JP2009231015A - Uniform heating control device of tabular member, and control method of the device - Google Patents

Uniform heating control device of tabular member, and control method of the device Download PDF

Info

Publication number
JP2009231015A
JP2009231015A JP2008074248A JP2008074248A JP2009231015A JP 2009231015 A JP2009231015 A JP 2009231015A JP 2008074248 A JP2008074248 A JP 2008074248A JP 2008074248 A JP2008074248 A JP 2008074248A JP 2009231015 A JP2009231015 A JP 2009231015A
Authority
JP
Japan
Prior art keywords
temperature
distribution
heaters
main
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008074248A
Other languages
Japanese (ja)
Other versions
JP5117236B2 (en
Inventor
Shoichi Terai
省一 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIEI DENKI KK
Original Assignee
NICHIEI DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIEI DENKI KK filed Critical NICHIEI DENKI KK
Priority to JP2008074248A priority Critical patent/JP5117236B2/en
Publication of JP2009231015A publication Critical patent/JP2009231015A/en
Application granted granted Critical
Publication of JP5117236B2 publication Critical patent/JP5117236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device capable of optimizing an individual electric power supply amount to a plurality of electric heaters used in a heat treatment process against a tabular member, and of controlling to achieve a state that the whole face has a uniform temperature matching the target temperature, that is, that there is no unevenness in temperature distribution. <P>SOLUTION: A uniform heating control device of the tabular member is equipped with a distribution thermometer 13 to measure the distribution temperature by arranging respective distribution temperature sensors in the vicinity of a plurality pieces of heaters H1 to H8 to constitute a hot plate 11 in order to heat the tabular member, the main temperature adjuster 14 in which by arranging the main temperature sensor in order to carry out automatic control at a position to best reflect the present temperature of the hot plate, an output command value (%) of all the heaters is obtained by that information, a uniform heating controller 16 in which by comparing individual temperatures obtained from the distribution thermometer and the current temperature obtained from the main temperature adjuster, a suitable output value (%) is sent to the individual heaters via an electric power adjuster, and the electric power adjuster 19 to carry out electric power control of the individual heaters. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、平板状部材の全面を均一に加熱するための制御装置及び同装置の制御方法に関するものである。   The present invention relates to a control device for uniformly heating the entire surface of a flat plate member and a control method for the device.

例えばサブストレート(SUBSTRATE)等と称される成膜用ターゲット基板を、一定の目標温度にムラ無く加熱するには、一定の距離に設置されたホットプレート(ヒーターパネル)を均一な温度となるように制御しなければならない。大型化する基板に対応するためには大面積のホットプレート面を均一な目標温度に保つことが要求される。加熱用ヒーターはホットプレート上をムラ無く加熱するために、あらかじめ複数に分割され配置されるが、ヒーターの加熱能力差や、媒介するホットプレート(金属)の熱伝導により部分的に温度差が発生する。この温度差を解消するためには、個々のヒーターをそれぞれ同じ温度を保つ為の温度制御が必要となる。   For example, in order to uniformly heat a deposition target substrate called a substrate (SUBSTRATE) or the like to a constant target temperature, a hot plate (heater panel) installed at a constant distance is set to a uniform temperature. Must be controlled. In order to cope with an increasing substrate, it is required to maintain a large area hot plate surface at a uniform target temperature. Heating heaters are divided and arranged in advance in order to heat the hot plate evenly, but temperature differences occur partially due to the heating capacity difference of the heater and the heat conduction of the hot plate (metal) that mediates. To do. In order to eliminate this temperature difference, temperature control is required to maintain the same temperature for each heater.

それぞれのヒーターを個別の温度調節計を用いて独立で制御した場合、1.昇温途中における各ヒーター間の温度差の拡大を抑制するためにそれぞれの温度調節計との間で現在温度に関する情報交換を行いながら温度差を抑制するための制御が必要となる、2.それぞれの温度調節計は、隣接するヒーターの発熱やプレートの熱伝導の影響を受けるため、該当するヒーターが発生する熱量だけでは所要の温度特性が得られず、個々の温度調節計が適正な温度調節を行う為に必要な加熱条件が得られ難い。3.さらに、ヒーター制御点数分の自動温度調節計を必要とし、且つ昇温度課程における均熱化の為には「同じ温度に整えるため」の制御を必要とするため、制御点数に比例した機器および回路が必要となり、結果費用が比例して増加する。   When each heater is controlled independently using a separate temperature controller: In order to suppress the expansion of the temperature difference between the heaters during the temperature rise, control for suppressing the temperature difference is required while exchanging information on the current temperature with each temperature controller. Each temperature controller is affected by the heat generated by the adjacent heater and the heat conduction of the plate, so the required temperature characteristics cannot be obtained only by the amount of heat generated by the corresponding heater, and each temperature controller has an appropriate temperature. It is difficult to obtain the heating conditions necessary for adjustment. 3. In addition, an automatic temperature controller for the number of heater control points is required, and control for “same temperature adjustment” is required for soaking in the temperature rising process. And the resulting costs increase proportionally.

