JPH0458568B2 - - Google Patents

Info

Publication number
JPH0458568B2
JPH0458568B2 JP58185133A JP18513383A JPH0458568B2 JP H0458568 B2 JPH0458568 B2 JP H0458568B2 JP 58185133 A JP58185133 A JP 58185133A JP 18513383 A JP18513383 A JP 18513383A JP H0458568 B2 JPH0458568 B2 JP H0458568B2
Authority
JP
Japan
Prior art keywords
steel plate
temperature
roll
emissivity
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58185133A
Other languages
Japanese (ja)
Other versions
JPS6078327A (en
Inventor
Takeo Yamada
Naoki Harada
Kyotaka Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP18513383A priority Critical patent/JPS6078327A/en
Publication of JPS6078327A publication Critical patent/JPS6078327A/en
Publication of JPH0458568B2 publication Critical patent/JPH0458568B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies

Description

【発明の詳細な説明】 本発明は、連続焼鈍炉等の炉内を走行する鋼板
の温度を測定する鋼板表面温度測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steel plate surface temperature measuring device for measuring the temperature of a steel plate running in a furnace such as a continuous annealing furnace.

例えば、連続焼鈍炉内を走行する鋼板の温度を
測定する場合、接触式温度計を用いれば鋼板の温
度を正確に測定することが可能であるが、鋼板が
走行しているために鋼板の表面を傷付ける恐れが
あり、また温度計プローブ自体も摩耗する等の欠
点があり、接触式による連続測定の実用化は不可
能である。
For example, when measuring the temperature of a steel plate running in a continuous annealing furnace, it is possible to accurately measure the temperature of the steel plate using a contact thermometer, but since the steel plate is running, the temperature of the steel plate cannot be measured accurately. There is a risk of damaging the thermometer probe, and the thermometer probe itself also wears out, making continuous measurement impossible.

一方、炉壁に放射温度計を設置して測温する非
接触式の場合には、炉壁からの放射エネルギーが
温度計による測温点に入射する、いわゆる背光雑
音による測温誤差が生じる。しかも、近年は多種
の製品が一つの製造ラインで生産される傾向にあ
るため、鋼種の違いや操業条件の違いにより鋼板
の放射率の変動が生じ、測温上大きな誤差要因と
なつている。
On the other hand, in the case of a non-contact method in which temperature is measured by installing a radiation thermometer on the furnace wall, a temperature measurement error occurs due to so-called backlight noise, in which radiant energy from the furnace wall enters the temperature measurement point of the thermometer. Moreover, in recent years, there has been a trend for a wide variety of products to be produced on a single production line, and thus variations in the emissivity of steel plates occur due to differences in steel types and operating conditions, which is a major source of error in temperature measurements.

このため、背光雑音や放射率の変動の影響を受
けることなく放射温度計によつて測温する方法が
幾つか提案されており、以下それらの方法につい
て説明する。
For this reason, several methods have been proposed for measuring temperature using a radiation thermometer without being affected by backlight noise or fluctuations in emissivity, and these methods will be described below.

最も手軽に用いられているのは、おわん付きの
放射温度計である。これは、多重反射を利用して
おき放射率を高める方法であり、手動測定には適
しているが、自動測定には不適当であり、連続ラ
イン等には殆ど使用されていない。
The most easily used is a radiation thermometer with a bowl. This method uses multiple reflections to increase the emissivity, and is suitable for manual measurement, but is unsuitable for automatic measurement, and is rarely used for continuous lines.

多重反射の効果を利用した連続測定装置として
は、キヤビテイーの上面に回転セクターを設置
し、開口部の大きさを変化させることにより、真
温度の測定と放射率の測定とを同時に行う装置が
ある。この装置は、測定精度は高いが、大型で高
価となる。
As a continuous measurement device that utilizes the effect of multiple reflections, there is a device that measures true temperature and emissivity at the same time by installing a rotating sector on the top of the cavity and changing the size of the opening. . Although this device has high measurement accuracy, it is large and expensive.

