JPS6196425A - Measuring method of steel plate temperature - Google Patents
Measuring method of steel plate temperatureInfo
- Publication number
- JPS6196425A JPS6196425A JP21739284A JP21739284A JPS6196425A JP S6196425 A JPS6196425 A JP S6196425A JP 21739284 A JP21739284 A JP 21739284A JP 21739284 A JP21739284 A JP 21739284A JP S6196425 A JPS6196425 A JP S6196425A
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- radiation
- temperature
- detector
- multipath reflection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 55
- 239000010959 steel Substances 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims description 12
- 230000005855 radiation Effects 0.000 claims abstract description 29
- 238000009529 body temperature measurement Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 abstract description 8
- 238000009434 installation Methods 0.000 abstract description 2
- 230000003028 elevating effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 6
- 239000010960 cold rolled steel Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0022—Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は鋼板温度計414方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a steel plate thermometer 414 method.
[従来の技術]
従来、炉内その他において、移動する鋼板の表面温度は
非接触で測定できる放射温度計が多く使用されている。[Prior Art] Conventionally, many radiation thermometers have been used that can measure the surface temperature of a moving steel plate in a non-contact manner in a furnace or elsewhere.
ここで、被測定物体としての鋼板の放射量、すなわち放
射温度計が検出するパワーP(入、S)については次式
が成り立つ。Here, the following equation holds for the radiation amount of the steel plate as the object to be measured, that is, the power P (input, S) detected by the radiation thermometer.
P(入、S)=ε・P(λ、T) ・・・(1)また、
炉内等で外乱光Hがある時、上記パワーP(λ、S)は
次式のような合成放射量になる。P (in, S) = ε・P (λ, T) ... (1) Also,
When there is disturbance light H in a furnace or the like, the power P(λ, S) becomes a combined radiation amount as shown in the following equation.
ここで、P(入、T)は下記のウィーンの式で表わされ
る。Here, P (in, T) is expressed by the Wien equation below.
P(入、T)=C,−人・exp (Cz/入T)
・(3)ただし、T:被測定物体の温度、ε二液測定物
体の放射率、入:波Q、C,=3.?415XIQ
W m’、C= 0.0143FJ8ra−にである。P (in, T) = C, - person・exp (Cz/in T)
・(3) Where, T: temperature of the object to be measured, emissivity of the two-liquid object to be measured, input: wave Q, C, = 3. ? 415XIQ
W m', C=0.0143FJ8ra-.
[発明が解決しようとする問題点]
しかしながら、炉内等での鋼板の温度測定においては、
(が、小さくかつ変動することと、(2)式における右
辺第2項の外乱光による影響が大きく第1項の数倍とな
ることとにより、測定精度があがらないという不都合が
ある。[Problems to be solved by the invention] However, when measuring the temperature of a steel plate in a furnace, etc.
(2) is small and fluctuates, and the influence of the disturbance light on the second term on the right side of equation (2) is large and several times that of the first term, resulting in the disadvantage that measurement accuracy cannot be improved.
なお、上記不都合を解消するために、オワン型表面温度
計や鏡面反射板を用いて擬似的に黒体条 。In order to eliminate the above-mentioned disadvantages, we used an Owan type surface thermometer and a specular reflector to create a pseudo black body strip.
件を作り出すための温度計測方法が考えられた。A temperature measurement method was devised to create this condition.
しかしながら、これらの方法においては、炉内における
鏡面に生ずるくもりのため測定が困難となる、また、鋼
板とその搬送ロールとの間で形成されるくさび部の多重
反射を利用する温度計測方法(特開昭55−14184
2 )も提案されているが、この方法は、ロールと鋼板
とに挟まれたごく狭い範囲での測定となり、測定器の設
置が容易でない。However, with these methods, measurement is difficult due to cloudiness that occurs on the mirror surface inside the furnace.In addition, temperature measurement methods that utilize multiple reflections of the wedge formed between the steel plate and its conveyor roll (especially Kaisho 55-14184
2) has also been proposed, but this method requires measurement in a very narrow area sandwiched between the roll and the steel plate, making it difficult to install the measuring device.
本発明は、鋼板温度を高精度で測定可能とすることを目
的とする。An object of the present invention is to enable measurement of steel plate temperature with high accuracy.