このような問題に対処するためのものとして、例えば特開2005−174943号の発明があり、同号のものは複数のパネル状ヒーター間の加熱領域における温度分布を、低コストでシンプルな構成により短時間で均一化できる方法と装置を提供する目的を有している。同号の発明は加熱対象の区画された加熱面に対向するヒーターを有するとともに、ガス流通孔を設けて、ヒーター設定温度よりも低温のガスを流動させることとしており、そのためガスが加熱対象に及ぼす影響を避けることができない。また、ガスの目的位置への誘導や流動時間等には時間もかかり、前記したサブストレート等の基板用に適当であるとはいえない。また、特開2001−336880号はプラズマディスプレイパネル焼成炉の均熱制御に関する発明を開示しており、ヒーターブロック間の設定温度差に起因して特定のヒーターブロックの温度が設定温度から逸脱するのを防止し、ガラス基板を均一に加熱することができるとしている。しかしながら、複数のヒーターによる「個別温度制御」が必要となる点では従来同様と考えられる。   In order to deal with such a problem, for example, there is an invention disclosed in Japanese Patent Application Laid-Open No. 2005-174943, which is a low-cost and simple configuration for temperature distribution in a heating region between a plurality of panel heaters. The object is to provide a method and apparatus that can be uniformized in a short time. The invention of the same number has a heater facing the partitioned heating surface to be heated, and is provided with a gas flow hole to flow a gas having a temperature lower than the heater set temperature, so that the gas has an effect on the heating target. The effect cannot be avoided. Further, it takes time to guide the gas to the target position and flow time, and it is not suitable for the substrate such as the substrate described above. Japanese Patent Laid-Open No. 2001-336880 discloses an invention related to soaking control of a plasma display panel baking furnace, and the temperature of a specific heater block deviates from the set temperature due to a set temperature difference between the heater blocks. The glass substrate can be heated uniformly. However, it is considered to be the same as in the past in that “individual temperature control” by a plurality of heaters is required.

特開2005−174943号JP-A-2005-174943 特開2001−336880号JP 2001-336880 A

本発明は前記の点に着目してなされたもので、その課題は、半導体やフラットパネルディスプレイ(FPD)、薄膜太陽電池パネル等の真空成膜プロセスにおける基板等の平板状部材に対する熱処理工程で使用される複数の電気ヒーター(電気的加熱手段)への個別電力供給量を最適化し、目標温度と合致した、且つ全面が均一な温度(温度分布のムラがない状態)になるように制御することが可能な制御装置を提供することである。また本発明の他の課題は、極めて簡素な構成を持ち、且つ自動で、主温度調節下で一律に制御されるそれぞれのヒーターへの出力を個別に最適化することができる制御方法を提供することである。   The present invention has been made paying attention to the above points, and the problem is that it is used in a heat treatment process for a flat member such as a substrate in a vacuum film forming process of a semiconductor, a flat panel display (FPD), a thin film solar cell panel or the like. Optimize the individual power supply amount to multiple electric heaters (electric heating means) to be controlled so that the temperature is consistent with the target temperature and the entire surface is uniform (there is no uneven temperature distribution) It is to provide a control device capable of performing the above. Another object of the present invention is to provide a control method having an extremely simple configuration and capable of automatically optimizing the output to each heater that is automatically and uniformly controlled under main temperature control. That is.

前記の課題を解決するため、本発明は、平板状部材の全面を均一に加熱するための、ホットプレートを有する均熱制御装置について、ホットプレートを構成する複数個のヒーターの近傍にそれぞれ分布温度センサーを配置して分布温度を測定する分布温度計と、ホットプレートの現在温度を最も反映する位置に自動制御するための主温度センサーを配置し、その情報で全ヒーターの出力指令値(%)を得る主温度調節計と、分布温度計から得た個々の温度と主温度調節計から得た現在温度とを比較し、個々のヒーターへ電力調整器を介して適正な出力値(%)を送る均熱制御器と、個々のヒーターの電力制御を行う上記電力調整器とを具備して構成するという手段を講じたものである(請求項1)。   In order to solve the above-described problems, the present invention relates to a soaking control device having a hot plate for uniformly heating the entire surface of a flat plate-like member, each having a distributed temperature in the vicinity of a plurality of heaters constituting the hot plate. A distribution thermometer that measures the distribution temperature by arranging the sensor and a main temperature sensor for automatic control to the position that best reflects the current temperature of the hot plate are arranged, and the output command value (%) of all heaters with that information Compare the individual temperature obtained from the distribution thermometer with the current temperature obtained from the main temperature controller, and supply the appropriate output value (%) to the individual heater via the power regulator. Means for providing a soaking controller and a power regulator for controlling the power of individual heaters are provided (claim 1).

