JPS60159127A - Method for controlling cooling of steel strip in continuous annealing installation - Google Patents

Method for controlling cooling of steel strip in continuous annealing installation

Info

Publication number
JPS60159127A
JPS60159127A JP1390784A JP1390784A JPS60159127A JP S60159127 A JPS60159127 A JP S60159127A JP 1390784 A JP1390784 A JP 1390784A JP 1390784 A JP1390784 A JP 1390784A JP S60159127 A JPS60159127 A JP S60159127A
Authority
JP
Japan
Prior art keywords
cooling
strip
roll
copper strip
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1390784A
Other languages
Japanese (ja)
Other versions
JPS6314051B2 (en
Inventor
Katsuhiko Yui
湯井 勝彦
Hiroshi Ikeue
洋 井家上
Shinichi Shimizu
清水 晋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1390784A priority Critical patent/JPS60159127A/en
Publication of JPS60159127A publication Critical patent/JPS60159127A/en
Publication of JPS6314051B2 publication Critical patent/JPS6314051B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Abstract

PURPOSE:To control the temp. of a steel strip so as to follow up accurately a target temp. by detecting the inlet side temp., welding point, tension and conveying speed of the steel strip in a cooling device and the temp. of a refrigerant and controlling the winding angle of the steel strip to cooling rolls. CONSTITUTION:A steel strip 6 is cooled by passing the same through cooling rolls 1-5 in which a refrigerant flows, via an inlet side bridle roll 16, and is ejected from an outlet side bridle roll 17. The inlet side temp. of the strip 6 is detected by a thermometer 7, the line speed by a speedometer 13, the tension of the strip 6 by a tension detecting meter 14, the refrigerant temp. of the cooling roll 3 by a refrigerant thermometer 15 and the welding point by a detector 9, respectively, in each prescribed period and the detected values are outputted to a control device 12. The device 12 determines the temp. of the strip 6 on the inlet and outlet sides of the respective rolls from the input data and a working schedule chart, calculates the contact length between the strip 6 and the rolls 1-5 in the respective rolls 1-5, calculates the pressing rate of the rolls 2, 4 and moves hydraulic cylinders 10 by control devices 11 for hydraulic cylinders thereby adjusting the positions of the movable rolls 2, 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続焼鈍設備内に設置され、内部に冷媒を貫
流させた冷却用ロールに銅帯を巻付けて鋼帯を冷却する
冷却制御方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a cooling control system that cools a steel strip by wrapping a copper strip around a cooling roll installed in a continuous annealing facility and having a refrigerant flowing through the inside. It is about the method.

(従来技術) 連続焼鈍設備においては、700℃前後の銅帯を400
℃前後に冷却する必要がある。この為に内部に冷却水を
貫流させた金属ロールに銅帯を接触させ、該ロールを移
動させる事によって、該ロールと銅帯との接触長を変え
、所望の銅帯温度を得ようとする冷却方法としては、特
公昭57−14414号公報及び特公昭58−4745
7号公報記載の方法がある。
(Prior art) In continuous annealing equipment, a copper strip heated to around 700°C is
It is necessary to cool it to around ℃. For this purpose, the copper strip is brought into contact with a metal roll through which cooling water flows, and by moving the roll, the contact length between the roll and the copper strip is changed to obtain the desired temperature of the copper strip. The cooling method is described in Japanese Patent Publication No. 57-14414 and Japanese Patent Publication No. 58-4745.
There is a method described in Publication No. 7.

R11ち、前者は該冷却装置出側に鋼帯の温度を検出す
る温度計を設置し、該温度計より得られる実績温度と、
目標温度との偏差をめ、該偏差に基づいて鋼帯と冷却用
ロールとの接触長を変更させるフィードバック制御であ
シ、後者は該冷却装置入側にも銅帯の温度を検出する温
度i−1を設置し、入側実績温度を得る事により、前述
ケフィードバックで吸収しきれない温度変化を、フィー
ドフォワード制御によっておぎなおうとするフィードバ
ック制御とフィードフォワード制御を組み合わせた制御
方法である。
R11, the former is a thermometer that detects the temperature of the steel strip is installed on the exit side of the cooling device, and the actual temperature obtained from the thermometer,
This is a feedback control that measures the deviation from the target temperature and changes the contact length between the steel strip and the cooling roll based on the deviation. This is a control method that combines feedback control and feedforward control, in which temperature changes that cannot be absorbed by the above-mentioned feedback are compensated for by feedforward control by installing the controller -1 and obtaining the actual inlet temperature.

しかしながら、従来法には、次のような欠点が1、充分
満足のいくものではない。即ち、上記した2つの従来法
は、いづれも銅帯の温度のみによって接触長さの制御を
行なっている。これは、鋼帯の板厚やラインスピードが
変更した場合、従来法は追従性が悪い事を意味する。な
ぜなら連続焼鈍設備では、通板される銅帯は、板厚、板
幅、ヒートサイクルなどが異なる銅帯を溶接したもので
あり、ラインスピードは、加熱炉、均熱炉、過時効炉等
の冷却装置以外の設備によって決定され、該冷却装置の
能力によりラインスピードを変更する事は困難であるか
らである。
However, the conventional method has the following drawbacks and is not completely satisfactory. That is, in both of the above-mentioned conventional methods, the contact length is controlled only by the temperature of the copper strip. This means that when the steel strip thickness or line speed changes, the conventional method has poor followability. This is because in continuous annealing equipment, the copper strips that are threaded are welded copper strips with different thicknesses, strip widths, heat cycles, etc., and the line speed is determined by the heating furnace, soaking furnace, overaging furnace, etc. This is because the line speed is determined by equipment other than the cooling device, and it is difficult to change the line speed depending on the capacity of the cooling device.