[問題点を解決するための手段]
本発明に係る鋼板温度計測方法は、平行して走行する鋼
板の相対する表面において生ずる放射の多重反射を、−
方の鋼板における上記表面の法線方向に対して傾斜させ
て配設した放射温度計により測定するようにしたもので
ある。[Means for Solving the Problems] The steel plate temperature measuring method according to the present invention detects multiple reflections of radiation occurring on opposing surfaces of steel plates running in parallel.
The measurement is carried out using a radiation thermometer which is arranged at an angle with respect to the normal direction of the above-mentioned surface of the steel plate.
[作 用]
本発明によれば、相対する鋼板同志の多重反射を用い、
みかけの放射率を高めることにより、鋼板温度を高精度
で測定することが可能となる。[Function] According to the present invention, multiple reflections between opposing steel plates are used,
By increasing the apparent emissivity, it becomes possible to measure the steel plate temperature with high precision.
[実施例] 第1図は本発明の第1実施例を示す概略断面図である。[Example] FIG. 1 is a schematic sectional view showing a first embodiment of the present invention.
鋼板11は、連続焼鈍炉を形成する炉壁12の内部にお
いて、不図小の通板ロールに巻き回される折返し状態で
、平行にかつ反対方向に走行可能とされている。IIA
は上部鋼板、IIBは下部鋼板である。なお、炉壁12
には、光学窓13が形成されている。Inside a furnace wall 12 forming a continuous annealing furnace, the steel plate 11 is wound around a small threading roll (not shown) in a folded state, and is capable of running in parallel and in opposite directions. IIA
is the upper steel plate, and IIB is the lower steel plate. In addition, the furnace wall 12
An optical window 13 is formed therein.
炉壁12の外部には、放射温度計検出器14が設置され
ている。検出器14は、L部用板11Aと下部鋼板11
Bとの間で発生する多重反射を検出可能としている。こ
こで、検出器14は、鋼板エツジ部に直角に、かつ下部
鋼板11Bのエツジ部近傍を測定するように、鋼板11
Bの表面の法線方向に対してθで傾斜して配設されてい
る。上下の鋼板11A、lIBによる視野欠けを防ぐた
め、また多重反射の効果を高めるために、上記角度θは
、7度≦θ≦20度とするのが好ましい。A radiation thermometer detector 14 is installed outside the furnace wall 12. The detector 14 includes the L portion plate 11A and the lower steel plate 11.
This makes it possible to detect multiple reflections that occur with B. Here, the detector 14 is arranged perpendicularly to the edge of the steel plate and so as to measure the vicinity of the edge of the lower steel plate 11B.
It is arranged at an angle of θ with respect to the normal direction of the surface of B. In order to prevent the visual field from being lost due to the upper and lower steel plates 11A and 11B, and to enhance the effect of multiple reflection, it is preferable that the angle θ is 7 degrees≦θ≦20 degrees.
15は、検出器1’4の保護ケースである。16は、検
出器駆動装置であり、検出器14の架台17に結合され
て検出器14を機械的に走査することにより、鋼板11
の板幅変化時における測定を可能にしている。16Aは
モータによる回転装置であり、回転装置16Aの回転力
は、連結ロッド16B、16Cを介して、架台17に伝
達可能とされている。連結ロッド16Cは、支持筒16
Dに支持可能とされている。15 is a protective case for the detector 1'4. 16 is a detector driving device, which is coupled to the mount 17 of the detector 14 and mechanically scans the detector 14, thereby driving the steel plate 11.
This makes it possible to measure when the plate width changes. 16A is a rotating device using a motor, and the rotational force of the rotating device 16A can be transmitted to the pedestal 17 via connecting rods 16B and 16C. The connecting rod 16C is connected to the support tube 16
It is said that it can be supported by D.
また、18は放射温度計変換器であり、放射率補正回路
およびピークピッカ回路を備えている。Further, 18 is a radiation thermometer converter, which is equipped with an emissivity correction circuit and a peak picker circuit.
変換器18は、ピークピッカ回路により、駆動装置16
による一走査の測定値の中での最大値を保、持して、順
次その最大値を表示記録装置19に出力可能としている
。The converter 18 is connected to the drive device 16 by a peak picker circuit.
The maximum value among the measured values of one scan is held and can be sequentially output to the display/recording device 19.