上記構成中の分布温度計はヒーター数と同数個の分布温度検出センサーからの温度信号を処理して個々の温度に変換するものであり、また均熱制御器は、分布温度計から得た個々の温度情報と主温度調節計から得た主現在温度情報から当該する位置との間の温度差を算出し、主温度調節計が指令する加熱量を適正化するものである。本発明の装置により、ヒーター即ち電気的加熱手段を用いて、加熱対象の平板状部材を均一な温度即ち温度差や温度分布のムラがない状態になるように制御できるようになる。   The distributed thermometer in the above configuration processes temperature signals from the same number of distributed temperature detection sensors as the number of heaters and converts them into individual temperatures. The soaking controller is an individual temperature obtained from the distributed thermometer. The temperature difference between the relevant position is calculated from the current temperature information and the main current temperature information obtained from the main temperature controller, and the heating amount commanded by the main temperature controller is optimized. The apparatus of the present invention makes it possible to control a flat member to be heated so that there is no uniform temperature, that is, a temperature difference or uneven temperature distribution, using a heater, that is, an electric heating means.

また本発明では、主温度計にて測定した温度及び分布温度計にて測定した分布温度に基いて温度差を得るとともに、得られた温度差分を調整する為の均熱制御器と、目標温度を一括管理する主温度調節計と、個々の電力調整器とを具備して構成された装置の制御方法として、複数個のヒーターを有するホットプレートを目標の温度と一致させる為に、主温度調節計にて決定した出力で全ヒーターに適正な電力の供給を行う際に、それぞれのヒーターに配置されている分布温度センサーにて個々のヒーター近傍部の現在温度を測定し、分布温度群中の最も低い温度を基準とし、個々の分布温度との温度差を算出し、算出された温度差を過出力分として抑制量を算出し、その結果を抑制制御部にて主温度調節計の指令信号と合成し、電力調整器への出力を最適化し、ホットプレートの各部分の加熱バランスを均一となるように適正化し、表面温度を均一化する工程を経るという手段を講じている(請求項2)。   Further, in the present invention, a temperature difference is obtained based on the temperature measured by the main thermometer and the distribution temperature measured by the distribution thermometer, and the soaking controller for adjusting the obtained temperature difference, and the target temperature As a control method for an apparatus comprising a main temperature controller that collectively manages power and individual power regulators, the main temperature control is performed so that a hot plate having a plurality of heaters matches a target temperature. When supplying appropriate power to all heaters with the output determined by the meter, the current temperature in the vicinity of each heater is measured by the distributed temperature sensor located in each heater, and Using the lowest temperature as a reference, calculate the temperature difference from each distribution temperature, calculate the suppression amount using the calculated temperature difference as an overpower, and use the suppression controller to send the command signal to the main temperature controller To the power regulator To optimize the output, optimizing so that uniform heating balance of the parts of the hot plate, and take measures that go through the process for equalizing the surface temperature (claim 2).

上記の方法により、請求項1記載の均熱制御装置を最も適切に制御し、加熱対象の平板状部材が均一な温度即ち温度差や温度分布のムラがない状態に加熱することができる。   By the above method, the soaking control device according to claim 1 is most appropriately controlled, and the flat plate member to be heated can be heated to a uniform temperature, that is, a temperature difference and a temperature distribution non-uniformity.

本発明は以上のように構成されかつ作用するものであるから、上記の簡素な構成により個別のヒーター出力のバランスを自動で調節することができる平板状部材の均一加熱装置を提供することができるという効果を奏する。また本発明によれば、加熱対象である基板のような平板状部材の熱処理工程に適用し、ヒーター等の電気的加熱手段を、温度差や温度分布のムラがない均一な加熱状態になるように制御することで、真空成膜工程における基板加熱の温度差による製品不良の発生を低下させることが可能になり、且つ過剰な電力分を制限するために電力の削減にも寄与し、また装置設計の課程でのヒーターの熱量設計等に係る設計、及び調整の為の負担を軽減できるという効果を奏する。   Since the present invention is configured and operates as described above, it is possible to provide a flat member uniform heating apparatus capable of automatically adjusting the balance of individual heater outputs with the above simple configuration. There is an effect. Further, according to the present invention, it is applied to a heat treatment process of a flat member such as a substrate to be heated, and an electric heating means such as a heater is brought into a uniform heating state without temperature difference and temperature distribution unevenness. It is possible to reduce the occurrence of product defects due to the temperature difference of substrate heating in the vacuum film formation process, and to contribute to the reduction of power in order to limit the excess power, and the equipment There is an effect that it is possible to reduce the burden for designing and adjusting the heat quantity design of the heater in the design process.