例えば、板厚が0.8mmから1.0咽へ変化した場合
について説明する。銅帯の温度は、800℃から400
℃にまで該冷却装置によって下げられるものとする。こ
こで、内部に冷却水を到流させた金属ロールに銅帯を接
触させる冷却方法では、冷却速度は100℃/sea程
度であるという実験結果がある。仮に冷却速度を100
℃/@eaとすれば、400℃温度を下げるのに4秒か
かる事になる。
For example, a case where the plate thickness changes from 0.8 mm to 1.0 mm will be explained. The temperature of the copper strip is from 800℃ to 400℃
The temperature shall be lowered by the cooling device to ℃. Here, there is an experimental result that in a cooling method in which a copper strip is brought into contact with a metal roll into which cooling water is allowed to flow, the cooling rate is about 100° C./sea. Suppose the cooling rate is 100
If it is ℃/@ea, it will take 4 seconds to lower the temperature by 400℃.

従って、溶接点が該冷却装置を通過し、出側温度計に達
するまでには、4〜5秒程度かかると考えてよい。溶接
点が出側温度計に達するまでは、出側温度計が検出する
温度は、板厚0.8 wnの銅帯のものであり、それは
目標値にほぼ等しいため接触長は変更されない。溶接点
が出側温度計を通過した後に、板厚1.0咽の鋼帯の温
度が検出されるが必要冷却量が1,25倍になっている
にもかかわらず、ロールとの接触長が板厚0.8m+n
の銅帯の接触長と等しいため、実績温度は目標温度と大
きくずれている。フィードバック制御では、この時点で
制イ1111機構が働き、接触長を変更させる。即ち、
5秒前後の遅れを生じて制御が行なわれる事に々る。
Therefore, it can be considered that it takes about 4 to 5 seconds for the welding point to pass through the cooling device and reach the outlet thermometer. Until the welding point reaches the exit thermometer, the temperature detected by the exit thermometer is that of the copper strip with a plate thickness of 0.8 wn, which is approximately equal to the target value, so the contact length is not changed. After the welding point passes the exit side thermometer, the temperature of the steel strip with a plate thickness of 1.0 mm is detected, but even though the required cooling amount is 1.25 times larger, the contact length with the roll is is plate thickness 0.8m+n
Since the contact length of the copper strip is equal to the contact length of the copper strip, the actual temperature deviates greatly from the target temperature. In feedback control, the control 1111 mechanism operates at this point to change the contact length. That is,
Control is often performed with a delay of around 5 seconds.

ラインスピードは200 mpm前後である事から、5
秒遅れる事は約17mの銅帯で大幅な温度はずれを生じ
る事を意味する。
Since the line speed is around 200 mpm, 5
A second delay means a significant temperature difference across the approximately 17m copper strip.

さらに、フィードバック制御を行う前述の従来法は、目
標値と実績値の偏差に基づいておυ、上述のように大き
な無駄時間を含む場合は、制御系の安定性確保のため、
フィードバックゲインを小さくとらざるを得す、その分
実績値が目標値に追従するのがおそくなシ、ここでも温
度はずれとなる銅帯が大きく生ずる事になる。従って、
従来法では板厚等が大きく変化した場合、数十mの長さ
の鋼帯が温度はずれとなシ、良好な品質を維持できない
Furthermore, in the conventional method that performs feedback control, υ is based on the deviation between the target value and the actual value.
Since the feedback gain is forced to be small, the actual value is slow to follow the target value, and here too, a large copper band where the temperature deviates occurs. Therefore,
In the conventional method, if the plate thickness etc. change significantly, the temperature of the steel strip several tens of meters in length may deviate, making it impossible to maintain good quality.

フィードバック制御のみで制御しようとした場合に生ず
る上述のような欠点を防ぐために、フィードバック制御
とフィードフォワード制御を組み合わせる事が考えられ
るが、前述の従来法は、該冷却装置入側での銅帯の実績
温度と同目標温度との偏差に基づいてフィードフォワー
ド制御を行なっているため、前述の例のように板厚が変
化したが冷却装置入側の目標温度には変化が々い場合な
どには何ら効果を発揮する事ができない。
In order to prevent the above-mentioned drawbacks that occur when attempting to control using only feedback control, it is possible to combine feedback control and feedforward control, but the conventional method described above Feedforward control is performed based on the deviation between the actual temperature and the same target temperature, so if the plate thickness changes as in the example above, but the target temperature at the entrance of the cooling system does not change significantly, It cannot produce any effect.

さらに、銅帯の形状に与える影響を考えると、幅方向均
一冷却が必要になるが、複数本の冷却用ロールを使用し
た場合に、各ロールでの冷却量の配分を幅方向均一冷却
を実現すべく決定するという考え方は従来なかった。
Furthermore, considering the effect on the shape of the copper strip, uniform cooling in the width direction is required, but when multiple cooling rolls are used, uniform cooling in the width direction can be achieved by distributing the amount of cooling between each roll. In the past, there was no concept of deciding what to do.