上記第1実施例の連続焼鈍炉内での配置で反射の回数を
Nとすると、みかけの放射率iは、となる、ただし、ρ
は反射率(ρ=1−ε)、γは鋼板の反射特性を表わす
、鏡面の割合である。If the number of reflections is N in the arrangement in the continuous annealing furnace of the first embodiment, the apparent emissivity i is, where ρ
is the reflectance (ρ=1−ε), and γ is the ratio of the mirror surface, which represents the reflection characteristics of the steel plate.
ここで、温度−の炉壁にょる外乱光があるとすると、検
出器14が検出するパワーP(入、S)は(2)式から
、熱W衡状態を考慮して、P(λ、5)=e@r(入、
T)
+(1−e) ・ P (λ、 へ)・・・(5)と
おける、また、N26以上であるときは、とおけるので
、第1図中の放射温度計検出器14を設置する角度θは
、反射の回数がN22となるように設定する。Here, assuming that there is disturbance light due to the furnace wall at - temperature, the power P (input, S) detected by the detector 14 is calculated from equation (2), taking into account the thermal W equilibrium state, P (λ, 5)=e@r(enter,
T) + (1-e) ・P (λ, to)... (5). Also, if it is N26 or more, it can be set, so install the radiation thermometer detector 14 in Figure 1. The angle θ is set so that the number of reflections is N22.
次に、実測により、に記第1実施例の効果を確認した結
果について説明する。Next, the results of confirming the effects of the first embodiment described in 2 through actual measurements will be explained.
鋼板温度T = 828℃にて、炉壁温度−が十分低く
無視できる条件下で、波長0.91Lmの放射温度計に
より、鋼板11Aを測定した時の輝度温度Slaは、S
1a= 754℃であり、鋼板11Bを第1図のよう
に測定した時の輝度温度Slbは、S 1b=803.
5℃であり、約50℃高めの指示となった。tt4度温
度stbと鋼板温度Tより計算して、多重反射による、
みかけの放射率はe = 0.718であった。The brightness temperature Sla when measuring the steel plate 11A with a radiation thermometer with a wavelength of 0.91 Lm at a steel plate temperature T = 828°C and a furnace wall temperature - sufficiently low to be ignored is S
1a=754°C, and the brightness temperature Slb when the steel plate 11B is measured as shown in FIG. 1 is S1b=803.
The temperature was 5°C, which was about 50°C higher. Calculated from tt4 degree temperature stb and steel plate temperature T, due to multiple reflections,
The apparent emissivity was e = 0.718.
((1)弐使用)、この時、放射率εはε= 0.35
であるので、(B)式を用いて、y、=0.75を得る
。この条件で、波長0.91Lmの放射温度計を用いる
と、鋼板の放射率εは、 0.35≦ε≦0.8の範囲
で変化するので、みかけの放射率?は(6)式から、0
.718≦て≦0.f341となる。((1) 2 used), at this time, the emissivity ε is ε = 0.35
Therefore, using equation (B), y=0.75 is obtained. Under these conditions, if a radiation thermometer with a wavelength of 0.91 Lm is used, the emissivity ε of the steel plate changes within the range of 0.35≦ε≦0.8, so the apparent emissivity? From equation (6), 0
.. 718≦te≦0. It becomes f341.
炉内における冷延鋼板の温度を計測する場合、放射率ε
は上記の下限値近傍にあることが多いため、放。射温度
計検出器14の放射率補正値は、j = 0.718に
設定しておけばよい。When measuring the temperature of a cold-rolled steel sheet in a furnace, the emissivity ε
is often near the lower limit above, so it is released. The emissivity correction value of the radiation thermometer detector 14 may be set to j = 0.718.
この設定で、温度T = 80(1℃で、ε=0.8の
鋼板が通過した時、上記の放射率設定による温度指示値
は819℃であり、誤差は最大18℃となって、従来の
173になる。また、鏡面反射の割合へは同じ品種では
一定値とみなせる。このため、放射率設定値はダル、ブ
ライト等の品種により予め求めておくものとする。With this setting, when a steel plate with temperature T = 80 (1°C and ε = 0.8) passes through, the temperature indication value based on the above emissivity setting is 819°C, and the maximum error is 18°C, which is different from the conventional The ratio of specular reflection can be regarded as a constant value for the same product type. Therefore, the emissivity setting value should be determined in advance depending on the product type, such as dull or bright.