以下図示の実施形態を参照して本発明をより詳細に説明する。
〈平板状部材の均一加熱装置の構成〉
図1は本発明の一例を示す平板状部材の均熱制御装置10の説明図であり、11は平板状部材の全面を均一に加熱するホットプレート(ヒーターパネル)を示すもので、平板状部材である基板を加熱する均一加熱機構部を構成する。図示のホットプレート11の場合、あらかじめ全面を目標温度に加熱できる容量を持ったH1〜H8の符号を付した8個のヒーター12をホットプレート11の表面に配置して構成されている。
Hereinafter, the present invention will be described in more detail with reference to the illustrated embodiments.
<Configuration of uniform heating device for flat plate member>
FIG. 1 is an explanatory view of a flat plate member soaking control apparatus 10 showing an example of the present invention, and 11 shows a hot plate (heater panel) for uniformly heating the entire surface of the flat plate member. A uniform heating mechanism for heating the substrate is configured. In the case of the hot plate 11 shown in the figure, eight heaters 12 having the symbols H1 to H8 having a capacity capable of heating the entire surface to a target temperature are arranged on the surface of the hot plate 11 in advance.

実機における上記の基板加熱機構部は、その処理方法により様々であり、加熱特性、熱伝導率、外乱などの複数の条件によりホットプレート表面の全域を均一な温度に保つためのヒーター熱容量設計及び配置は容易なものではない。このため本発明の装置では、図1における8個のヒーターH1〜H8はそれぞれがホットプレート表面の8分割された各分割領域を加熱するために必要となる相応の加熱能力があるものとし、且つ又あらかじめ得た経験値や実測値を勘案して、加熱処理に適した被加熱位置に配置するものとする。なおこのホットプレート11の面積は、平板状部材の全面を均一に加熱することができるものとする。ヒーターH1〜H8としてはシースヒーターを使用して好適な成果を得ることができた。   The substrate heating mechanism in the actual machine varies depending on the processing method, and the heater heat capacity design and arrangement for keeping the entire surface of the hot plate at a uniform temperature under a plurality of conditions such as heating characteristics, thermal conductivity, and disturbance. Is not easy. For this reason, in the apparatus of the present invention, each of the eight heaters H1 to H8 in FIG. 1 has an appropriate heating capacity necessary for heating each of the eight divided regions on the surface of the hot plate, and In addition, the empirical value and the actual measurement value obtained in advance are taken into consideration, and it is assumed that the heating position is suitable for the heat treatment. The area of the hot plate 11 is such that the entire surface of the flat plate member can be heated uniformly. As the heaters H1 to H8, a sheath heater was used, and suitable results could be obtained.

また、ヒーターH1〜H8の位置には、ヒーター数に等しい数の分布温度検出センサーTC1〜TC8が1個ずつ配置されている。この分布温度検出センサーTC1〜TC8は、個々のヒーターH1〜H8の熱影響を受けるヒーター近傍の位置に配置されており、また、これらヒーターにより加熱されるホットプレート表面には、被加熱対象である基板等の平板状部材への温度を最も反映する位置に主目標温度検出センサーTC-Mを配置している。これらの温度検出センサーTC1〜TC8、TC−Mに用いる温度センサーとしては熱電対が適当である。   In addition, at the positions of the heaters H1 to H8, a number of distributed temperature detection sensors TC1 to TC8 equal to the number of heaters are arranged one by one. The distributed temperature detection sensors TC1 to TC8 are arranged at positions near the heaters that are affected by the heat of the individual heaters H1 to H8, and the surface of the hot plate heated by these heaters is an object to be heated. The main target temperature detection sensor TC-M is disposed at a position that most reflects the temperature of the flat plate member such as a substrate. Thermocouples are suitable as temperature sensors used for these temperature detection sensors TC1 to TC8 and TC-M.

上記温度検出センサーTC1〜TC8には均熱制御装置15の均熱制御器16が制御する装置分布温度計13にて高速で温度データが順次取り込まれ、得られた個々の現在温度情報は均熱制御器16に送られ、当該位置の現在温度情報として記憶される。   In the temperature detection sensors TC1 to TC8, temperature data is sequentially taken in at a high speed by the device distribution thermometer 13 controlled by the soaking controller 16 of the soaking controller 15, and the obtained current temperature information is soaking. It is sent to the controller 16 and stored as current temperature information of the position.

本発明の装置は、主現在温度を主目標温度に適合させる目的で、ホットプレート11の温度を自動制御するために必要な出力信号を演算する主温度調節計14と個別のヒーターH1〜H8の出力の適正化を図る為の均熱制御器16を具備している。主温度調節計14は基板加熱に用いられるホットプレート11を一群と認識し、当該パネル11の目標温度を自動制御することを目的として指令信号を以下に説明する均熱制御部15へ発するものである。   The apparatus of the present invention includes a main temperature controller 14 for calculating an output signal necessary for automatically controlling the temperature of the hot plate 11 and the individual heaters H1 to H8 for the purpose of adapting the main current temperature to the main target temperature. A soaking controller 16 for optimizing the output is provided. The main temperature controller 14 recognizes the hot plates 11 used for substrate heating as a group, and issues a command signal to the soaking control unit 15 described below for the purpose of automatically controlling the target temperature of the panel 11. is there.