(発明の目的) 本発明は従来法にみられる上記の欠点に鑑みてなされた
ものであり、 ■温度はずれとなる鋼帯の長さを減少させる、■幅方向
不均−冷却の発生を防止し、良好な形状の銅帯の安定生
産を行なう、 事を目的としたものである。
(Objective of the Invention) The present invention has been made in view of the above-mentioned drawbacks of the conventional method. ■Reducing the length of the steel strip where the temperature deviates; ■Preventing the occurrence of non-uniform cooling in the width direction. The purpose is to stably produce copper strips with good shape.

(発明の構成作用) 本発明は、連続焼鈍設備内に設置され、内部に冷媒を貫
流させた1本ないし複数本の冷却用ロールに銅帯を巻付
け、該巻付は角度を変更させる機構を有する鋼帯の冷却
装置を制御するに際し、銅帯の搬送順序、寸法、物性値
を記した作業予定表を記憶し、予め得られている関係式
から巻付角を計算し、巻付角を変更させる機構を有する
銅帯の冷却装置を制御する制御装置を設け、冷却用ロー
ルの入側に銅帯温度計、銅帯の溶接線検出器を設け、冷
却装置内に銅帯の張力計、冷媒温度計、鋼帯搬送速度計
を設け、溶接線通過本数と作業予定表から認識する通過
中の鋼帯の寸法、物性値と冷却用ロール入側鋼帯温度、
銅帯張力、冷媒温度、銅帯搬送速度とを前記関係式に代
入して、銅帯の冷却用ロールに対する巻付角を定期的に
計算し、その値に基づいて巻付角を変更すると共に、銅
帯の溶接線が冷却用ロールを通過中に巻付角を制御する
とと; 前記制御装置内の関係式に新たに冷却用ロール出側の制
御鋼帯目標温度を修正する式を付加し、冷却用ロール市
゛側に鋼帯温度計を設け、該温度計からの入力により定
期的に出側の制御目標鋼帯温度を修正し巻付角を再計算
し、銅帯の冷却用ロールに対する巻付角を修正して冷却
精度を一層向上させること; および冷却用ロールを複数本設置した場合において銅帯
の冷却用ロールに対する巻付角を後続するロールになる
にしたがって大きくなるように制御して良好な形状の銅
帯を安定生産するとと:を要旨とするものである。
(Construction and Effect of the Invention) The present invention provides a mechanism in which a copper strip is wound around one or more cooling rolls installed in a continuous annealing facility and through which a refrigerant flows, and the winding angle is changed. When controlling a cooling device for steel strips with A control device is installed to control the copper strip cooling device that has a mechanism for changing the temperature of the copper strip, a copper strip thermometer and a copper strip weld line detector are installed on the inlet side of the cooling roll, and a copper strip tension meter is installed inside the cooling device. , a refrigerant thermometer and a steel strip conveyance speed meter are installed, and the dimensions and physical properties of the steel strip in transit, which are recognized from the number of weld lines passing and the work schedule, and the temperature of the steel strip on the entrance side of the cooling roll,
By substituting the copper strip tension, refrigerant temperature, and copper strip conveyance speed into the above relational expression, the wrapping angle of the copper strip with respect to the cooling roll is calculated periodically, and the wrapping angle is changed based on the value. , the wrap angle is controlled while the weld line of the copper strip passes through the cooling roll; a new equation for correcting the controlled steel strip target temperature on the exit side of the cooling roll is added to the relational equation in the control device. A steel strip thermometer is installed on the center side of the cooling roll, and the control target steel strip temperature on the exit side is periodically corrected based on the input from the thermometer, and the wrapping angle is recalculated. To further improve cooling accuracy by correcting the wrapping angle of the copper strip to the cooling roll; and when multiple cooling rolls are installed, controlling the wrapping angle of the copper strip to the cooling roll so that it becomes larger as the succeeding rolls become larger. The purpose is to stably produce copper strips with good shape.

(実施例) 本発明の第1の実施例について説明する。巻付角の計算
方法は次のようにしてめる。
(Example) A first example of the present invention will be described. The wrapping angle can be calculated as follows.

即ち、1本の冷却用ロールにおいてロールと鋼帯との接
触長さがlの場合微小弧長d/の区間での熱収支を考え
ると単位時間に鋼帯6が放出する熱量Δq、と鋼帯6か
ら冷媒へと流れる熱量Δq2は等しい。ここでΔQ1+
Δq、は各々次式で与えられる。
In other words, when the contact length between the roll and the steel strip in one cooling roll is l, considering the heat balance in a section of minute arc length d/, the amount of heat released by the steel strip 6 per unit time Δq, and the steel The amount of heat Δq2 flowing from the zone 6 to the refrigerant is equal. Here ΔQ1+
Δq is given by the following equations.

