JPS59108119A - On-line measuring and controlling system of furnace temperature - Google Patents

On-line measuring and controlling system of furnace temperature

Info

Publication number
JPS59108119A
JPS59108119A JP21683482A JP21683482A JPS59108119A JP S59108119 A JPS59108119 A JP S59108119A JP 21683482 A JP21683482 A JP 21683482A JP 21683482 A JP21683482 A JP 21683482A JP S59108119 A JPS59108119 A JP S59108119A
Authority
JP
Japan
Prior art keywords
temperature
furnace
heated
furnace wall
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21683482A
Other languages
Japanese (ja)
Inventor
Kuniaki Matsumoto
松本 邦顕
Ikuo Matsuba
松葉 育雄
Masakazu Matsumoto
雅一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21683482A priority Critical patent/JPS59108119A/en
Publication of JPS59108119A publication Critical patent/JPS59108119A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/27Control of temperature characterised by the use of electric means with sensing element responsive to radiation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To make the internal temperature of an object to be heated in a furnace close to an objective temperature by estimating the furnace temperature from picture information obtained from ITVs and inputting the estimated value to a control model. CONSTITUTION:The ITVs 107-111 are fitted to windows 1030, 103-106 of the furnace 101. The ITVs 107-111 sends the distribution data 112-116 of the furnace temperature to a picture processor 117, which estimates the external temperature of the object in the furnace and applies the estimated temperature information 118 to a temperature conversion calculating device 119. The device 119 applies the estimated temperature information 118 to a control model computer 121 as the temperature input information 120 necessary for a control model. The control model computer 121 calculates the temperature inside the object to be heated by using the temperature distribution estimating model of the object 102 to be heated and controls the flow rate of feeding gas, the heating temperature of a heater, etc. by a closed loop. Consequently, the dispersion of products can be reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体の酸化・拡散炉およびCVD炉、鉄鋼の
高炉、ガラスの溶解炉、紙の蒸解釜、化学関連の反応炉
等の制御方式に関し、特に炉内におかれた抜力ロ熱物の
内部温度分布のオンライン計測方法および炉の制御方式
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to control systems for semiconductor oxidation/diffusion furnaces and CVD furnaces, steel blast furnaces, glass melting furnaces, paper digesters, chemical-related reactors, etc. In particular, the present invention relates to an online measurement method for the internal temperature distribution of a heated material placed in a furnace and a furnace control method.

〔従来技術〕[Prior art]

従来、炉内の温t1分布を制御するために(1)外壁温
度予測による制御 (市 高炉等の目視による制御 などの方法がおこなわれていた。
Conventionally, in order to control the temperature t1 distribution inside the furnace, methods such as (1) control based on outer wall temperature prediction (control by visual inspection of municipal blast furnaces, etc.) have been used.

(i+は炉外壁の温度を実測し、この実測値にもとづき
炉内の温度分布を予測しては所望の制御をおこなう方法
であり、(11〕は高炉内を目視し火炎の色などから炉
内の?M[分布を予測しては所望の制御をおこなう方法
であるが、いずれも過去の経験などにもとづく勘とノウ
ハウに頼るため精緻な炉制御が不可能であった。
(i+ is a method that measures the temperature of the outer wall of the blast furnace, predicts the temperature distribution inside the furnace based on this actual measurement value, and performs the desired control. This is a method of predicting the distribution in the reactor and performing the desired control, but these methods rely on intuition and know-how based on past experience, making precise furnace control impossible.

例えば、拡散炉内のウェハを設計で定められた温度でウ
ェハ全体を均一に拡散するための拡散炉の温度制御をお
こなう場合に、従来の拡散炉は、炉壁面全体が一定温度
になるように制御されていたが、ウェハ目体の温度測定
法が無いためウェハ温度がほとんど分っていなかった。
For example, when controlling the temperature of a diffusion furnace to uniformly diffuse the entire wafer at a temperature determined by the design, conventional diffusion furnaces do not maintain the temperature of the entire furnace wall at a constant temperature. Although it was controlled, the wafer temperature was hardly known because there was no method to measure the temperature of the wafer.