上記均熱制御部15は、主温度調節計14からの温度制御指令信号と、個別ヒーター間の温度差を算定し制御するから副温度調節計に相当する。即ち均熱制御器16は、個別ヒーター位置の分布温度計13から得た温度情報と、主温度調節計14から得たホットプレート11の主現在温度情報を基に、該当する温度と基準とする温度の間の温度差を測定し、それを基準温度に合致させる為の出力抑制制御を行い、主温度調節計14が発した指令値(%)と調整値(%)を整合させ、ヒーターの加熱量に比例する出力値(%)を電力調整器19へ供給させる為の自動ゲイン(勾配)調整器である。図において、17は温度差検出部、18は出力制御部を示しており、これらにより抑制制御部12を構成している。   The soaking control unit 15 corresponds to a sub-temperature controller because it calculates and controls the temperature control command signal from the main temperature controller 14 and the temperature difference between the individual heaters. That is, the soaking controller 16 uses the temperature information obtained from the distribution thermometer 13 at the individual heater position and the main current temperature information of the hot plate 11 obtained from the main temperature controller 14 as the corresponding temperature and reference. Measures the temperature difference between the temperatures, performs output suppression control to match it with the reference temperature, matches the command value (%) issued by the main temperature controller 14 and the adjustment value (%), It is an automatic gain (gradient) adjuster for supplying an output value (%) proportional to the heating amount to the power adjuster 19. In the figure, reference numeral 17 denotes a temperature difference detection unit, and 18 denotes an output control unit, which constitutes the suppression control unit 12.

上述した電力調整器19は、平板状部材の全面を均一に加熱するためにパネル本体表面に分割配置された上記のヒーターH1〜H8と同数個からなり、ヒーターH1〜H8への供給電力の電力を調節することで熱量を制御する事ができる機器である。図示の例において、電力調整器19には、サイリスタを使用している。   The power regulator 19 described above is composed of the same number of the heaters H1 to H8 that are divided and arranged on the surface of the panel body in order to uniformly heat the entire surface of the flat plate member. It is a device that can control the amount of heat by adjusting the. In the illustrated example, a thyristor is used as the power regulator 19.

〈平板状部材の均一加熱装置の制御方法〉
上記の構成を有する本発明に係る平板状部材の均一加熱装置は、以下に説明するようにして作動し、また制御する。
<Control method of uniform heating device for flat plate member>
The flat member uniform heating apparatus according to the present invention having the above-described configuration operates and controls as described below.

〈主温度調節方法〉
主温度調節計14は、主温度検出センサー20において測定した現在温度を、目標温度に合致させるための出力信号を求める。電力調整器19は、汎用の温度調節計による温度制御器としてサイリスタ(SCR1〜8)を使用して、上記の出力信号を指令としてこれに比例した電力に調節してヒーターH1〜8に出力し加熱する。
<Main temperature control method>
The main temperature controller 14 obtains an output signal for matching the current temperature measured by the main temperature detection sensor 20 with the target temperature. The power regulator 19 uses a thyristor (SCR 1-8) as a temperature controller with a general-purpose temperature controller, adjusts the output signal to a power proportional to this as a command, and outputs it to the heaters H1-8. Heat.

〈加熱プロセス中の温度による処理状態の規定〉
このとき、現在温度(PV)が目標温度(SV)に対して、あらかじめ別に規定された温度差分(X)を差し引いた温度到達位置に未達成の場合を「昇温中」と規定し、またその温度以上に到達した場合を「均温中」と規定、主目標温度以上の現在温度を「過加熱」と規定する。
<Regulation of treatment state by temperature during heating process>
At this time, the case where the current temperature (PV) is not achieved at the temperature reaching position obtained by subtracting the temperature difference (X) separately defined in advance from the target temperature (SV) is defined as “heating”, and When the temperature reaches that temperature, the temperature is defined as “soaking”, and the current temperature above the main target temperature is defined as “overheating”.

〈個別温度測定〉
ヒーターH1〜8近傍の現在温度を分布温度計13により読み取り、パネル上の各温度を把握する。
<Individual temperature measurement>
The current temperature in the vicinity of the heaters H1 to H8 is read by the distribution thermometer 13, and each temperature on the panel is grasped.

〈温度差による各ヒーターの出力抑制方法〉
「昇温中」プロセスにおいて、主温度調節計14による出力指令で、電力を制御するサイリスタ(SCR1〜8)は、このままではそれぞれのヒーターH1〜H8の異なる熱量により、図2に示したようにパネル面の温度に差を生じてしまう。そこで本発明では、分布温度計13により測定された現在温度の各温度情報の内、最も低い温度(図2の例ではTC2、TC7、昇温中のみ)を基準温度とし、その他の箇所の現在温度との温度差をそれぞれ算出する。算出された温度差は、それぞれのヒーターH1〜H8の「過渡出力分(%)」として計算処理され、主温度調節計14から一律に指令される調節信号「指令(パワー%)」に調整量(抑制値=ゲイン調整(%))を合成し(指令値(%)*調整値(%)=出力値(%))を求め、該当する電力調整器19(SCR1〜8)への指令をする(以後繰り返し)。
<Method of suppressing output of each heater due to temperature difference>
As shown in FIG. 2, the thyristors (SCR 1 to 8) that control the electric power according to the output command from the main temperature controller 14 in the “rising” process, as shown in FIG. A difference in the temperature of the panel surface will occur. Therefore, in the present invention, among the temperature information of the current temperature measured by the distribution thermometer 13, the lowest temperature (TC2, TC7, only during temperature increase in the example of FIG. 2) is set as the reference temperature, and the current values at other locations. The temperature difference from the temperature is calculated. The calculated temperature difference is calculated and processed as “transient output (%)” of each of the heaters H1 to H8, and is adjusted to an adjustment signal “command (power%)” uniformly commanded from the main temperature controller 14. (Suppression value = gain adjustment (%)) is synthesized to obtain (command value (%) * adjustment value (%) = output value (%)), and a command to the corresponding power regulator 19 (SCR 1 to 8) is issued. (Repeat thereafter)