また、炉内物体に向けて温度の異なる二つの黒
体放射源を設置し、黒体放射エネルギーが鋼板上
で反射して得られるエネルギーと鋼板からのエネ
ルギーとの和の温度を温度計で測定した後、演算
により放射率と真温度を求める方法があるが、前
述した装置と同様に高精度での測定は可能であつ
ても、大型で高価となる。
In addition, two blackbody radiation sources with different temperatures are installed facing the objects in the reactor, and a thermometer measures the temperature of the sum of the energy obtained when the blackbody radiation energy is reflected on the steel plate and the energy from the steel plate. After that, there is a method of calculating the emissivity and true temperature, but although it is possible to measure with high precision like the above-mentioned device, it is large and expensive.

多重反射を利用した他の方法としては、鋼板と
熱交換が充分行えるように所定の長さに亘つて鋼
板に接触するロールと鋼板とで形成されるくさび
部の見掛けの放射率が限りなく「1」に近付くこ
とを利用し、この部分を放射温度計によつて制御
する方法(特開昭55−141642号)がある。
Another method that utilizes multiple reflections is that the apparent emissivity of the wedge portion formed by the steel plate and the roll that contacts the steel plate over a predetermined length is infinitely large, so that heat exchange with the steel plate can be carried out sufficiently. There is a method (Japanese Unexamined Patent Publication No. 141642/1983) that takes advantage of the fact that the temperature approaches 1" and controls this area using a radiation thermometer.

しかしながら、この方法を連続焼鈍炉内を走行
する鋼板の測温に適用するには次のような問題が
ある。
However, there are the following problems when applying this method to temperature measurement of a steel plate running in a continuous annealing furnace.

即ち、鋼板とロールとによつて形成されるくさ
び部の温度を測定する場合、鋼板と放射温度計の
光軸とのなす角度θはθ=20°以下で極力小さい
方が高精度測温のためには望ましいものである
が、熱処理炉出側のトンネル部の真上からくさび
部を測定する場合、特に既設炉に適用する場合、
トンネル部の長さが短く、真上からくさび部を臨
む角度θが20°以上となり、精度の高い測定が難
しいという問題がある。
In other words, when measuring the temperature of the wedge formed by the steel plate and the roll, the angle θ between the steel plate and the optical axis of the radiation thermometer should be as small as possible (θ = 20° or less) for highly accurate temperature measurement. However, when measuring the wedge section from directly above the tunnel section on the exit side of the heat treatment furnace, especially when applying to an existing furnace,
There is a problem in that the length of the tunnel part is short and the angle θ when viewing the wedge part from directly above is 20 degrees or more, making it difficult to measure with high precision.

本発明は、連続焼鈍炉等の炉内を走行する鋼板
の温度を放射温度計によつて高精度で測定できる
鋼板表面温度測定装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a steel plate surface temperature measuring device that can measure the temperature of a steel plate traveling in a furnace such as a continuous annealing furnace with high precision using a radiation thermometer.

すなわち、本発明は、鋼板が連続焼鈍炉等のよ
うな工業用炉内の加熱、均熱、徐冷等の各ゾーン
を結ぶトンネルを走行する系においてそのトンネ
ル部の側壁に、炉内を走行する鋼板の向きを変え
るロールと鋼板とにより形成されるくさび部を望
むように鋼板に対して角度20°以内で測温する如
く放射温度計または放射温度分布計を設置し、常
温より高い鋼板表面を測定することにある。従つ
て、常温より高い鋼板表面温度であるゆえ、鋼板
から放射される放射エネルギーが実質的に周囲の
放射エネルギーよりも相対的に大きく、その出力
効果から十分に分別可能である。なお、常温とは
例えば工場内雰囲気よりも10〜50度程度高い温度
である。
That is, the present invention provides a system in which a steel plate runs through a tunnel connecting heating, soaking, slow cooling, etc. zones in an industrial furnace such as a continuous annealing furnace. A radiation thermometer or radiation temperature distribution meter is installed so as to measure the temperature at an angle of 20° or less to the steel plate so that the wedge part formed by the steel plate and the roll that changes the direction of the steel plate is heated. The goal is to measure the Therefore, since the surface temperature of the steel plate is higher than room temperature, the radiant energy radiated from the steel plate is substantially larger than the surrounding radiant energy, and can be sufficiently separated from its output effect. Note that normal temperature is, for example, a temperature that is about 10 to 50 degrees higher than the atmosphere in the factory.