Δq1=cp・ρ1w冒し” di” ”’ΔQ2 ”
’ K(1’、 p ) ・w−(T−TW) 、 d
/但し C:鋼帯の比熱 ρ :銅帯の比重 W:銅帯の幅 d :鋼帯の厚さ V ニラインスピード lI:接触長さ T :微小弧長dA!’における銅帯の温度D 二ロー
ル直径 に:熱貫流率(接触長さlとロール面圧pの関数)′ 
2 TW:冷媒の温度 従って冷却用ロール入側の銅帯の温度をTつ、出側の温
度をTDとすれば、 TD=TW+(T8−TW)/exp(K(l、p)・
l/C1す・d −V ) ・(1)となる。
Δq1=cp・ρ1w ``di''``'ΔQ2''
'K(1', p) ・w-(T-TW), d
/However, C: Specific heat ρ of steel strip: Specific gravity W of copper strip: Width d of copper strip: Thickness V of steel strip Niline speed lI: Contact length T: Minute arc length dA! The temperature of the copper strip at 'D' is the diameter of the two rolls: Thermal transmission coefficient (function of contact length l and roll surface pressure p)'
2 TW: Temperature of the refrigerant Therefore, if the temperature of the copper strip on the inlet side of the cooling roll is T and the temperature on the outlet side is TD, then TD=TW+(T8-TW)/exp(K(l,p)・
l/C1s・d−V)・(1).

ここで冷却用ロールでは、銅帯からロールへの接触熱伝
達、ロールシェル内の熱伝導、ロールシェルと冷媒との
間の熱伝達の順で熱が移動する事から、熱貫流率K(A
!、p)は、次式で与えられる。
Here, in the cooling roll, heat transfers in the following order: contact heat transfer from the copper strip to the roll, heat conduction within the roll shell, and heat transfer between the roll shell and the refrigerant.
! , p) is given by the following equation.

但し k、(p):冷却用ロールと銅帯との接触熱伝達
率(ロール面圧pの関数) D 二ロール直径 δ :ロールシェル厚み λ ニジエル熱伝達率 に2:ロールシェルと冷媒間の熱伝達率(1) 、 (
2)式から、冷却用ロール入側の銅帯実績温度がTゆで
あり、冷却用ロール出側の目標温度がTDoであった場
合、銅帯と冷却用ロールとの必要接触長が算出できる。
However, k, (p): Contact heat transfer coefficient between the cooling roll and the copper strip (function of roll surface pressure p) D Roll diameter δ: Roll shell thickness λ Nigel heat transfer coefficient 2: Between the roll shell and the refrigerant Heat transfer coefficient (1), (
From equation 2), if the actual temperature of the copper strip on the inlet side of the cooling roll is T, and the target temperature on the outlet side of the cooling roll is TDo, the required contact length between the copper strip and the cooling roll can be calculated.

冷却用ロールを複数本用いて冷却する際には、あらかじ
め定められた各ロールの冷却量(ΔTl、ΣΔTi =
 Tzp −Ta2 )により、各冷却用ロールでの銅
帯の入側温度、出側温度を決める事によシ、各a−ルで
の必要接触長は異なるのが通例である。
When cooling using multiple cooling rolls, the predetermined cooling amount of each roll (ΔTl, ΣΔTi =
Tzp -Ta2), the required contact length at each roll usually differs by determining the inlet and outlet temperatures of the copper strip in each cooling roll.

前述した冷却制御方法の適用手順を第1図を用いて説明
する。
The procedure for applying the cooling control method described above will be explained using FIG.

第1図は5本の冷却用ロールを用いた実施例である。前
工程から搬送されてきた鋼帯6は入側プライドルロール
を通過し、内部に冷媒を貫流させた一冷却用ロール1〜
5を通過し、出側プライドルロール17を通過して次工
程に搬送される。冷却用ロールの入側には銅帯温度計7
と溶接線検出器9が設けられ制御装置12に接続されて
いる。移動可能ロールはA2冷却用ロール2とA4冷却
用ロール4で、制御装置12から、押込舒が巻付角から
変換されて油圧シリンダー制御装置11−1.11−2
にインプットされ、油圧シリンダー10−1 、10−
2を移動させる。
FIG. 1 shows an example using five cooling rolls. The steel strip 6 conveyed from the previous process passes through the inlet priddle rolls, and then passes through the cooling rolls 1 to 1, which have refrigerant flowing through them.
5, and the output side priddle roll 17 to be conveyed to the next process. A copper strip thermometer 7 is installed on the inlet side of the cooling roll.
and a weld line detector 9 are provided and connected to a control device 12. The movable rolls are A2 cooling roll 2 and A4 cooling roll 4, and the control device 12 converts the pushing shaft from the wrapping angle to the hydraulic cylinder control device 11-1.11-2.
is input to the hydraulic cylinders 10-1, 10-
Move 2.

なお銅帯搬送速度は銅帯搬送速度計13から、銅帯張力
は銅帯張力側14から、冷媒温度は冷媒温度計15から
それぞれ制御装置にインプットされる。
The copper strip conveyance speed is input to the control device from the copper strip conveyance speed meter 13, the copper strip tension from the copper strip tension side 14, and the refrigerant temperature from the refrigerant thermometer 15.

なお本発明の冷却装置とは入側プライドルロール16か
ら出側プライドルロール17までをいう。
Note that the cooling device of the present invention refers to the parts from the inlet side prydle roll 16 to the outlet side prydle roll 17.

本実施例は以上の設備構成により次の様な手順で行われ
る。なお冷却装置の諸元は第2図に示す通りである。
This embodiment is carried out in the following steps using the above equipment configuration. Note that the specifications of the cooling device are as shown in FIG.