なお、1記第1実施例においては、放射温度計検出器1
4の向きを、鋼板の進行方向に対し直角、もしくは平行
としたが、この向きを斜め方向とした場合も同様の効果
が得られる。In addition, in the first embodiment of Section 1, the radiation thermometer detector 1
4 is set perpendicular to or parallel to the traveling direction of the steel plate, but the same effect can be obtained even if the direction is set diagonally.
以上のように上記第1実施例は鋼板の多種反射による放
射量を検出し、予め求めた品種ごとの放射率設定値を用
いて、また走査機構を有することにより多重反射の最大
値を捕えるようにして、鋼板の温度を測定するようにし
たので、ばらつきが少なく、非常に有効な方法である。As described above, the first embodiment detects the amount of radiation due to multiple reflections of the steel plate, uses predetermined emissivity setting values for each type, and has a scanning mechanism to capture the maximum value of multiple reflections. Since the temperature of the steel plate is measured using the same method, there is little variation and it is a very effective method.
第2図は本発明の第2実施例を示す概略断面図である。FIG. 2 is a schematic sectional view showing a second embodiment of the present invention.
鋼板21は、炉壁22の内部において1通板ロール23
に巻き回される折返し状態で、平行にかつ反対方向に走
行可能とされている。The steel plate 21 is passed through one plate roll 23 inside the furnace wall 22.
It is possible to run in parallel and in the opposite direction in a folded state where it is wound around.
炉壁22の外部には、放射温度計24が設置されている
。温度計24は、相対する鋼板21の表面の間で発生す
る多重反射を検出可能としている。ここで、温度計24
は、鋼板21の表面の法線方向に対して角度θで傾斜し
て配設されている。上記角度θは小の方が多重反射の効
果が大であるが、放射温度計設置による制限から、角度
θは、30度くθ<80度とするのが適している。25
は温度計24の保護ケースであり、26は炉壁22に装
着した炉壁温度測定用の熱電対である。A radiation thermometer 24 is installed outside the furnace wall 22. The thermometer 24 is capable of detecting multiple reflections occurring between the opposing surfaces of the steel plates 21. Here, thermometer 24
are arranged to be inclined at an angle θ with respect to the normal direction of the surface of the steel plate 21. The smaller the angle θ, the greater the effect of multiple reflection, but due to restrictions due to the installation of the radiation thermometer, it is suitable that the angle θ is 30 degrees and θ<80 degrees. 25
is a protective case for the thermometer 24, and 26 is a thermocouple attached to the furnace wall 22 for measuring the furnace wall temperature.
27はフランジであり、N2ガス用配管を設けて、放射
温度計2.4の光学窓の付着物を除去する。A flange 27 is provided with N2 gas piping to remove deposits from the optical window of the radiation thermometer 2.4.
28は演算装置であり、この演算装置28は、放射率お
よび反射特性係数によりみかけの放射率を求め、この予
め設定したみかけの放射率、放射温度計24の指示、及
び熱電対26の指示を用いて鋼板の温度Tを算出可能と
している。29は温度表示記録装置である。28 is a calculation device, which calculates the apparent emissivity from the emissivity and reflection characteristic coefficient, and calculates the preset apparent emissivity, the indication of the radiation thermometer 24, and the indication of the thermocouple 26. It is possible to calculate the temperature T of the steel plate using this method. 29 is a temperature display recording device.
上記第2実施例の配置で反射の回数をNとすると、みか
けの放射率iは、
となる。ただし、ρは反射率(ρ=1−ε)、γイは鋼
板の反射特性を表す、鏡面反射の割合である。ここで、
温度Twの炉壁による外乱光があるとすると、温度計2
4が検出するパワーP(入。If the number of reflections is N in the arrangement of the second embodiment, the apparent emissivity i is as follows. Here, ρ is the reflectance (ρ=1−ε), and γi is the ratio of specular reflection, which represents the reflection characteristics of the steel plate. here,
Assuming that there is disturbance light from the furnace wall at temperature Tw, thermometer 2
4 detects the power P (on.
S)は(2)式より、熱平衡状態を考慮して、とおける
。S) can be set from equation (2), taking into account the thermal equilibrium state.
以下0、炉壁温度が低く、右辺第2項が無視でき、また
N≧6以上であり、
とおける条件において、誤差評価を行って上記第2実施
例の有効性を説明する。The effectiveness of the second embodiment will be explained by performing error evaluation under the following conditions: 0, the furnace wall temperature is low, the second term on the right side is negligible, and N≧6 or more.
放射温度計24に波長入=0.91LmのSiセルを用
いると、鋼板21で、放射率εは、0.35≦ε≦0.
80の範囲内にあるとみなせる。温度T = 800″
Cにて、ε= 0.35とおき、ε=0.8の鋼板が通
過したとき、通常の場合、(1)式を用いて、その指示
はT = 841.2℃となり、41.2℃の誤差を生
じる。When a Si cell with a wavelength input of 0.91 Lm is used as the radiation thermometer 24, the emissivity ε of the steel plate 21 is 0.35≦ε≦0.
It can be considered to be within the range of 80. Temperature T = 800″
At C, when ε = 0.35 and a steel plate of ε = 0.8 passes, in the normal case, using equation (1), the indication is T = 841.2℃, which is 41.2 This results in an error of ℃.
これに対し、上記第2実施例によれば、温度指示がT
= 1312.8℃となり、その誤差は12.8℃とな
って、前記の場合に比較して1/3以下になる。(ここ
で、温度術゛示Tの計算はy、=0.8とおき、みかけ
の放射率?の変化の範囲は(8)式により、 0.7
29≦i≦0.952であり、(1)式でεのかわりに
ζを用いた。)。On the other hand, according to the second embodiment, the temperature instruction is T
= 1312.8°C, and the error is 12.8°C, which is less than 1/3 compared to the above case. (Here, the temperature index T is calculated by setting y = 0.8, and the range of change in the apparent emissivity is 0.7 using equation (8).
29≦i≦0.952, and ζ was used instead of ε in equation (1). ).
また1反射特性により、冷延鋼板ではγの数値は、実測
の結果、品種により、0.75〜0.80の間でばらつ
きがあったが、これによる温度指示変化は、T = 8
00℃、ε= 0.35にて、最大15.4℃であり、
この場合も従来法に比し、誤差ははるかに小さく、この
治はダル、プライト等の品種、により予め求めておけば
よい。Furthermore, due to the reflection characteristics, the value of γ for cold-rolled steel sheets varied between 0.75 and 0.80 depending on the product type as a result of actual measurements, but the temperature indication change due to this was T = 8.
At 00℃, ε=0.35, the maximum is 15.4℃,
In this case as well, the error is much smaller than in the conventional method, and this adjustment can be determined in advance depending on the variety of Dal, Prite, etc.
また、放射率εは冷延鋼板ではεの下限値の近傍にある
ことが多く、εの設定値としては、下限値の近傍の一定
値を用いるものとする。Further, emissivity ε is often near the lower limit value of ε in cold-rolled steel sheets, and a constant value near the lower limit value is used as the set value of ε.
さらに、外乱光がある場合でもみかけの放射率を高めて
いるので、上記と同様な誤差減少効果がある。Furthermore, since the apparent emissivity is increased even in the presence of disturbance light, the same error reduction effect as described above can be achieved.
以上のように上記第2実施例は、鋼板間の多重反射を用
いて、放射率εと品種別の鏡面反射の割合外とから予め
設定した。みかけの放射率と放射温度計の輝度温度指示
Sおよび炉壁温度Twにより鋼板温度Tを測定するよう
にしたのでばらつきの少ない高精度の温度測定が可能と
なる。As described above, in the second embodiment, multiple reflections between steel plates are used, and the emissivity ε and the ratio of specular reflection by product type are set in advance. Since the steel plate temperature T is measured using the apparent emissivity, the brightness temperature indication S of the radiation thermometer, and the furnace wall temperature Tw, highly accurate temperature measurement with little variation is possible.
なお、本発明は、炉外において平行して走行する鋼板に
おいても同様に通用可能である。Note that the present invention is equally applicable to steel plates running in parallel outside the furnace.
[発明の効果]
以上のように、本発明に係る鋼板温度計測方法は、平行
して走行する鋼板の相対する表面において生ずる放射の
多毛反射を、一方の鋼板における上記表面の法線方向に
対して傾斜させて配設した放射温度計により測定するよ
うにしたものである。したがって、鋼板温度を高精度で
測定することが可能となる。[Effects of the Invention] As described above, the steel plate temperature measurement method according to the present invention detects the multi-hair reflection of radiation occurring on the opposing surfaces of steel plates running in parallel with respect to the normal direction of the surface of one steel plate. The temperature is measured using a radiation thermometer installed at an angle. Therefore, it becomes possible to measure the steel plate temperature with high accuracy.