図2の例においては、最も高温のTC7のヒーターに対する出力が最も抑制され、次に高温のTC4、TC3及びTC6に対する出力が抑制されることになる。これにより昇温中は、それぞれの点の温度分布が昇温効率の低い位置を基準に均一になるよう個別にヒーターH1〜H8の出力を調節しながら、全パネルを一括して主温度調節計14の支配下で加熱処理を行うことが可能になる。さらに、本発明による効果について図3を参照して説明する。図3は本発明適用前後における温度分布の変化を示しており、図3Aでは200℃を目標とする加熱過程において、前記8個のヒーターの温度差は約188〜205℃に及び、20℃超の温度差が見られるのに対して、本発明を適用した後の温度差は約200〜204℃の範囲に収まっている。図3Bは70℃昇温中に本発明を適用した場合のもので、前記と同じく8個のヒーター温度は制御開始時点において、約60〜72℃に及んでおり、約12℃の温度差が見られるのに対して、本発明を適用した後には、温度差が約69〜72℃と3℃程の範囲に収まっている。このように、発明適用前の大きな温度差が適用後には著しく減少し、収束する傾向を示すことにより、本発明の顕著な効果を確認することができた。   In the example of FIG. 2, the output to the heater of the hottest TC7 is most suppressed, and then the output to the hotter TC4, TC3 and TC6 is suppressed. As a result, during temperature rising, the main temperature controller is collectively adjusted for all the panels while individually adjusting the outputs of the heaters H1 to H8 so that the temperature distribution at each point becomes uniform with reference to the position where the temperature raising efficiency is low. Heat treatment can be performed under the control of 14. Further, the effect of the present invention will be described with reference to FIG. FIG. 3 shows the change in temperature distribution before and after the application of the present invention. In FIG. 3A, in the heating process targeting 200 ° C., the temperature difference of the eight heaters ranges from about 188 to 205 ° C. and exceeds 20 ° C. The temperature difference after application of the present invention is in the range of about 200 to 204 ° C. FIG. 3B shows the case where the present invention is applied during the temperature rise of 70 ° C., and the eight heater temperatures reach about 60 to 72 ° C. at the start of the control as described above, and the temperature difference of about 12 ° C. In contrast, after application of the present invention, the temperature difference is in the range of about 69-72 ° C. and about 3 ° C. Thus, the remarkable effect of the present invention could be confirmed by showing a tendency that a large temperature difference before application of the invention is remarkably reduced after application and converges.

このような構成及び効果を示す本発明によれば、次のような事柄が可能である。
・個々のヒーターの集合体であるホットプレート(ヒーターパネル)を一群として定義し一台の温度調節計の支配下により温度制御を行いながら、個別ヒーターの出力の微調整する事で、全体を加熱する為に必要な温度制御条件に対し、大きな影響を与えずに均熱処理が可能になり、結果主目標温度への管理を最小限に簡略化することができる。
・ヒーターパネル上に発生する温度ムラは随時繰り返し微調整(ゲイン調整)するため、主温度調節計の温度制御条件(PIDパラメータ他)に変化を加えずに均熱制御が可能になるとともに、基板加熱プロセス中の様々な加熱条件の変化に対しても、複雑な定義を用いずに対応することが可能となる。
・個別調整のために必要な多数の温度測定用の分布温度計13は、連続した温度変化を途切れなく監視するほどの高速応答性が必要無いため、スキャナー方式(温度切替)方法を用い、一台の温度計にて測定を行うことが可能である。
According to the present invention showing such a configuration and effect, the following matters are possible.
・ Hot plate (heater panel), which is an assembly of individual heaters, is defined as a group and the temperature is controlled under the control of one temperature controller, and the entire heater is heated by fine adjustment of the output of each individual heater. Therefore, it is possible to perform soaking without greatly affecting the temperature control conditions necessary for the control, and as a result, management to the main target temperature can be simplified to a minimum.
・ Temperature unevenness generated on the heater panel is repeatedly fine-adjusted (gain adjustment) at any time, making it possible to control soaking without changing the temperature control conditions of the main temperature controller (PID parameters, etc.) It is possible to cope with changes in various heating conditions during the heating process without using complicated definitions.
A large number of temperature measuring distribution thermometers 13 required for individual adjustment do not require high-speed response enough to continuously monitor changes in temperature, and therefore use a scanner method (temperature switching) method. It is possible to measure with a thermometer on the table.