ウェハ付近に温度センサを装備すると注入されるガスが
乱流状態となり、ウェハ温度の均一性を損う事になるた
め、センサによる炉心部での温度測定を避けなければな
らない。このような理由から炉壁温度より炉内部のウェ
ハ温度を推定することのできるモデルの開発が要求され
る。従来のように拡散炉の炉壁を一定温度に加熱する方
法によると、ウェハの位置により温度が異なり最終的に
完成した半導体特性のばらつきを生じ、歩留シを減少さ
せる結果となる欠点を持つ。
If a temperature sensor is installed near the wafer, the injected gas will be in a turbulent state, which will impair the uniformity of the wafer temperature, so it is necessary to avoid using the sensor to measure the temperature in the reactor core. For these reasons, there is a need to develop a model that can estimate the wafer temperature inside the furnace from the furnace wall temperature. The conventional method of heating the furnace wall of a diffusion furnace to a constant temperature has the disadvantage that the temperature varies depending on the position of the wafer, resulting in variations in the characteristics of the final semiconductor and resulting in a reduction in yield. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は、炉内の被7’JDu物の内部温度分布
を、目標温度分布に近づけて運転できるようにするため
の、炉内温度分布のオンライン計測方法および炉を精緻
に制御する方式を提供することにある。
The purpose of the present invention is to provide an online measurement method for the temperature distribution inside the furnace and a method for precisely controlling the furnace so that the internal temperature distribution of the 7'JDu object in the furnace can be operated close to the target temperature distribution. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

炉内温度は高温(たとえば、1000t:’)のため、
耐久性等の問題から通常のセ/す(たとえば熱電対等)
を炉内のオンジ・イン計測に利用することはできない。
Because the temperature inside the furnace is high (for example, 1000t:'),
Due to issues such as durability, regular cell phones (such as thermocouples, etc.)
cannot be used for on-the-in-furnace measurements.