第1図は本発明の第1実施例を示す概略断面図、第2図
は本発明の第2実施例を示す概略断面図である。
11、IIA、IIB、21・・・鋼板、14.24・
・・放射温度計。
代理人 弁理士 塩 川 修 治
第1図
第2図FIG. 1 is a schematic sectional view showing a first embodiment of the invention, and FIG. 2 is a schematic sectional view showing a second embodiment of the invention. 11, IIA, IIB, 21... Steel plate, 14.24.
... Radiation thermometer. Agent Patent Attorney Osamu Shiokawa Figure 1 Figure 2
Claims (1)
ずる放射の多重反射を、一方の鋼板における上記表面の
法線方向に対して傾斜させて配設した放射温度計により
測定することを特徴とする鋼板温度計測方法。(1) Multiple reflections of radiation occurring on opposing surfaces of steel plates running in parallel are measured by a radiation thermometer installed at an angle with respect to the normal direction of the surface of one of the steel plates. Steel plate temperature measurement method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21739284A JPS6196425A (en) | 1984-10-18 | 1984-10-18 | Measuring method of steel plate temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21739284A JPS6196425A (en) | 1984-10-18 | 1984-10-18 | Measuring method of steel plate temperature |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6196425A true JPS6196425A (en) | 1986-05-15 |
Family
ID=16703459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21739284A Pending JPS6196425A (en) | 1984-10-18 | 1984-10-18 | Measuring method of steel plate temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6196425A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0612862A1 (en) * | 1993-02-24 | 1994-08-31 | Applied Materials, Inc. | Measuring wafer temperatures |
JP2018141778A (en) * | 2017-02-24 | 2018-09-13 | Jfeスチール株式会社 | Method of deriving apparent emissivity, temperature measurement method, method of manufacturing pipe materials, and temperature measurement device |
-
1984
- 1984-10-18 JP JP21739284A patent/JPS6196425A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0612862A1 (en) * | 1993-02-24 | 1994-08-31 | Applied Materials, Inc. | Measuring wafer temperatures |
JP2018141778A (en) * | 2017-02-24 | 2018-09-13 | Jfeスチール株式会社 | Method of deriving apparent emissivity, temperature measurement method, method of manufacturing pipe materials, and temperature measurement device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0335224B1 (en) | Radiation thermometry | |
US4172383A (en) | Method and an apparatus for simultaneous measurement of both temperature and emissivity of a heated material | |
US4803374A (en) | Continuous measurement of the surface roughness of a cold-rolled product | |
JPS6196425A (en) | Measuring method of steel plate temperature | |
JPH08193887A (en) | Method for measuring temperature of material in hot rolling line | |
JPH06294627A (en) | Buckling detection method in continuous heat treatment furnace | |
JPH0521412B2 (en) | ||
US4553854A (en) | Method for continuously measuring surface temperature of heated steel strip | |
JPH07174634A (en) | Method for measuring temperature of object in furnace | |
JPH05203497A (en) | Measuring method for temperature of steel plate | |
JP2002303551A (en) | Method and device for measuring temperature of in- furnace metallic material | |
JP2007107939A (en) | Method and device of measuring temperature of steel plate | |
JPS6221953Y2 (en) | ||
JPS6014193Y2 (en) | Simultaneous measurement device for metal surface temperature and emissivity | |
JPH04238615A (en) | Device for detecting one side warpage of hot slab | |
JPH0329823A (en) | Measuring device of emissivity of steel plate | |
JPH0514852B2 (en) | ||
JPH0658744A (en) | Buckling detection method for steel plate | |
JPH0310128A (en) | Method for simultaneously measuring temperature and emissivity in high temperature furnace | |
EP1491878A1 (en) | Detection of coatings using emissivity or reflectivity | |
JPS6252017B2 (en) | ||
JPH05273045A (en) | Temperature measuring apparatus for object covered with transparent thin film | |
JPS6046371B2 (en) | Method and device for simultaneous measurement of metal surface temperature and emissivity | |
KR100398415B1 (en) | Method and apparatus for measuring temperature of heating body | |
JPH0682045B2 (en) | Oxide film measuring device in heat treatment furnace for steel strip |