以下、本発明を実施例に基づいて詳細に説明す
る。
Hereinafter, the present invention will be explained in detail based on examples.

第1図〜第3図は本発明の一実施例を示すもの
で、1は連続焼鈍炉の一部の熱処理炉、2はこの
炉1の炉壁で、レンガ及び鉄皮により構成されて
いる。3は前記熱処理炉1から出てくる鋼板4の
走行方向を転換して次の工程へ送るための回転ロ
ールであつて、図示する如く鋼板4がロール全周
の約4分の1以上で接触しながら向きを変えるよ
うな構成となつている。5は測定用管で、前記ロ
ール3と鋼板4により形成されるくさび部から放
射されるエネルギーが放射温度計6の入射口に入
射するように設置されている。7は窓ガラスであ
る。
Figures 1 to 3 show an embodiment of the present invention, in which 1 is a heat treatment furnace that is part of a continuous annealing furnace, and 2 is a furnace wall of this furnace 1, which is made of bricks and iron skin. . 3 is a rotating roll for changing the traveling direction of the steel plate 4 coming out of the heat treatment furnace 1 and sending it to the next process, and as shown in the figure, the steel plate 4 is in contact with the roll over about one quarter of the entire circumference. The structure is such that the direction can be changed while doing so. Reference numeral 5 denotes a measuring tube, which is installed so that the energy radiated from the wedge portion formed by the roll 3 and the steel plate 4 enters the entrance of the radiation thermometer 6. 7 is a window glass.

従つて、鋼板4がロール全周のほぼ4分の1な
いしはそれ以上で接触しているので、回転ロール
3と鋼板4の温度が等温に近くなり、くさび部が
黒体と見なせるようになる。それゆえ、このと
き、見掛け上の放射率は原理的に「1」に近ずく
ことになる。
Therefore, since the steel plate 4 is in contact with approximately one quarter or more of the entire circumference of the roll, the temperatures of the rotating roll 3 and the steel plate 4 are close to isothermal, and the wedge portion can be regarded as a black body. Therefore, at this time, the apparent emissivity approaches "1" in principle.

次に、作用について述べる。まず、鋼板4とロ
ール3で形成されるくさび部付近における見掛け
の放射率について第4図を参照しながら説明す
る。くさび部O付近では多重反射が生じる。A方
向から入射した光は、ロール3、鋼板4間で完全
鏡面反射するものと仮定すると、A→P1→Q1
P2→Q2→……とくさび部Oの奥に入射してしま
い、A方向に反射する量は極めて少なくなる。こ
れは、P1,Q1,P2,Q2,……の各点からの放射
エネルギーがロール3と鋼板4の間で多重反射を
繰返してA方向に放射されること、つまりくさび
部は見掛けの放射率が1に近い黒体と見做せるこ
とを意味する。従つて、見掛けの放射率は、くさ
び部における反射回数に依存し、接触部に近付く
につれて大きくなる。即ち、反射回線は入射位置
Xと入射角θに依存する。
Next, we will discuss the effect. First, the apparent emissivity near the wedge portion formed by the steel plate 4 and the roll 3 will be explained with reference to FIG. Multiple reflections occur near the wedge portion O. Assuming that the light incident from direction A is completely specularly reflected between the roll 3 and the steel plate 4, A → P 1 → Q 1
As P 2 →Q 2 →..., the light enters the depths of the wedge portion O, and the amount reflected in the A direction becomes extremely small. This means that the radiant energy from each point P 1 , Q 1 , P 2 , Q 2 , ... repeats multiple reflections between the roll 3 and the steel plate 4 and is radiated in the A direction. This means that it can be regarded as a black body with an apparent emissivity close to 1. Therefore, the apparent emissivity depends on the number of reflections at the wedge and increases as it approaches the contact area. That is, the reflected line depends on the incident position X and the incident angle θ.

第5図は入射角θ(∠AP1P)と入射位置X(=
OP1/R:Rはロール3の半径)と多重反射の回
数nを幾何的に求めたものである。ロール上の反
射回数をn1、鋼板上の反射回数をn2、即ちn=n1
+n2としたとき、見掛けの放射率ε*は、級数的に
算出され、式(1)で表わされる。
Figure 5 shows the angle of incidence θ (∠AP 1 P) and the position of incidence X (=
OP 1 /R: R is the radius of the roll 3) and the number n of multiple reflections are determined geometrically. The number of reflections on the roll is n 1 , and the number of reflections on the steel plate is n 2 , that is, n=n 1
+n 2 , the apparent emissivity ε * is calculated in a series and is expressed by equation (1).