そこで、本発明では炉の適当な位置に窓(現状でも設置
されているようなのぞき窓のようなもの)を設け、そこ
にITV(工業テレビ)を腹数台設置し、このITVか
らの画像情報をもとに、画像処理装置を用いて炉内の温
度を推定し、この推定値を制御モデルに入力することに
より、炉内の被加熱物の内部温度を目標温度に近づけて
運転する点に特徴がある。
Therefore, in the present invention, a window (similar to the peephole that is currently installed) is provided at an appropriate position of the furnace, several ITVs (industrial televisions) are installed there, and images from the ITVs are installed. Based on the information, the temperature inside the furnace is estimated using an image processing device, and this estimated value is input into the control model to bring the internal temperature of the heated object in the furnace closer to the target temperature. There are characteristics.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明による半導体の酸化・拡散炉の第1の実
施例の構成を示す。第1図において、炉101の適当な
場所に窓1030.103〜106(窓の個数および形
状は、炉の太きさや制御方式によって異々る)を設け、
この窓の位置にITV(工業テレビ)107〜111を
設置する。このITVにより、炉内の温度分布情報11
2〜116を画像処理装置117に送る。この画像処理
装置117には、超高速パイプラインプロセッサ等によ
る高速演算機能や、大容量のリフレッシュメモリ機能を
有し、高度な画像処理をリアルタイムで処理できる機能
を具備している。この装置117により、炉内の被対象
物の外部温度(但し、ITVから見える範囲の空間)を
その熱スペクトル解析により推定し、その温度推定情報
118を温度変換計算装置119に入力する。ここで、
各ITVからの温度推定情報を、制御モデルに必要な入
力情報(たとえば、各ITVの温度分布情報を平均化し
平均化温度/ITV)とする。この温度入力情報120
を制御モデル計算装置121に入力する。ここでは、被
加熱物(ウエノ・102)温度分布推定モデルを用い、
入力した温度入力情報120を境界値(天測値)として
、炉内全ウェハ102のウェハ面内温度分布を計算によ
り求める。計算法はウェハ温度、ガス温度、およびガス
流速に対する熱流体方程式をモデル化し、温度入力情報
120を境界値とし、また、その時の流入ガス流量12
2をガス流量計123から、炉壁温度124〜126を
温度計127〜129から計測し、これらのデータに基
づいて、各ウェハ面内の温度分布を推定計算する。この
とき、下記の評価式%式%(1) ここで、  i:ウェハA(i=l、  2.・旧・・
、N)T :ウエハ面内目標温度 ’f t (r):ウエハの位置ベクトルrの点での温
度 αI(r):重み係数 において、Jが J−ΔJ<J<J+ΔJ ・・・・・曲 (2)ここで
、ΔJ:評価許容幅 の評価内に入っているかどうか判定する。もし、入って
いれば、現状の制御を継続する。もし、入っていなけれ
ば、(1)式のJを最小にするように最適計算を行ない
、ガス制御目標値130、ヒータ加熱目標値131〜1
33を求める。これらの目標値はPID制御装置として
公知のフィードバック制御装置134〜137に入力さ
れ、炉がオンライン制御される。
FIG. 1 shows the structure of a first embodiment of a semiconductor oxidation/diffusion furnace according to the present invention. In FIG. 1, windows 1030, 103 to 106 (the number and shape of the windows vary depending on the thickness and control method of the furnace) are provided at appropriate locations in the furnace 101,
ITVs (industrial televisions) 107 to 111 are installed at the positions of these windows. This ITV provides temperature distribution information inside the furnace.
2 to 116 are sent to the image processing device 117. The image processing device 117 has a high-speed calculation function such as an ultra-high-speed pipeline processor, a large-capacity refresh memory function, and the ability to perform advanced image processing in real time. This device 117 estimates the external temperature of the object in the furnace (however, the space visible from the ITV) by analyzing its thermal spectrum, and inputs the temperature estimation information 118 to the temperature conversion calculation device 119. here,
Temperature estimation information from each ITV is used as input information necessary for the control model (for example, temperature distribution information of each ITV is averaged and averaged temperature/ITV). This temperature input information 120
is input into the control model calculation device 121. Here, we use a heated object (Ueno 102) temperature distribution estimation model,
Using the input temperature input information 120 as a boundary value (astronomically measured value), the in-plane temperature distribution of the wafers of all the wafers 102 in the furnace is calculated. The calculation method models thermofluid equations for wafer temperature, gas temperature, and gas flow rate, and uses temperature input information 120 as a boundary value, and also sets the inflow gas flow rate 12 at that time as a boundary value.
2 is measured from the gas flow meter 123, and furnace wall temperatures 124 to 126 are measured from thermometers 127 to 129, and based on these data, the temperature distribution within each wafer surface is estimated and calculated. At this time, the following evaluation formula % formula % (1) Where, i: Wafer A (i=l, 2. Old...
, N)T: Wafer in-plane target temperature 'ft(r): Temperature at the point of wafer position vector r αI(r): In the weighting coefficient, J is J-ΔJ<J<J+ΔJ... Song (2) Here, ΔJ: It is determined whether the evaluation is within the evaluation tolerance range. If it is, the current control will continue. If not, perform optimal calculation to minimize J in equation (1), gas control target value 130, heater heating target value 131 to 1.
Find 33. These target values are input to feedback control devices 134-137, known as PID control devices, to control the furnace on-line.

つぎに、本発明による第2の実施例にもとづき、加熱炉
内の温度が測定不可能なとき、炉壁温度を一定にするだ
けでは被加熱物が不均一に加熱されるという欠点を改善
するために、炉内部状態を推定するモデルに基づき、力
ロ熱炉壁の温度を例えば炉壁に装備されたヒータで調整
する事により被加熱物を均一温度で加熱するように制御
する手順について詳細に説明する。
Next, based on a second embodiment of the present invention, it is possible to improve the drawback that when the temperature inside the heating furnace cannot be measured, the object to be heated is heated unevenly by simply keeping the furnace wall temperature constant. In order to achieve this, details of the procedure for controlling the temperature of the heated furnace wall to be heated at a uniform temperature by, for example, adjusting the temperature of the heated furnace wall using a heater installed on the furnace wall, based on a model that estimates the internal state of the furnace. Explain.