本発明に係る平板状部材の均熱制御装置の一例を示す説明図である。It is explanatory drawing which shows an example of the soaking | uniform-heating control apparatus of the flat member which concerns on this invention. 同じく平板状部材の均熱制御装置の加熱制御方法における均熱制御の具体例を示すグラフである。It is a graph which shows the specific example of the soaking | uniform-heating control in the heating control method of the soaking | uniform-heating control apparatus of a flat member similarly. 本発明による効果を示すもので、Aは200℃平衡時における本発明適用前後の温度差の変化を示すグラフ、Bは70℃昇温中における本発明適用前後の温度差の変化を示すグラフである。The effect of the present invention is shown. A is a graph showing a change in temperature difference before and after application of the present invention at 200 ° C., and B is a graph showing a change in temperature difference before and after application of the present invention during 70 ° C. is there.

符号の説明Explanation of symbols

10 平板状部材の均熱制御装置
11 ホットプレート
12 抑制制御部
13 分布温度計
14 主温度調節計
15 均熱制御装置
16 均熱制御器
17 温度差検出部
18 出力制御部
19 電力調整器
20 主温度検出センサー
H1〜H8 ヒーター
SCR1〜8 温度制御器としてのサイリスタ
TC1〜TC8 温度検出センサー
DESCRIPTION OF SYMBOLS 10 Soaking control apparatus of flat plate member 11 Hot plate 12 Inhibition control part 13 Distribution thermometer 14 Main temperature controller 15 Soaking control apparatus
16 Heat equalization controller 17 Temperature difference detection unit 18 Output control unit 19 Power regulator 20 Main temperature detection sensor H1 to H8 Heater SCR1-8 Thyristor as temperature controller TC1 to TC8 Temperature detection sensor

Claims (2)

平板状部材の全面を均一に加熱するための、ホットプレートを有する均熱制御装置であって、
ホットプレートを構成する複数個のヒーターの近傍にそれぞれ分布温度センサーを配置して分布温度を測定する分布温度計と、
ホットプレートの現在温度を最も反映する位置に自動制御するための主温度センサーを配置し、その情報で全ヒーターの出力指令値(%)を得る主温度調節計と、
分布温度計から得た個々の温度と主温度調節計から得た現在温度とを比較し、個々のヒーターへ電力調整器を介して適正な出力値(%)を送る均熱制御器と、
個々のヒーターの電力制御を行う上記電力調整器と
を具備して構成された平板状部材の均熱制御装置。
A soaking control device having a hot plate for uniformly heating the entire surface of a flat plate member,
A distribution thermometer that measures the distribution temperature by arranging a distribution temperature sensor near each of the plurality of heaters constituting the hot plate;
A main temperature controller that automatically controls the main temperature sensor to the position that most reflects the current temperature of the hot plate, and obtains the output command value (%) of all heaters with that information, and
A soaking controller that compares the individual temperature obtained from the distributed thermometer with the current temperature obtained from the main temperature controller and sends an appropriate output value (%) to the individual heater via the power regulator,
A soaking control device for a flat plate member comprising the above power regulator for controlling the power of each heater.
主温度計にて測定した温度及び分布温度計にて測定した分布温度に基づいて温度差を得るとともに、得られた温度差分を調整する為の均熱制御器と、目標温度を一括管理する主温度調節計と、個々の電力調整器とを具備して構成された装置の制御方法であって、
複数個のヒーターを有するホットプレートを目標の温度と一致させる為に、主温度調節計にて決定した出力で全ヒーターに適正な電力の供給を行う際に、
それぞれのヒーターに配置されている分布温度センサーにて個々のヒーター近傍部の現在温度を測定し、分布温度群中の最も低い温度を基準とし、個々の分布温度との温度差を算出し、
算出された温度差を過出力分として抑制量を算出し、その結果を抑制制御部にて主温度調節計の指令信号と合成し、電力調整器への出力を最適化し、
ホットプレートの各部分の加熱バランスを均一となるように適正化し、表面温度を均一化する工程を経る
平板状部材の均熱制御装置の加熱制御方法。
A temperature difference is obtained based on the temperature measured by the main thermometer and the distribution temperature measured by the distribution thermometer, and a temperature equalization controller for adjusting the obtained temperature difference and a target temperature are collectively managed. A method for controlling an apparatus comprising a temperature controller and individual power regulators,
When supplying appropriate power to all heaters with the output determined by the main temperature controller in order to match the hot plate with multiple heaters with the target temperature,
Measure the current temperature in the vicinity of each heater with the distribution temperature sensor arranged in each heater, calculate the temperature difference with each distribution temperature based on the lowest temperature in the distribution temperature group,
Calculate the amount of suppression using the calculated temperature difference as the excess output, synthesize the result with the command signal of the main temperature controller in the suppression control unit, optimize the output to the power regulator,
A heating control method for a flat plate member soaking control device, wherein the heating balance of each part of the hot plate is optimized so as to be uniform, and the surface temperature is made uniform.
JP2008074248A 2008-03-21 2008-03-21 Apparatus for controlling soaking of flat plate member and method for controlling the same Expired - Fee Related JP5117236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074248A JP5117236B2 (en) 2008-03-21 2008-03-21 Apparatus for controlling soaking of flat plate member and method for controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074248A JP5117236B2 (en) 2008-03-21 2008-03-21 Apparatus for controlling soaking of flat plate member and method for controlling the same