ε*=ε* 1+ε* 2 ……(1) ε* 1=εp・1−(rprrn1/1−rprr ε* 2=εr・rp・1−(rprrn2/1−rprr ここで、 εp:鋼板の放射率 εr:ロールの放射率 rp:鋼板の反射率 rr:ロールの反射率 この第5図から明らかなように、最適反射位置
は、0〜20度にあつては、X/Rが約0.05〜0.2
(特に、0〜13度にあつては0.05〜0.1)である。
また、鋼板4とロール3の温度は等しいとした。
このことは、伝熱工学の見地からも正しいと言え
るもので、接触面はロール3の円周の1/4もあり、
その伝熱も極めて良好で境界の温度は等しくな
る。ロール表面温度と鋼板4がロール3に接触す
る前の温度Tinとに差があれば、ロール3と鋼板
4の間で熱移動し、ロール接触後の鋼板の温度
Toutは直ちにロール3の温度に等しくなる。
ε * = ε * 1 + ε * 2 ...(1) ε * 1 = ε p・1−(r p r r ) n1 /1−r p r r ε * 2r・r p・1−( r p r r ) n2 /1−r p r r where, ε p : Emissivity of the steel plate ε r : Emissivity of the roll r p : Reflectance of the steel plate r r : Reflectance of the roll It is clear from this Figure 5 As shown, the optimal reflection position is approximately 0.05 to 0.2 for X/R at 0 to 20 degrees.
(Especially 0.05 to 0.1 for 0 to 13 degrees).
Further, it was assumed that the temperatures of the steel plate 4 and the roll 3 were equal.
This can be said to be correct from the standpoint of heat transfer engineering, and the contact surface is 1/4 of the circumference of the roll 3.
The heat transfer is also very good, and the temperature at the boundary is the same. If there is a difference between the roll surface temperature and the temperature Tin before the steel plate 4 contacts the roll 3, heat will transfer between the roll 3 and the steel plate 4, and the temperature of the steel plate after the roll contact will change.
Tout immediately becomes equal to the temperature of roll 3.

第6図A,Bはロールの放射率εr=0.3とし、
鋼板4の放射率εpをパラメータ(εp=0.2,0.3,
……0.6)とした時の入射位置(=X/R)と見
掛けの放射率の関係を入射角θ=20°(第6図A参
照)、θ=7.5°(第6図B参照)の場合について示
したものである。鋼板4の放射率が小さかつた
り、あるいは大きな変動があつても、くさび部
O′付近の見掛けの放射率は限りなく1に近付い
ており、従つて、この部分を測温すれば高精度の
温度測定が可能であることがわかる。
In Fig. 6A and B, the emissivity of the roll is ε r =0.3,
The emissivity ε p of the steel plate 4 is set as a parameter (ε p =0.2, 0.3,
...0.6), the relationship between the incident position (=X/R) and the apparent emissivity is expressed as follows: This is a case in point. Even if the emissivity of the steel plate 4 is small or changes greatly, the wedge part
The apparent emissivity near O' is extremely close to 1, so it can be seen that highly accurate temperature measurement is possible by measuring the temperature in this area.

第7図は、くさび部における見掛けの放射率の
最大値と入射角θの関係について鋼板4の放射率
をパラメータとして求めたものである。入射角
(即ち、測定角)θが20°以上になると、低放射率
(0.3以下)の鋼板4については、もはや、見掛け
の放射率は1に近付かないことがわかる。更に、
第6図A,Bより、入射角(即ち測定角)θが小
さければ小さい程、測温上有利であり、見掛けの
放射率が1に近い部分が広く、市販の放射温度計
でも視野が充分確保できることがわかる。また、
くさび部O′付近の見掛けの放射率が1であると
いうことは、背光雑音も全て吸収され、その影響
を受けないということでもある。
FIG. 7 shows the relationship between the maximum value of the apparent emissivity in the wedge portion and the angle of incidence θ, using the emissivity of the steel plate 4 as a parameter. It can be seen that when the incident angle (that is, the measurement angle) θ becomes 20° or more, the apparent emissivity of the steel plate 4 with a low emissivity (0.3 or less) no longer approaches 1. Furthermore,
From Figures 6A and B, the smaller the angle of incidence (i.e., measurement angle) θ is, the more advantageous it is for temperature measurement, and the area where the apparent emissivity is close to 1 is wide, and the field of view is sufficient even with a commercially available radiation thermometer. It turns out that it can be secured. Also,
The fact that the apparent emissivity near the wedge portion O' is 1 also means that all backlight noise is absorbed and is not affected by it.

以上、回転ロール3と鋼板4により形成される
くさび部O′を測温することにより、真温の測定
が可能であることを述べたが、次に実際にプロセ
スラインに適用する場合の測定上の要点について
述べる。
Above, we have described that it is possible to measure the true temperature by measuring the temperature of the wedge part O' formed by the rotating roll 3 and the steel plate 4. I will explain the main points.

例えば、第8図に示すように炉壁2の上部から
くさび部を測定する場合には、測定距離Lを充分
に確保する必要があり、連続焼鈍炉のような場
合、一般的には測定距離Lは長くとれず、特に既
設の炉1に適用するのは殆ど不可能である。
For example, when measuring the wedge part from the top of the furnace wall 2 as shown in Fig. 8, it is necessary to ensure a sufficient measurement distance L, and in the case of a continuous annealing furnace, the measurement distance is generally L cannot be made long, and in particular, it is almost impossible to apply it to the existing furnace 1.

また、第9図に示すように炉壁2上部より鏡8
を介してくさび部からの放熱エネルギーを放射温
度計6に導くことも考えられるが、鏡8の反射率
や設定角度を維持しなければならず、保守が煩雑
である。
In addition, as shown in FIG. 9, a mirror 8 is
It is also possible to guide the heat radiation energy from the wedge portion to the radiation thermometer 6 through the mirror 8, but the reflectance and set angle of the mirror 8 must be maintained, which requires complicated maintenance.

その点、本実施例のように炉壁2の側面にのぞ
き窓を設置すれば、測定距離Lが短くても測定角
θを充分小さくすることは可能である。なお、ロ
ール中心軸(第3図のg−g′)に対して光軸が稍
傾くが、光軸とロール軸の交点(第3図のh点)
が鋼板4の幅内、即ち第3図のi−i′間にあれば
よい。また、この場合、見掛けの放射率について
は、反射位置がロール中心軸g−g′の法線方向h
−h″に光軸h−h′を投影したものと考えられるの
で、第6図A,Bについての検討をそのまま適用
できる。
On this point, if a viewing window is installed on the side surface of the furnace wall 2 as in this embodiment, it is possible to make the measurement angle θ sufficiently small even if the measurement distance L is short. Note that the optical axis is slightly tilted with respect to the roll center axis (g-g' in Figure 3), but the intersection of the optical axis and the roll axis (point h in Figure 3)
It is sufficient that the distance is within the width of the steel plate 4, that is, between i and i' in FIG. In this case, regarding the apparent emissivity, the reflection position is h in the normal direction of the roll center axis g-g'.
Since it can be considered that the optical axis h-h' is projected onto -h'', the discussion regarding FIGS. 6A and 6B can be applied as is.

前記実施例では放射温度計を用いたが、第10
図に示すように放射温度計に代えて一次元温度分
布計(例えば、リニア・アレイ・カメラ、CCD
カメラ等)9を設置し、これにより得られた温度
分布の最大値を最大体検出器10によつて検出す
ることにより、くさび部付近の最大放射率に相当
する値(即ち、限りなく1に近い値)を求めるこ
とが可能であり、視野のずれ等による誤差をより
小さくすることができる。
In the above embodiment, a radiation thermometer was used, but the 10th embodiment
As shown in the figure, a one-dimensional temperature distribution meter (e.g. linear array camera, CCD
By installing a camera, etc.) 9 and detecting the maximum value of the obtained temperature distribution with the maximum body detector 10, a value corresponding to the maximum emissivity near the wedge portion (i.e., infinitely close to 1) is detected. It is possible to obtain a close value), and it is possible to further reduce errors caused by deviations in the visual field, etc.

このように温度分布計を用い、連続焼鈍炉に適
用した場合の測定結果を示すと第11図のように
なる。この温度分布は第6図A,Bで検討したも
のに類似したパターンとなつており、その妥当性
が確認され、高精度測温が期待できる。
FIG. 11 shows the measurement results when the temperature distribution meter is applied to a continuous annealing furnace. This temperature distribution has a pattern similar to that examined in FIGS. 6A and 6B, and its validity has been confirmed, and highly accurate temperature measurement can be expected.

第12図は第11図のような温度分布の最大値
を最大検出器10によつて検出し、時系列的に記
録したものである。図中の曲線イは本発明を適用
して測定した結果、曲線ロはトンネル上部から既
設の放射温度計(放射率補正なし)により鋼板温
度を測定した結果、黒丸印(ドツト)は接触式温
度計で間欠的に鋼板温度を測定した値である。こ
の図から明らかなように本発明(第10図の実施
例)の結果と接触式温度計の結果は一致してお
り、その妥当性が実証された。これに対し、既設
の放射温度計では、60〜70℃低めに指示されてい
るばかりでなく、鋼種が変わつて鋼板の放射率が
0.34から0.24に変化すると、測温誤差が増加して
いる。
FIG. 12 shows the maximum value of the temperature distribution as shown in FIG. 11 detected by the maximum detector 10 and recorded in time series. Curve A in the figure is the result of measurement using the present invention, curve B is the result of measuring the steel plate temperature from the top of the tunnel using an existing radiation thermometer (without emissivity correction), and the black dots are the contact temperature. This is the value obtained by intermittently measuring the steel plate temperature with a meter. As is clear from this figure, the results of the present invention (the example shown in FIG. 10) and the results of the contact thermometer are in agreement, demonstrating its validity. In contrast, existing radiation thermometers not only indicate 60 to 70 degrees lower, but also the emissivity of the steel plate has increased due to changes in the steel type.
When changing from 0.34 to 0.24, the temperature measurement error increases.

以上のように本発明によれば、連続焼鈍炉等の
工業炉において、熱処理された鋼板が連続的に流
れる際、各熱処理炉を結ぶトンネル部を通過する
ために流れる方向を変える回転ロールに対し鋼板
がロール全周の約4分の1ないしはそれ以上の良
好な接触状態となり、鋼板と回転ロールが略等し
い温度と見做せるため、両者によつて形成される
くさび部を鋼板に対して充分小さく角度で放射温
度計あるいは温度分布計で測定することにより、
高精度測温が可能である。具体的には、放射温度
計あるいは温度分布計の温度検出方向が前記くさ
び部を望むように配設されている。さらに、実験
結果に基づく具体的範囲として、温度検出方向の
延長線と鋼板表面との交差角度を0°乃至20°に制
限し、かつ温度検出方向の延長線と鋼板表面とが
交差する入射位置からロール接触点までの距離X
をロール半径Rの0.05乃至0.2倍に制限している。
このように、放射温度計あるいは温度分布計の温
度検出方向の延長線の入射角度と入射位置とを上
述した値に制限することによつて、より一層温度
測定精度を向上できる。また、光路を確保するた
めの測定窓も炉の側壁に設置するだけの簡易な工
事ですみ、既設炉にも容易に適用できる。更に、
高精度測温が可能なため、炉内温度設定値を厳格
に設定できるようになり、大幅な省エネルギー効
果が期待できる。しかも、放射率の変動や炉壁の
影響を受けることなく高精度測温が実現でき、炉
温制御の精度向上に寄与し得るので、高品質の鋼
板を製造できるといつた利点がある。
As described above, according to the present invention, when a heat-treated steel plate continuously flows in an industrial furnace such as a continuous annealing furnace, the rotating rolls that change the direction of flow in order to pass through a tunnel connecting each heat treatment furnace are provided. Since the steel plate is in good contact with about one-fourth or more of the roll's entire circumference, and the steel plate and the rotating roll can be considered to be at approximately the same temperature, the wedge formed by the two can be placed in contact with the steel plate sufficiently. By measuring with a radiation thermometer or temperature distribution meter at a small angle,
Highly accurate temperature measurement is possible. Specifically, the temperature detection direction of the radiation thermometer or the temperature distribution meter is arranged so as to face the wedge portion. Furthermore, as a specific range based on the experimental results, the intersection angle between the extension line of the temperature detection direction and the steel plate surface is limited to 0° to 20°, and the incident position where the extension line of the temperature detection direction and the steel plate surface intersects. Distance X from to the roll contact point
is limited to 0.05 to 0.2 times the roll radius R.
In this way, by limiting the incident angle and the incident position of the extension line of the temperature detection direction of the radiation thermometer or temperature distribution meter to the above-mentioned values, temperature measurement accuracy can be further improved. In addition, the measurement window for securing the optical path can be easily installed on the side wall of the furnace, making it easy to apply to existing furnaces. Furthermore,
Since high-precision temperature measurement is possible, it is now possible to strictly set the temperature inside the furnace, and a significant energy saving effect can be expected. In addition, high-precision temperature measurement can be achieved without being affected by emissivity fluctuations or furnace walls, which can contribute to improving the accuracy of furnace temperature control, which has the advantage of producing high-quality steel sheets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る鋼板表面温度測定装置の
一実施例を示す斜視図、第2図及び第3図は同実
施例を連続焼鈍炉に適用した場合の側面図及び平
面図、第4図は鋼板と回転ロールにより形成され
るくさび部付近における見掛けの放射率について
の説明図、第5図は反射位置と反射回数の関係を
示すグラフ、第6図A,Bは反射位置と見掛けの
反射率の関係を鋼板の放射率をパラメータとして
示すグラフ、第7図は入射角と見掛けの放射率の
関係を示すグラフ、第8図及び第9図は放射温度
計を炉壁上部に設置した場合の構成図、第10図
は温度分布計を用いた場合の構成図、第11図は
温度分布図、第12図は第10図に示す実施例に
よる測定例を示すグラフである。 1……熱処理炉、2……炉壁、3……回転ロー
ル、4……鋼板、5……管、6……放射温度計、
7……窓ガラス、9……温度分布計、10……最
大値検出器。
FIG. 1 is a perspective view showing an embodiment of the steel sheet surface temperature measuring device according to the present invention, FIGS. 2 and 3 are a side view and a plan view of the same embodiment applied to a continuous annealing furnace, and FIG. The figure is an explanatory diagram of the apparent emissivity near the wedge formed by the steel plate and the rotating roll. Figure 5 is a graph showing the relationship between the reflection position and the number of reflections. Figures 6A and B are the graphs showing the relationship between the reflection position and the apparent number of reflections. A graph showing the relationship between reflectance using the emissivity of the steel plate as a parameter. Figure 7 is a graph showing the relationship between the angle of incidence and apparent emissivity. Figures 8 and 9 show a radiation thermometer installed on the upper part of the furnace wall. FIG. 10 is a configuration diagram when a temperature distribution meter is used, FIG. 11 is a temperature distribution diagram, and FIG. 12 is a graph showing an example of measurement by the embodiment shown in FIG. 10. 1... Heat treatment furnace, 2... Furnace wall, 3... Rotating roll, 4... Steel plate, 5... Tube, 6... Radiation thermometer,
7... Window glass, 9... Temperature distribution meter, 10... Maximum value detector.

Claims (1)

【特許請求の範囲】 1 工業用炉内の加熱、均熱、徐冷などの各ゾー
ンを結ぶトンネル部に鋼板の向きを変えるロール
と走行する鋼板とがロール全周のほぼ4分の1ま
たはそれ以上で接触し、かつ、前記鋼板の向きを
変えるロールと鋼板とによつてくさび部を形成す
るとともに、温度検出方向が前記鋼板表面に対し
て0度より大きく20度以下の角度で前記くさび部
を望むように、かつ前記鋼板表面における前記温
度検出方向の延長線が交差する入射位置とこの入
射位置から前記ロールとの接触位置までの距離X
が前記ロールの半径Rの0.05乃至0.2倍になるよ
うに、前記トンネル部の側壁に、放射温度計また
は温度分布計を設置したことを特徴とする鋼板表
面温度測定装置。 2 トンネル部の側壁に設置する放射温度計また
は温度分布計の温度検出方向の前記鋼板表面に対
する設定角度は0度より大きく13度より小さいこ
とを特徴とする特許請求の範囲第1項記載の鋼板
表面温度測定装置。
[Scope of Claims] 1. A roll that changes the orientation of the steel plate and a running steel plate in a tunnel connecting each zone of heating, soaking, slow cooling, etc. in an industrial furnace are approximately one-fourth of the entire circumference of the roll or A wedge portion is formed by the steel plate and a roll that contacts the steel plate at a temperature higher than that and changes the direction of the steel plate, and the wedge portion is formed so that the temperature detection direction is at an angle greater than 0 degrees and less than 20 degrees with respect to the surface of the steel plate. an incident position where the extension line of the temperature detection direction intersects on the surface of the steel plate and a distance X from this incident position to the contact position with the roll as desired.
A steel sheet surface temperature measuring device characterized in that a radiation thermometer or a temperature distribution meter is installed on a side wall of the tunnel portion so that R is 0.05 to 0.2 times the radius R of the roll. 2. The steel plate according to claim 1, wherein a temperature detection direction of a radiation thermometer or a temperature distribution meter installed on a side wall of a tunnel portion has a set angle with respect to the steel plate surface that is greater than 0 degrees and smaller than 13 degrees. Surface temperature measuring device.
JP18513383A 1983-10-05 1983-10-05 Measuring device for surface temperature of steel plate Granted JPS6078327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18513383A JPS6078327A (en) 1983-10-05 1983-10-05 Measuring device for surface temperature of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18513383A JPS6078327A (en) 1983-10-05 1983-10-05 Measuring device for surface temperature of steel plate

Publications (2)

Publication Number Publication Date
JPS6078327A JPS6078327A (en) 1985-05-04
JPH0458568B2 true JPH0458568B2 (en) 1992-09-17

Family

ID=16165444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18513383A Granted JPS6078327A (en) 1983-10-05 1983-10-05 Measuring device for surface temperature of steel plate

Country Status (1)

Country Link
JP (1) JPS6078327A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224287A (en) * 2007-03-09 2008-09-25 Sumitomo Metal Ind Ltd Apparatus and method for measuring emissivity of surface of metal body and steel sheet manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096285A (en) * 1973-12-24 1975-07-31
JPS55141642A (en) * 1979-04-23 1980-11-05 Nippon Kokan Kk <Nkk> Surface temperature measuring method of steel plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096285A (en) * 1973-12-24 1975-07-31
JPS55141642A (en) * 1979-04-23 1980-11-05 Nippon Kokan Kk <Nkk> Surface temperature measuring method of steel plate

Also Published As

Publication number Publication date
JPS6078327A (en) 1985-05-04

Similar Documents

Publication Publication Date Title
US4435092A (en) Surface temperature measuring apparatus for object within furnace
US4172383A (en) Method and an apparatus for simultaneous measurement of both temperature and emissivity of a heated material
JP4217255B2 (en) Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method
JPS6049849B2 (en) Device for measuring surface temperature and emissivity of objects
JPH0458568B2 (en)
JPS634651B2 (en)
JPS5987329A (en) Method for measuring temperature of steel
JP2005233790A (en) Method and apparatus for measuring temperature of sheet steel
JPS6047538B2 (en) How to measure the temperature and emissivity of an object
JPS61292528A (en) Correction in temperature measurement for steel material in furnace
JPS6049850B2 (en) radiation thermometer
JPH0230650B2 (en) HOSHAONDOKEINYORURONAIKOHANONDOSOKUTEIHOHO
JPS6225973B2 (en)
JPH05215611A (en) Noncontact temperature detector
JPH0427496B2 (en)
JPS6225972B2 (en)
JPH0232207A (en) Roughness measuring method for metal surface
KR100411282B1 (en) Method and apparatus for measuring temperature of body in heating furnace
JPS6219947Y2 (en)
JPH0682045B2 (en) Oxide film measuring device in heat treatment furnace for steel strip
JPH05203497A (en) Measuring method for temperature of steel plate
JPS6160364B2 (en)
JP2000297330A (en) Method for measuring strip temperature in strip continuous annealing furnace and instrument therefor
JPS6014193Y2 (en) Simultaneous measurement device for metal surface temperature and emissivity
JPS6124901Y2 (en)