第2図は本発明による拡散炉の第2の実施例の構成と、
その温度制御装置との接続関係の一例を示す。第2図に
おいて、対象とする拡散炉101は円筒型のチューブで
ウェハ102はその中央部のボー1−2020に乗せら
れて炉101内へ搬送され拡散され再び炉201外へ出
て行く。問題となるのは拡散中の炉軸(Z軸)方向の炉
内の温度分布の推定である。ボート中央部にあるウェハ
は両隣りのウェハからの直接輻射及び炉壁からの直接輻
射により加熱されるので中央部のウェハは両端部のウェ
ハより高温になるものと推定される。従ってウェハを均
一温度で拡散するだめの拡散炉の温度制御は以下のよう
にして行なわれる。まず初期入力として、たとえば、ウ
ニ・・の設計(目標)温度T を最適計算装置206に
入力し、後述する計算方法によりウェハをヒータ203
,204および205で均一加熱するような対称3ゾー
ンの炉壁温度を決定する。炉壁温度が決定されると、セ
ンサ208の炉壁温度測定結果と上記最適計算装置6で
決定された炉壁温度との差分を減算器200で計算して
この差分に基づき、PIDコ/トローラ207を用いる
事によし、電源209を調整し、@記ヒータ203,2
04および205により所定の温度に加熱する。
FIG. 2 shows the configuration of a second embodiment of the diffusion furnace according to the present invention,
An example of the connection relationship with the temperature control device is shown below. In FIG. 2, the target diffusion furnace 101 is a cylindrical tube, and the wafer 102 is placed on a bow 1-2020 in the center, transported into the furnace 101, diffused, and exited the furnace 201 again. The problem is estimating the temperature distribution inside the furnace in the direction of the furnace axis (Z-axis) during diffusion. Since the wafers in the center of the boat are heated by direct radiation from the wafers on both sides and by direct radiation from the furnace walls, it is assumed that the wafers in the center will be hotter than the wafers at both ends. Therefore, the temperature control of the diffusion furnace for diffusing the wafer at a uniform temperature is performed as follows. First, as an initial input, for example, the design (target) temperature T of sea urchin... is input into the optimum calculation device 206, and the wafer is heated to
, 204 and 205 to determine the furnace wall temperatures of the three symmetrical zones to achieve uniform heating. When the furnace wall temperature is determined, the difference between the furnace wall temperature measurement result by the sensor 208 and the furnace wall temperature determined by the optimum calculation device 6 is calculated by the subtracter 200, and based on this difference, the PID co/controller 207, adjust the power supply 209, and connect the heaters 203 and 2
04 and 205 to a predetermined temperature.

次に、炉壁温度を設定する手順について説明する。i番
目のウエノ・温度をTI、i番目の両隣りのつ円ハ温度
をTj(j=i±1)、炉壁温度をTF、シリコンの熱
伝導率をKW、吸収率をa。
Next, the procedure for setting the furnace wall temperature will be explained. The temperature of the i-th wafer is TI, the temperature of the two adjacent circles on both sides of the i-th is Tj (j=i±1), the furnace wall temperature is TF, the thermal conductivity of silicon is KW, and the absorption rate is a.

ウェハ間の形態係数をG。、ウエノ・と炉壁との形態係
数をF。とするとi番目のウェハ温度T1は次の熱方程
式を解く事によシ得られる。
The view factor between wafers is G. , the view factor of Ueno and the furnace wall is F. Then, the i-th wafer temperature T1 can be obtained by solving the following thermal equation.

r’ ) dAj+afTp(r’) Fo (r *
 r’ ) dF・・・・・・・・・・・・(1ン (1ン式において、第2項は両隣りのウェハ(その表面
積をAjとする)からの輻射を表わし、第3項は炉壁(
その表面積をFとする)からの輻射を示す第3項に対し
て次のような近似を行なう。ウェハ温度Tj(r’t’
)が位置r′に対してそれr′)はr=r’の時に最大
値を取るような関数であり、それ以外のr′に対しては
1r−r’lの4乗に逆比例して小さくなるのでこの近
似が可能となる。このような近似に対して(1)式は次
のように書く事ができる。
r') dAj+afTp(r') Fo (r*
r') dF・・・・・・・・・(1n (In the 1n equation, the second term represents the radiation from the wafers on both sides (their surface area is Aj), and the third term is the furnace wall (
The following approximation is made to the third term representing the radiation from the surface area of which is F. Wafer temperature Tj(r't'
) is a function for position r', and r') is a function that takes the maximum value when r = r', and for other r's, it is inversely proportional to 1r-r'l to the 4th power. This approximation is possible because it becomes small. For such an approximation, equation (1) can be written as follows.

+aTF’f(r)+KW(Tt)Vr2T+ −−−
−−−(2)(2)式を両端のウエノ1.中間部のウエ
ノ・に分けて表わすと次のようになる。
+aTF'f(r)+KW(Tt)Vr2T+ ---
--- (2) (2) Expression 1. If it is divided into the middle part Ueno, it will be as follows.

KW(TI)VI’TI+KTF’   (i=2. 
3・−・・・、N)  ・・・・・・・・・・・・ (
3)ここで、KTF’は炉壁からの輻射を表わす項であ
る。今、定常状態でのウェハ温度に着目しウェハ間での
温度変動を調べるため拡散項を省略する。
KW(TI)VI'TI+KTF' (i=2.
3・−・・・・、N) ・・・・・・・・・・・・ (
3) Here, KTF' is a term representing radiation from the furnace wall. Now, we will focus on the wafer temperature in a steady state and omit the diffusion term to investigate temperature fluctuations between wafers.

−2Ti’  + aTF’            
      =02T+’+a (’r’l−、+ T
’l+1 ) g(r) +に=0(i=2.3.・・
・、N) 一2TN’+aTF’           =:Q・
・・・・・・・・(4) 第1番目と第N番目のウェハ間隔(#ボート長さLB)
を一定にすると、Z軸方向の不連続なウェハ位置iが、
Nが大きくなるにつれて連続量Z=iΔZ(ΔZ=LB
/N)に変わる。そこでT’+−、とT41+、を次の
ように展開する。
-2Ti' + aTF'
=02T+'+a ('r'l-,+T
'l+1) g(r)+=0(i=2.3...
・,N) -2TN'+aTF' =:Q・
・・・・・・・・・(4) Distance between 1st and Nth wafers (#Boat length LB)
When constant, the discontinuous wafer position i in the Z-axis direction is
As N increases, the continuous amount Z=iΔZ(ΔZ=LB
/N). Therefore, T'+- and T41+ are expanded as follows.

θT     θ2T =T’ + 4T3−+ 2T3− ・曲面(6)θZ
     az2 (5)、(6)式を(4)式の第2式に代入してZに関
して2回微分までとり K Iを温度依存性の非宮に小
さい定数として整理すると近似的に次式のように書ける
θT θ2T = T' + 4T3-+ 2T3- ・Curved surface (6) θZ
az2 Substituting equations (5) and (6) into the second equation of equation (4), taking the second derivative with respect to Z, and rearranging K I as a temperature-dependent non-magnetic small constant, we can approximately obtain the following equation. It can be written as follows.

(4)式の第1.第3式の境界条件式を用いる事により
(7)式の解は、 + (e   1) e −’ ) + u’Tr ・
・・・・・(8)LB となる。(8)式によって表わされるZ軸方向の温度分
布の大体の様子を第3図に示す。このように両端部に近
いウェハは中間部のウェハより低温となる。しかるにワ
エハ間温度均−化制御の方法は炉壁温度TFを唯一の操
作量として、炉壁温度の両端部を中間部より高温にして
ウェハ間の温度差を最小にするような制御方法を取る事
である。このアルゴリズムを実現するため次の評価関数
を導入する。
The first of equation (4). By using the boundary condition equation (3), the solution to equation (7) is + (e 1) e −' ) + u'Tr ・
...(8) LB. FIG. 3 shows the general state of the temperature distribution in the Z-axis direction expressed by equation (8). In this way, the wafers near both ends have a lower temperature than the wafers in the middle. However, the method of controlling the temperature equalization between wafers uses the furnace wall temperature TF as the only manipulated variable, and uses a control method that minimizes the temperature difference between the wafers by making both ends of the furnace wall temperature higher than the middle part. That's a thing. In order to realize this algorithm, we introduce the following evaluation function.

ここでT はウェハの設計温度である。今、拡散炉が対
称な3ゾ一ン方式により温度制御されているとしてT 
(Z)は次のようになる。
Here, T is the design temperature of the wafer. Now, assuming that the temperature of the diffusion furnace is controlled by a symmetrical three-zone system, T
(Z) becomes as follows.

(8)式、  (10)式を(9)式に代入しTU、T
LについてそれぞれJを変分しOと置く事により次式を
得る。
Substituting equations (8) and (10) into equation (9), TU, T
By varying J with respect to L and setting it as O, we obtain the following equation.

ここで 2kLB −e   )+2AB/= 2に’TF  2T Y’=(−−)(Aek1′’−Be−kLB3k k(L=−1)   −リ・ドZ) )−Ae    
+13e A22kt   B2−kt X″−一(e′k(LB′−t)−e)十−(e2k 
          2に −e 2k””−Z))+2.ABLa −4kBt2
に’TF  2T−1−Be y//  −(、(Aek(LB−1)      −
k(LB−1)3k kl      −kl −Ae +Be   ) さらに である。Tt、及びTuの大体の様子を第4図に示す。
Here, 2kLB -e ) + 2AB/= 2 'TF 2T Y' = (--) (Aek1''-Be-kLB3k k (L = -1) - Li Do Z) ) - Ae
+13e A22kt B2-kt X″-1 (e'k(LB'-t)-e) 10-(e2k
2 to −e 2k””−Z))+2. ABLa -4kBt2
'TF 2T-1-Be y// -(, (Aek(LB-1) -
k(LB-1)3kkl-kl-Ae+Be) Furthermore. FIG. 4 shows the general appearance of Tt and Tu.

(11)式によシウエハが均一加熱されるような3ゾー
ンの炉壁温酸が決定された訳であるが、ここで注意しな
ければならない事は炉壁温度を変える事により(7)式
の右辺は変化する事である。故に再び(8)式に戻り(
9)式の評価関数を最小化するようなTo及びTLを割
算するというアルゴリズムを繰り返して最適な炉壁温度
TU  、 ’l’L  を得る事ができる。第5図は
上記のアルゴリズムを示す。
The furnace wall temperature in the three zones was determined according to equation (11) so that the wafers could be heated uniformly, but what must be noted here is that by changing the furnace wall temperature, equation (7) can be used. The right-hand side of is a change. Therefore, returning to equation (8) again (
The optimal furnace wall temperatures TU and 'l'L can be obtained by repeating the algorithm of dividing To and TL that minimizes the evaluation function of equation 9). FIG. 5 shows the above algorithm.

第5図におけるそれぞれのステップでは次の処理を行な
う。
In each step in FIG. 5, the following processing is performed.

ステップ401:初期入力として、たとえば目標の設計
温度T を最適計算装置 206に入力する。
Step 401: As an initial input, for example, a target design temperature T is inputted to the optimum calculation device 206.

ステップ402 : (8J式によりウェハ間温度分布
を計算する。
Step 402: (Calculate the inter-wafer temperature distribution using the 8J formula.

ステップ403 : (11)式より対称3ゾーンの各
々の温度To、Ttを計算する。
Step 403: Calculate the temperatures To and Tt of each of the three symmetrical zones from equation (11).

ステップ404:To、TLを用い再び(8)式により
T(Z)を計算する。
Step 404: Using To and TL, calculate T(Z) again using equation (8).

ステップ405:評価関数を最小化するTu。Step 405: Minimize the evaluation function Tu.

Tbかどうかを判定し、真(Y) 源にセットする。1.Th(N)なら ステップ402に戻りアルゴリ ズムを繰り返す。Determine whether Tb is true (Y) set to the source. 1. If Th(N) Return to step 402 and use the algorithm Repeat rhythm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、炉内の被7JLl熱物の外部温度が画
像処理技術により明らかとなり、更に、この温度推定値
を用いて、破加熱物の内部温度をモデルにより推定する
ことができ、この内部温匿を目標値に近づけるように、
投入ガス流量、ヒータガロ熱温度等の設定値を決めるこ
とができるから、これまで勘とノウハウに頼っていた炉
制御を、オンライン計測に基づく閉ループ制御とするこ
とができ、歩留り向上に大きな効果が期待できる。壕だ
、第2の実施例に示した方式によれば拡散炉内のウェハ
を均一加熱するような炉壁温度の制御方式において、熱
方程式を基に作成したモデルと評価関数を用いて、該評
価関数が最小となるように炉壁温度を操作するようにし
たので最適な炉壁温度を決定する事ができ、半導体特性
のバラツキを低減し歩留りを向上させる事が可能となる
。これにより高性能の半導体を安定に製造する事が可能
になりその経済的効果は太きい。
According to the present invention, the external temperature of the 7JLl heated object in the furnace is clarified by image processing technology, and furthermore, using this temperature estimate, the internal temperature of the heated object can be estimated by a model. In order to bring internal protection closer to the target value,
Since the set values for input gas flow rate, heater galvanic temperature, etc. can be determined, furnace control, which previously relied on intuition and know-how, can be changed to closed-loop control based on online measurement, which is expected to have a significant effect on yield improvement. can. According to the method shown in the second embodiment, in a furnace wall temperature control method that uniformly heats a wafer in a diffusion furnace, a model created based on a heat equation and an evaluation function are used to calculate the temperature of the furnace wall. Since the furnace wall temperature is controlled so that the evaluation function is minimized, the optimal furnace wall temperature can be determined, making it possible to reduce variations in semiconductor characteristics and improve yield. This makes it possible to stably manufacture high-performance semiconductors, and the economic effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による拡散炉の第1の実施例の構成図、
第2図は本発明による拡散炉の第2の実施例の構成図、
第3図は炉壁を均一加熱した際のウェハ間温度分布を示
し、第4図は3ゾ一ン方式による炉壁温度分布を示し、
第5図は制御のアルゴリズムのフローチャートを示す。 第 3 図 Z 第4図 Z       (J−Lβ/3) ’−1y  s  図
FIG. 1 is a block diagram of a first embodiment of a diffusion furnace according to the present invention;
FIG. 2 is a block diagram of a second embodiment of the diffusion furnace according to the present invention;
Figure 3 shows the temperature distribution between wafers when the furnace wall is heated uniformly, and Figure 4 shows the temperature distribution of the furnace wall using the three-zone method.
FIG. 5 shows a flowchart of the control algorithm. Figure 3 Z Figure 4 Z (J-Lβ/3) '-1y s diagram

Claims (1)

【特許請求の範囲】 1、 刃口熱炉内における被加熱物の内部温度の目標追
値制御方式において、加熱炉ののぞき窓に設置された徹
像手股で得られた熱スペクトル情報にもとづき抜力in
物の外部温度を推定し、該推定をれた外部温度と、炉壁
に設置された温度センサにより測定きれた炉壁温度およ
びカス流入喰情報等を用いて、被加熱物の内部温度を推
定し、該推定値と、予め与えられている被カロ熱物の目
11品度との弗にもとづき、目標温度に近づけるように
、ヒータやガス流入量等の制御設定値を決定することを
特徴とする炉内温度オンライン計測・制御方式。 2、 加熱炉内における被加熱物の内部温度の目標追値
制御方式において、該加熱炉の炉壁を炉軸方向にゾーン
分割し、該炉壁の温度より上記被710v′−物の炉軸
方向温度分布を推定する非線形モデル方程式及び、該推
定値と目標値との差を評価する評価関数にもとづき、該
評価関数が最小になるように炉壁温度を決定することを
特徴とする炉内温度オンライン計測・制御方式。
[Scope of Claims] 1. In a target follow-up control method for the internal temperature of the object to be heated in the cutting edge thermal furnace, based on thermal spectrum information obtained from a phantom hand installed in the viewing window of the heating furnace. Relaxation in
Estimates the external temperature of the object, and estimates the internal temperature of the object by using the estimated external temperature, the furnace wall temperature measured by a temperature sensor installed on the furnace wall, information on waste inflow, etc. The control set values for the heater, gas inflow rate, etc. are determined based on the estimated value and the predetermined grade of the object to be heated so as to approach the target temperature. An online furnace temperature measurement and control method. 2. In the target additional value control method for the internal temperature of the object to be heated in the heating furnace, the furnace wall of the heating furnace is divided into zones in the direction of the furnace axis, and the furnace axis of the object to be heated is determined from the temperature of the furnace wall. A furnace wall temperature is determined based on a nonlinear model equation that estimates a directional temperature distribution and an evaluation function that evaluates the difference between the estimated value and a target value, so that the evaluation function is minimized. Temperature online measurement and control method.
JP21683482A 1982-12-13 1982-12-13 On-line measuring and controlling system of furnace temperature Pending JPS59108119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21683482A JPS59108119A (en) 1982-12-13 1982-12-13 On-line measuring and controlling system of furnace temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21683482A JPS59108119A (en) 1982-12-13 1982-12-13 On-line measuring and controlling system of furnace temperature

Publications (1)

Publication Number Publication Date
JPS59108119A true JPS59108119A (en) 1984-06-22

Family

ID=16694622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21683482A Pending JPS59108119A (en) 1982-12-13 1982-12-13 On-line measuring and controlling system of furnace temperature

Country Status (1)

Country Link
JP (1) JPS59108119A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359734B1 (en) * 1997-01-27 2002-11-04 세미툴 인코포레이티드 Model based temperature controller for semiconductor thermal processors
US6730885B2 (en) 2000-07-06 2004-05-04 Tokyo Electron Limited Batch type heat treatment system, method for controlling same, and heat treatment method
EP1650789A1 (en) * 2003-07-01 2006-04-26 Tokyo Electron Limited Heat treatment apparatus and method of calibrating the apparatus
JP2017005106A (en) * 2015-06-10 2017-01-05 東京エレクトロン株式会社 Thermal treatment apparatus, adjustment method for thermal treatment apparatus, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359734B1 (en) * 1997-01-27 2002-11-04 세미툴 인코포레이티드 Model based temperature controller for semiconductor thermal processors
US6730885B2 (en) 2000-07-06 2004-05-04 Tokyo Electron Limited Batch type heat treatment system, method for controlling same, and heat treatment method
EP1650789A1 (en) * 2003-07-01 2006-04-26 Tokyo Electron Limited Heat treatment apparatus and method of calibrating the apparatus
EP1650789A4 (en) * 2003-07-01 2008-02-13 Tokyo Electron Ltd Heat treatment apparatus and method of calibrating the apparatus
US7575370B2 (en) 2003-07-01 2009-08-18 Tokyo Electron Limited Heat treatment apparatus and method of calibrating the apparatus
JP2017005106A (en) * 2015-06-10 2017-01-05 東京エレクトロン株式会社 Thermal treatment apparatus, adjustment method for thermal treatment apparatus, and program

Similar Documents

Publication Publication Date Title
US5258929A (en) Method for measuring thermal conductivity
Kim et al. Experimental and numerical analysis of heat transfer phenomena in a sensor tube of a mass flow controller
KR101057237B1 (en) Temperature measuring method and temperature measuring apparatus of steel sheet, and temperature control method of steel sheet
Rapoport et al. Optimal control of nonlinear objects of engineering thermophysics
Fu et al. A new modelling method for superalloy heating in resistance furnace using FLUENT
CA2368124C (en) Method and apparatus for optimizing environmental temperature for a device under test
JPS59108119A (en) On-line measuring and controlling system of furnace temperature
US4394121A (en) Method of controlling continuous reheating furnace
Cho et al. Neural network MPC for heating section of annealing furnace
Kersch et al. Thermal modelling of RTP and RTCVD processes
CN114015863B (en) Self-correction algorithm for billet heating model
Semenov et al. Thermal resistance of the wall layer of molten glass in the high-temperature corrosion zone of the refractory walls of the melting tank of glassmaking furnaces
Li et al. A novel fuel supplies scheme based on the retrieval solutions of the decoupled zone method for reheating furnace
McGuinness et al. Strip temperature in a metal coating line annealing furnace
JP2001113588A (en) Device for controlling temperature of molding machine and method for designing control system used in the same
JPS6163034A (en) Controlling system for uniform thickness of oxide film in semiconductor manufacturing furnace
JPS5831405A (en) Temperature controlling system in heating furnace
RU2009102544A (en) INSTALLATION FOR MEASURING THE TAPE TEMPERATURE IN THE FURNACE FOR PLANE GLASS ANNEALING AND THE OPERATION METHOD FOR THE ANNEALING FURNACE
Lukin et al. Engineering procedure for calculating furnace heating and thermostatic control conditions of a hot-charged slab
KR100706528B1 (en) Method for predicting atmosphere temperature in heat treatment chamber
JPH01193635A (en) Heat conductivity measuring apparatus
WO2022264451A1 (en) Heat storage power generation system and power generation control system
JPS60260859A (en) Measuring method of gas flow rate
JP4878234B2 (en) Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method
Kang et al. Numerical analysis and experimental comparison of temperature-compensation method for large length–diameter ratio thermal mass flowmeter