Publications (2)

Publication Number Publication Date
JP2009231015A true JP2009231015A (en) 2009-10-08
JP5117236B2 JP5117236B2 (en) 2013-01-16

Family

ID=41246189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074248A Expired - Fee Related JP5117236B2 (en) 2008-03-21 2008-03-21 Apparatus for controlling soaking of flat plate member and method for controlling the same

Country Status (1)

Country Link
JP (1) JP5117236B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257438A (en) * 2011-06-10 2012-12-27 Chino Corp Power control device, and power control method
JP2018190555A (en) * 2017-04-28 2018-11-29 Dowaサーモテック株式会社 Heater control mechanism, heat treatment equipment and heater control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104185312A (en) * 2014-09-15 2014-12-03 芜湖长启炉业有限公司 Convex seepage pollution preventing electric heater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220308A (en) * 1985-07-19 1987-01-28 Hitachi Ltd Method and apparatus for heat treatment
JP2002313529A (en) * 2001-04-18 2002-10-25 Sakaguchi Dennetsu Kk Divided plate heater
JP2003086528A (en) * 2001-09-07 2003-03-20 Dainippon Screen Mfg Co Ltd Heat-treatment apparatus
JP2006338676A (en) * 2000-09-29 2006-12-14 Hitachi Kokusai Electric Inc Temperature control method, heat treatment apparatus, and method of manufacturing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220308A (en) * 1985-07-19 1987-01-28 Hitachi Ltd Method and apparatus for heat treatment
JP2006338676A (en) * 2000-09-29 2006-12-14 Hitachi Kokusai Electric Inc Temperature control method, heat treatment apparatus, and method of manufacturing semiconductor device
JP2002313529A (en) * 2001-04-18 2002-10-25 Sakaguchi Dennetsu Kk Divided plate heater
JP2003086528A (en) * 2001-09-07 2003-03-20 Dainippon Screen Mfg Co Ltd Heat-treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257438A (en) * 2011-06-10 2012-12-27 Chino Corp Power control device, and power control method
JP2018190555A (en) * 2017-04-28 2018-11-29 Dowaサーモテック株式会社 Heater control mechanism, heat treatment equipment and heater control method
JP6997535B2 (en) 2017-04-28 2022-01-17 Dowaサーモテック株式会社 Heater control mechanism, heat treatment device and heater control method

Also Published As

Publication number Publication date
JP5117236B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
RU2557113C2 (en) Method of furnace temperature control for furnace with direct heating and control device
KR101751624B1 (en) Substrate treatment device, semiconductor-device manufacturing method, and recording medium
KR101648082B1 (en) Apparatus and method for controlling heating of base within chemical vapour deposition chamber
JP2004510338A (en) System and method for controlling movement of a workpiece in a heat treatment system
JP5026549B2 (en) Heating control system, film forming apparatus including the same, and temperature control method
CN110565074B (en) Susceptor heating method and susceptor heating apparatus
JP2002515648A (en) Heating reactor temperature control system
WO2001079942A1 (en) Controller, temperature regulator and heat treatment apparatus
US7906402B2 (en) Compensation techniques for substrate heating processes
TW200917402A (en) Heat processing apparatus, method of automatically tuning control constants, and storage medium
JP6409876B2 (en) Control device
TWI381453B (en) Heat treatment apparatus, heat treatment method and memory medium
KR20130111337A (en) Vacuum evaporation apparatus
JP5117236B2 (en) Apparatus for controlling soaking of flat plate member and method for controlling the same
US11373887B2 (en) Heat treatment method of substrate and apparatus thereof
JP4868091B2 (en) Heat treatment method for long material, method for producing long material, and heat treatment furnace used in those methods
JP3776297B2 (en) Control system
KR101994570B1 (en) Heat treatment apparatus and heat treatment method
KR20130089586A (en) Heat treatment apparatus and method of controlling the same
CN114388405A (en) Temperature compensation method and semiconductor process equipment
CN104391524A (en) Muffle heat treatment furnace cascade temperature control system
JP5668301B2 (en) Temperature control method and temperature control apparatus for heating object
JP2023146890A5 (en)
KR100849012B1 (en) Heat treatment system and heat treatment method
US20230416919A1 (en) Substrate processing apparatus and temperature regulation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees