測定鋼板の温度(以下、「鋼板温度」という。)の近似値T’を算出する鋼板温度演算回路と、を備え、
前記流路は前記反射板の前記被測定鋼板側とは反対側の面(以下、「裏面」という)に設けられ、前記反射板温度Tが前記近似値T’に一致するように前記制御手段により、前記ヒータまたは高温媒体供給手段と、前記低温媒体供給手段とが制御され、前記近似値T’が前記鋼板温度とみなされるように構成されたことを特徴とする鋼板の温度測定装置。
’=T+K(T−T) ――― 式(1)
ここに、Kは、別途の測定または文献値から求めた前記反射板および前記被測定鋼板の各放射率の推定値に基づく補正係数である。
A reflecting plate installed opposite to the steel plate to be measured and provided with a flow path, a heater provided in the flow path or a high-temperature medium supply means for flowing a high-temperature medium in the flow path, and the flow path A low temperature medium supply means for flowing a low temperature medium, a heater or a control means for controlling the high temperature medium supply means and the low temperature medium supply means, and the temperature of the reflector (hereinafter referred to as “reflector temperature”). ) and a temperature detector for measuring T 2 directly, the said angle radiant energy emitted from each of the measured steel sheet wherein the reflector is a predetermined number of reflections between the reflecting plate and the object to be measured steel plate the installed toward a measurement steel as the energy the emitted from the measured steel plate at this angle is measured and the equivalent temperature T corresponding to the temperature of a black body that emits the measured energy equivalent energy A radiation thermometer for by outputting converted into the following formula (1) from said measured steel sheet temperature (hereinafter. Referred to as "steel plate temperature") and the steel plate temperature calculation circuit for calculating an approximate value T 1 'of the Prepared,
The flow path is provided on a surface of the reflector opposite to the steel plate to be measured (hereinafter referred to as “back surface”), and the reflector temperature T 2 matches the approximate value T 1 ′. The temperature measurement of the steel sheet, wherein the heater or the high temperature medium supply means and the low temperature medium supply means are controlled by the control means, and the approximate value T 1 ′ is regarded as the steel plate temperature. apparatus.
T 1 ′ = T r + K (T r −T 2 ) ——Expression (1)
Here, K is a correction coefficient based on estimated values of the emissivities of the reflector and the steel plate to be measured, which are obtained from separate measurements or literature values.
前記測定されたエネルギーは、前記被測定鋼板と前記反射板のそれぞれから放射される放射エネルギーが前記反射板と前記被測定鋼板との間で反射する回数が1または2回である場合の射度であり、前記等価温度Tは、前記射度と等価なエネルギーを放射する黒体の温度に換算して求めた射度温度Tである請求項1に記載の鋼板の温度測定装置。 The measured energy is an emissivity when the number of times the radiant energy radiated from each of the steel plate to be measured and the reflecting plate is reflected between the reflecting plate and the steel plate to be measured is 1 or 2 times. , and the said equivalent temperature T r is the temperature measuring device of the steel sheet according to claim 1, wherein the id temperature the T g determined in terms of the temperature of a black body that emits the id equivalent energy. 前記測定されたエネルギーは、前記被測定鋼板と前記反射板のそれぞれから放射される放射エネルギーが前記反射板と前記被測定鋼板との間で多重反射する場合の前記被測定鋼板からの放射エネルギーあり、前記等価温度Tは、前記多重反射した場合の放射エネルギーと等価なエネルギーを放射する黒体の温度に換算して求めた多重反射温度Tである請求項1に記載の鋼板の温度測定装置。 The measured energy is the radiant energy from the measured steel plate when the radiated energy radiated from each of the measured steel plate and the reflecting plate is multiple-reflected between the reflecting plate and the measured steel plate. 2. The temperature measurement of a steel sheet according to claim 1, wherein the equivalent temperature T r is a multiple reflection temperature T m obtained by converting into a temperature of a black body that radiates energy equivalent to the radiation energy in the case of multiple reflection. apparatus. 前記流路は、前記反射板と、前記反射板の裏面に接するように設けられた複数の仕切壁と、前記反射板の裏面に対向するように設けられた背面板と、この背面板側に前記低温媒体または高温媒体が供給される供給口と排出される排出口とを有した構成よりなり、前記ヒータは、電気ヒータであり、この電気ヒータが前記流路の全域に渡って配設され、前記反射板の厚さtと前記複数の仕切壁間の間隔W、および、前記仕切壁の厚さHと高さLとの関係は、下記式(2)、(3)を満たすように構成された請求項1乃至3に記載の鋼板の温度測定装置。
2≦W/t≦10 ――― 式(2)
1≦L/H≦20 ――― 式(3)
The flow path includes the reflection plate, a plurality of partition walls provided so as to be in contact with the back surface of the reflection plate, a back plate provided so as to face the back surface of the reflection plate, and the back plate side. The heater comprises a supply port through which the low-temperature medium or the high-temperature medium is supplied and a discharge port through which the medium is discharged. The heater is an electric heater, and the electric heater is disposed over the entire area of the flow path. The relationship between the thickness t of the reflector and the interval W between the plurality of partition walls and the thickness H and the height L of the partition walls satisfy the following expressions (2) and (3): The temperature measuring device for a steel sheet according to any one of claims 1 to 3, wherein
2 ≦ W / t ≦ 10 ――― Formula (2)
1 ≦ L / H ≦ 20 ――― Formula (3)
前記供給口は前記流路の中央部近傍に設けられ、前記排出口は前記流路の両端側に設けられ、前記低温媒体または高温媒体が前記中央部近傍から前記両端部に向かって流れるように構成された請求項4に記載の鋼板の温度測定装置。   The supply port is provided in the vicinity of the central portion of the flow path, the discharge port is provided on both ends of the flow path, and the low temperature medium or the high temperature medium flows from the vicinity of the central portion toward the both end portions. The steel plate temperature measuring device according to claim 4 configured. 前記低温媒体は、低温ガスであり、前記制御手段の指令により低温媒体供給手段から前記低温ガスの流量を複数のレベルで供給できるように構成された請求項5に記載の鋼板の温度測定装置。   The steel plate temperature measuring device according to claim 5, wherein the low temperature medium is a low temperature gas, and the flow rate of the low temperature gas can be supplied from the low temperature medium supply means at a plurality of levels according to a command from the control means.
JP2008012894A 2008-01-23 2008-01-23 Temperature-measuring device of steel plate Pending JP2009174958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008012894A JP2009174958A (en) 2008-01-23 2008-01-23 Temperature-measuring device of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008012894A JP2009174958A (en) 2008-01-23 2008-01-23 Temperature-measuring device of steel plate

Publications (1)

Publication Number Publication Date
JP2009174958A true JP2009174958A (en) 2009-08-06

Family

ID=41030208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008012894A Pending JP2009174958A (en) 2008-01-23 2008-01-23 Temperature-measuring device of steel plate

Country Status (1)

Country Link
JP (1) JP2009174958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694115C1 (en) * 2018-07-03 2019-07-09 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина" Method of determining degree of blackness of surface of natural fairings of missiles during thermal tests and installation for its implementation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694115C1 (en) * 2018-07-03 2019-07-09 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина" Method of determining degree of blackness of surface of natural fairings of missiles during thermal tests and installation for its implementation

Similar Documents

Publication Publication Date Title
JP5698753B2 (en) Sheet thickness control method and apparatus
JP4217255B2 (en) Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method
US4929089A (en) Apparatus for measuring temperatures indicative of thermal conductivity
JP2014153168A (en) Emissivity measuring apparatus and emissivity measuring method
JP2010249803A (en) Thermal fatigue testing device and program
KR20140035808A (en) Film forming device
CN109871052A (en) A kind of electrothermal radiation tube temperature control equipment and its control method
US7148450B2 (en) Portable blackbody furnace
CN111707529A (en) Thermal gradient mechanical fatigue test system
JP2009174958A (en) Temperature-measuring device of steel plate
RU2008136018A (en) METHOD AND DEVICE FOR REGULATING THE COOLING TUNNEL FURNACE FOR TUNNEL FURNACE
CN105157436A (en) Rapid-heating heat treatment furnace
JP2011214980A (en) Temperature measurement device of metal plate
WO2019159339A1 (en) Orthogonally-incident-sound-characteristic measurement device and orthogonally-incident-sound-characteristic measurement method
JP2008084831A (en) Explosion-proof version heating device and dryer eqiupped therewith
JP4878234B2 (en) Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method
McGuinness et al. Strip temperature in a metal coating line annealing furnace
RU2009102544A (en) INSTALLATION FOR MEASURING THE TAPE TEMPERATURE IN THE FURNACE FOR PLANE GLASS ANNEALING AND THE OPERATION METHOD FOR THE ANNEALING FURNACE
JP5421840B2 (en) Temperature control method for reference plate in metal plate temperature measuring device
JP4093975B2 (en) Thermal vacuum test equipment
JP2009231015A (en) Uniform heating control device of tabular member, and control method of the device
KR20150044010A (en) Cargo heating system for a ship
US20230070713A1 (en) Heater for electric stovetop heater unit
JPS59108119A (en) On-line measuring and controlling system of furnace temperature
KR101383065B1 (en) Cargo heating system for a ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A072 Dismissal of procedure

Effective date: 20110628

Free format text: JAPANESE INTERMEDIATE CODE: A072