制御装置121d、ある定められた周期毎に、冷却装置
入側にある銅帯温度計7から銅帯の入側温度T22を、
鋼帯搬送速度計13からラインスピードVを、張力検出
計14から銅帯にかけられた張力を、冷媒温度計15か
ら冷媒の温度Twを取シ込み、さらに、溶接線検出器9
を通過した溶接線の数と作業予定表から、現在冷却装置
を通過中の銅帯の作業篇を知り、前記作挙予定表から、
銅帯の比熱CP、比重ρ1幅W、厚さd、冷却装置出側
目標温度T1.oを取り込む。しかる後に冷却mの配分
により各ロール入側及び出側の銅帯の温度を決定する。
The control device 121d measures the inlet side temperature T22 of the copper strip from the copper strip thermometer 7 on the inlet side of the cooling device at every predetermined period.
The line speed V is input from the steel strip conveyance speed meter 13, the tension applied to the copper strip is input from the tension detector 14, and the refrigerant temperature Tw is input from the refrigerant thermometer 15.
From the number of welding lines that have passed through and the work schedule, we know the work for the copper strip that is currently passing through the cooling device, and from the work schedule,
Copper strip specific heat CP, specific gravity ρ1 width W, thickness d, cooling device outlet target temperature T1. Take in o. Thereafter, the temperature of the copper strips on the inlet and outlet sides of each roll is determined by the distribution of the cooling m.

各ロール入側及び出側の銅帯温度から、前述の方法を用
いて、各ロールにおける銅帯とロールとの接触長t1を
算出する。tlを用いて、第20−ル、第40−ルの押
込験H21,H4を各々次式で算出する。
Using the method described above, the contact length t1 between the copper strip and the roll in each roll is calculated from the copper strip temperatures on the inlet and outlet sides of each roll. Using tl, the indentation tests H21 and H4 for the 20th and 40th rules are calculated using the following formulas.

馬= D −4−(Lsln (θ、/2)−1))/
cos(θi/2) i=2.4 ・ (3)但し、L
は冷却用ロール間距離 θ1は第1クールの巻付角(θ1=2・L t/’D 
)ラインスピードτや入側温度TBPが変化した場合に
は、今回引算して得られた押込計1(2,H4を、計算
が終υしだい油圧シリンダ制御装置11に伝え、油圧シ
リンダ10を動かし、可動ロール2゜4の位置を調整す
る。又、溶接線検出器9が溶接部を検出した際には、次
の銅帯の時の可動ロール押込tH2,H4を上記と同様
の手順によりめ、さらに、ラインスピードυを用いて予
じめ算出された溶接部が可動ロール2に巻きつく時点に
押込み鼠H2を、又、溶接部が可動ロール4に巻きつく
時点に押込1H4を各々油圧シリンダ制御装置11に伝
え、油圧シリンダ10が可動ロール2.4を各々のタイ
ミングで移動させるようにする。
Horse = D −4−(Lsln (θ, /2)−1))/
cos(θi/2) i=2.4 ・ (3) However, L
is the distance between the cooling rolls θ1 is the wrapping angle of the first coolant (θ1=2・L t/'D
) When the line speed τ or the entrance temperature TBP changes, the indentation meter 1 (2, H4 obtained by subtraction this time is transmitted to the hydraulic cylinder control device 11 as soon as the calculation is completed, and the hydraulic cylinder 10 is move and adjust the position of the movable roll 2°4.Also, when the weld line detector 9 detects a weld, move the movable rolls tH2 and H4 for the next copper strip using the same procedure as above. In addition, when the welded part, calculated in advance using the line speed υ, wraps around the movable roll 2, the pusher H2 is applied, and when the welded part wraps around the movable roll 4, the pusher 1H4 is applied hydraulically. The information is transmitted to the cylinder control device 11 so that the hydraulic cylinder 10 moves the movable roll 2.4 at each timing.

以上の説明でわかるように、本実施例による方法では、
次のような利点がある。
As can be seen from the above explanation, in the method according to this example,
It has the following advantages:

■ 溶接線が冷却装置に入る時刻がわかるため、溶接線
が冷却用ロールに巻付いている時に可動ロールを動かす
事ができ、従来法のような無駄時間が発生しない。
■ Since the time when the welding line enters the cooling device is known, the movable roll can be moved while the welding line is wrapped around the cooling roll, eliminating wasted time unlike conventional methods.

■ 冷却用ロール出側の銅帯温度の目標値と実績値との
偏差に基づいて制御を行なう従来法では、例えば板厚が
0.8調から1.0m+nへと変化したような場合に、
1.0鴫の鋼帯での必要接触長を予め知る事ができず、
可動ロール押し込み借を徐々に変えていくため、最終的
に1.0mmの銅帯の場合に必要な接触長を得るのに時
間がかかるが、本実施例による方法では、予め必要接触
長を銀山できるため、可動ロール移動に髪する時間が短
かくてすむ。
■ In the conventional method, which performs control based on the deviation between the target value and the actual value of the copper strip temperature at the exit side of the cooling roll, for example, when the plate thickness changes from 0.8 to 1.0 m+n,
1.0 It is not possible to know in advance the required contact length with the steel strip,
Since the movable roll push-down is gradually changed, it takes time to finally obtain the required contact length for a 1.0 mm copper strip, but in the method of this example, the required contact length is determined in advance by using a silver strip. This reduces the time required to move the movable roll.

このように1本実施例による方法を用いれば、淵度目ず
れとなる鋼帯が従来法に比べ著しく減少する。
As described above, if the method according to this embodiment is used, the number of steel strips that are out of edge depth is significantly reduced compared to the conventional method.

次に、本発明の第2の実施例を第3図を用いて説明する
Next, a second embodiment of the present invention will be described using FIG. 3.

第3図は冷却用ロール出側に銅帯温度計8を設け、その
他は第1図と同じである。
In FIG. 3, a copper strip thermometer 8 is provided on the exit side of the cooling roll, and the other features are the same as in FIG. 1.

前述の実施例は、銅帯の比熱や比し銅帯とロールとの接
触熱伝達率、シェルの熱伝導率等を用いているが、これ
らの値は、操業状況や銅帯などによシ、微妙にばらつく
ものである。従って、金白j装置を通過した後の銅帯の
温度も、目標温度とけ微妙に異なっている。制御精度目
標が厳しい場合には、上記のよう々外乱による影響を取
シ除く事を考えなければならない。本実施例は上記のよ
うな欠点を解決するためになされたものであシ、前記実
施例の冷却制御精度を一層向上させる事を目的とするも
のである。
The above examples use the specific heat of the copper strip, the contact heat transfer coefficient between the copper strip and the roll, the thermal conductivity of the shell, etc., but these values may vary depending on the operating conditions and the copper strip. , which varies slightly. Therefore, the temperature of the copper strip after passing through the gold-plated j apparatus also differs slightly from the target temperature. If the control accuracy target is strict, consideration must be given to eliminating the influence of disturbances as described above. This embodiment has been made to solve the above-mentioned drawbacks, and is intended to further improve the cooling control accuracy of the above-mentioned embodiments.

即ち、(11、(2)式から、冷却ロール出側の銅帯の
温度は、銅帯とロールとの接触長により決定される事が
わかる。又、(3)式より、接触長は可動ロール押込量
H2,H4が決まれば決定される。従って、冷却用ロー
ル出側の銅帯の温度TDは第2.第40−ルの押込量の
関数としてTD= F (H2,H4) ・・・(4)
と表わされる。
In other words, from equations (11 and (2)), it can be seen that the temperature of the copper strip on the exit side of the cooling roll is determined by the contact length between the copper strip and the roll. Also, from equation (3), it can be seen that the contact length is variable. It is determined once the roll pushing amounts H2 and H4 are determined. Therefore, the temperature TD of the copper strip on the exit side of the cooling roll is determined as a function of the pushing amount of the 2nd and 40th rolls as follows: TD=F (H2, H4)...・(4)
It is expressed as

鋼帯出側温度TDに鋼帯出側目標温度”Doを代入し、
ロール押し込み歇をめる第1の実施例によれば、銅帯の
出側温度TDは目標温度TDOになるはずであるが、出
側温度計8によって測られた出側実績温度TDPは前述
の理由によシ、目標温度TD。
Substitute the steel strip exit side target temperature “Do” for the steel strip exit side temperature TD,
According to the first example of intermittent roll pushing, the outlet temperature TD of the copper strip should be the target temperature TDO, but the actual outlet temperature TDP measured by the outlet thermometer 8 is not as described above. For some reason, the target temperature is TD.

とは着干異なっている。そこで実績温度TDPを可調整
、41ラメータGを用いて、 TDP=GF(H2,H4) ・・・(5)と表わす。
It's quite different from that. Therefore, the actual temperature TDP is adjustable and is expressed as TDP=GF(H2, H4) (5) using 41 rammeter G.

(但し、F(H2,H4)は(4)式と同じ関数)制御
時刻kにしいて実績温度TDPがTD p (k) +
可動ロール2,4の押込量はH2(k) 、 H4[有
])であったとすると、制御時刻kにおける可調整パラ
メータG(k)は G伽)=TD、(k)/F’ (I(2(k)、H4(
k)) ・・・ (6)でめる事ができる。
(However, F(H2, H4) is the same function as equation (4)) Actual temperature TDP at control time k is TD p (k) +
Assuming that the pushing amount of the movable rolls 2 and 4 is H2 (k), H4 [Yes]), the adjustable parameter G (k) at control time k is G) = TD, (k)/F' (I (2(k), H4(
k)) ... (6).

上式で算出きれた可調整・ンラメータG (k)は、次
式によって平滑化される。
The adjustable parameter G (k) calculated using the above equation is smoothed using the following equation.

d伽)=(1−α)a(k−1)+αGへ) ・・・ 
(7)αけ事情化係数 しかるのちに、目標温度”Doを修正された目標温度T
DP/d(k)でおきかえ、本発明の第1実施例の方法
を用いて押込量修正値汀2[有])、九(k)を算出し
・可動ロール押込量を修正する。
d)=(1-α)a(k-1)+αG)...
(7) After that, the target temperature “Do” is changed to the target temperature “T”.
Replace it with DP/d(k), and use the method of the first embodiment of the present invention to calculate the pushing amount correction value 怀2 [Yes]), 9(k), and correct the movable roll pushing amount.

本発明の第2の実施例の冷却制御方法は以上の方法に基
づき、次の手順で行なわれる。
The cooling control method according to the second embodiment of the present invention is based on the above method and is carried out in the following steps.

制御装置12け、ある定められた周期毎に入側温度計7
から銅帯の入側温度TgP’c、出側温度計8から銅帯
の出側温度TDPを、鋼帯搬送速度計13からラインス
ピードτを、銅帯張力計14から銅帯にかけられる張力
を、冷媒温度計15から冷媒の温度Twを取シ込む。
12 control devices, inlet thermometer 7 every predetermined period
The input side temperature of the copper strip TgP'c is determined from the output side thermometer 8, the line speed τ is determined from the steel strip conveying speed meter 13, and the tension applied to the copper strip is determined from the copper strip tension meter 14. , the temperature Tw of the refrigerant is input from the refrigerant thermometer 15.

さらに、溶接線検出器9を通過した溶接線の数と作柴予
定表から、現在冷却装置全通過中の鋼帯の作t A ’
c知り、前記作業予定表から銅帯の比熱CPl比重ρ1
幅W、厚さd、出側実績温度TDoを取シ込む。しかる
のちに、前述の方法に基づき可動ロールの押込量修正値
W、 、 R4を算出し、その値全油圧シリンダ制御装
#11に伝え、油圧シリンダ10を動かし、第2,40
−ルの位@を修正する。
Furthermore, from the number of weld lines that have passed through the weld line detector 9 and the production schedule, it is possible to determine the production time of the steel strip that is currently passing through the cooling device.
Knowing c, from the work schedule mentioned above, the specific heat CPl specific gravity ρ1 of the copper strip
Input the width W, thickness d, and actual exit temperature TDo. Thereafter, the movable roll pushing amount correction values W, , R4 are calculated based on the above-mentioned method, and the values are transmitted to the full hydraulic cylinder control device #11 to move the hydraulic cylinder 10.
- Correct the ``le'' place @.

本実施例による制御方法を用いる事により、第1実施例
の冷却制御方法の利点を損なう事なく、外乱による誤差
を消滅させる事ができ、制御精度の向上が図れる。
By using the control method according to this embodiment, it is possible to eliminate errors caused by disturbances and improve control accuracy without impairing the advantages of the cooling control method according to the first embodiment.

又、銅帯とロールとの接触熱伝達率、シェルの熱伝導高
、シェルと冷媒との熱伝達高などのパラメータを、事前
に、正確に決定するのは困難であり、かつ、該冷却装置
の経時変化等によってその値が変動する事がある。この
ような場合、鋼帯の入側実紙温度Tつ2、出側実績温度
TDI’ 、可調整/4’ラメータaQc) 、押込み
夛汀2.「4等を用い、(1)。
Furthermore, it is difficult to accurately determine in advance parameters such as the contact heat transfer coefficient between the copper strip and the roll, the heat conductivity of the shell, and the heat transfer between the shell and the refrigerant. Its value may fluctuate due to changes over time. In such a case, the input side actual paper temperature T2 of the steel strip, the output side actual temperature TDI', adjustable/4' parameter aQc), and the indentation temperature T2. ``Using 4th grade, (1).

(2+ 、 (5)式を用いて、上記パラメータを算出
し、これから、カルマンフィルター、最小二乗推定、そ
の他の統計処理を用いて真値を推定し、さらに制御精度
を向上させる事ができる。
(2+) The above parameters are calculated using equation (5), and then the true values are estimated using a Kalman filter, least squares estimation, or other statistical processing, and control accuracy can be further improved.

本実施例の場合と従来法の場合の制御効果を第4図、第
5図に示す。それぞれの図について縦軸は上から鍔帯厚
さ、鋼帯温度、ロール押込駄を示し、横軸は銅帯の長手
方向位置を示す。
The control effects of this embodiment and the conventional method are shown in FIGS. 4 and 5. In each figure, the vertical axis indicates the flange thickness, steel strip temperature, and roll press from the top, and the horizontal axis indicates the longitudinal position of the copper strip.

本実施例の場合、第4図に示すように、銅帯溶接線を検
出して冷却用ロールに巻体いている間に、押込[を各々
異なった驚で変更するために温度はずれは、はとんど生
じないが、従来法は第5図に示すように、出側の銅帯目
標温度と実績値との偏差にもとすいて巻付角を変更する
ために大きな温度はずれを生ずる。
In the case of this embodiment, as shown in FIG. 4, while the copper strip weld wire is detected and wound around a cooling roll, the temperature difference is Although this rarely occurs, in the conventional method, as shown in FIG. 5, a large temperature deviation occurs because the wrapping angle is changed depending on the deviation between the target temperature of the copper strip on the exit side and the actual value.

最後に本発明の第3の実施例について説明する。Finally, a third embodiment of the present invention will be described.

複数本の冷却用ロールを用いて銅帯を冷却する際の特性
として、前段ロールで生じた銅帯温度の幅方向不均一が
後段ロールで増幅されるという特性がある。例えば、第
1図において第10−ル出側の銅帯の温度が中央部分で
低く端部で高かったよう々場合、それは第10−ル出側
の銅帯にががる張力のうち、中央部分の張力増をまねき
、それが原因となって第20−ルでは中央部と端部との
温度差がさらに拡大する。第6図は横軸に示された第n
番目の冷却用ロールで生じた幅方向温度差が最終冷却用
ロール出側で何倍に増幅されるかの実験結果である。図
かられかるように、各ロールで生じた幅方向不均一冷却
は、前段ロールで生じたもの#1ど最終ロール出側では
大きく増幅される。
A characteristic of cooling a copper strip using a plurality of cooling rolls is that non-uniformity in the copper strip temperature in the width direction that occurs in the front roll is amplified in the rear roll. For example, in Figure 1, if the temperature of the copper strip on the exit side of No. 10 is low at the center and high at the ends, this is because the tension in the copper strip on the exit side of No. 10 is at the center. This causes an increase in the tension in the section, which further widens the temperature difference between the center and the ends of the 20th loop. Figure 6 shows the nth axis indicated on the horizontal axis.
This is an experimental result of how many times the temperature difference in the width direction generated at the second cooling roll is amplified on the exit side of the final cooling roll. As can be seen from the figure, the nonuniform cooling in the width direction that occurs in each roll is greatly amplified on the exit side of the final roll, such as #1 that occurs in the previous roll.

各ロールでおこる不均一冷却の主原因は、冷却用ロール
に生ずるサーマルクラウンであり、前段ロールで生じた
幅方向不均一冷却はど最終ロール出側での幅方向鋼帯温
度に大きな影脣を与える事を考えれば、前段ロールtな
どこのサーマルクラウンを小さくおさえておく必要があ
る。サーマルクラウンは冷却や荷Q。に比例する。冷却
9荷Qcは次式で与えられる。
The main cause of non-uniform cooling that occurs on each roll is the thermal crown that occurs on the cooling roll, and the non-uniform cooling in the width direction that occurs in the preceding rolls has a large impact on the temperature of the steel strip in the width direction at the exit side of the final roll. Considering the impact on the thermal crown, it is necessary to keep this thermal crown small, such as on the front roll t. Thermal crown is for cooling and load Q. is proportional to. The cooling 9 load Qc is given by the following equation.

Qc= −HKD7?W(T−Tw) 但し° K:熱貫流率 D:ロール直径 θ:巻付角 W:板幅 T二銅帯温度 Tw:冷媒温度 ことで、ロール直径D1板幅w1冷媒温度Twけ各ロー
ルで等しく、熱貫流率にけ巻付角θと正の相関関係にあ
り、前段ロールはど銅帯の温度Tが高い事を考えれば、
前段ロールはど冷却9荷QCを小さくするためには、前
段ロールはど巻付角θを小さくしんければならない。即
ち一1巻付角を後段ロールはど大きくし、均一冷却負荷
ないしけ後段高負荷をおこ々う事が幅方向均一冷却のた
めに必要となる。
Qc=-HKD7? W (T-Tw) However, ° K: Heat transmission coefficient D: Roll diameter θ: Wrapping angle W: Plate width T Two Copper band temperature Tw: Refrigerant temperature Roll diameter D1 Plate width w1 Refrigerant temperature Tw Each roll There is a positive correlation between the thermal transmission coefficient and the wrap angle θ, and considering that the temperature T of the copper strip in the front roll is high,
In order to reduce the front roll cooling load QC, the front roll winding angle θ must be made smaller. That is, it is necessary to increase the winding angle of the second roll and apply a uniform cooling load or a high load to the second stage in order to achieve uniform cooling in the width direction.

本実施例はΔT、 <ΔT2〈ΔT、 <ΔT4〈ΔT
5(但し、ΔT1は第10−ルでの降下温度したがって
θ1〈θ2〈θ5〈θ4〈θ5となる。)となるよう各
冷却用ロールでの巻付角を配分する制御方法である。
In this example, ΔT, <ΔT2<ΔT, <ΔT4<ΔT
5 (where ΔT1 is the temperature drop at the 10th roll, therefore θ1 < θ2 < θ5 < θ4 < θ5).

本実施例による冷却制御方法を用いれば、幅方向不均一
冷却の発生を防止する事ができ、幅方向の温度不均一が
原因で発生する銅帯の形状悪化を回避する事ができ、形
状のすぐれた銅帯の安定生産を行なう事ができる。
By using the cooling control method according to this embodiment, it is possible to prevent non-uniform cooling in the width direction, and it is possible to avoid deterioration in the shape of the copper strip caused by temperature non-uniformity in the width direction. It is possible to stably produce excellent copper strips.

(発明の効果) 連続焼鈍設備において冷却用ロールを用いて銅帯を冷却
する際に本発明による冷加制御方法を用いる事により、
冷却装置通過後の銅帯の温度の、同目標温度に対する追
従性及び制御精度が従来法に比較して著しく向上し、連
続焼鈍後における銅帯の品質向上、歩留シ向上に大いに
貢献する。又、幅方向不均一冷却の発生を防ぐ事ができ
、良好な形状の銅帯の安定生産に大いに貢献する。
(Effect of the invention) By using the cooling control method according to the present invention when cooling a copper strip using a cooling roll in continuous annealing equipment,
The followability and control accuracy of the temperature of the copper strip after passing through the cooling device relative to the same target temperature are significantly improved compared to conventional methods, and this greatly contributes to improving the quality and yield of the copper strip after continuous annealing. Furthermore, uneven cooling in the width direction can be prevented, which greatly contributes to stable production of well-shaped copper strips.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す冷却装置の側面図
、第2図は冷却装置の主要部寸法を示す図、第3図は本
発明の第2の実施例を示す冷却装置の側面図、第4図は
本発明の第2の実施例の効果を示す図、第5図は従来法
の冷却制御効果を示す図、第6図は第1番目のロールで
生じた幅方向温度差の、最終冷却用ロール出側における
増幅率を示す図である。 1.2.3.4.5:内部に冷媒f:貫流させた冷却用
ロール(そのうち、2,4は可動)、6:鋼帯、7:鋼
帯の温度を計る入側温度計、8:鋼帯の温度を計る出側
温度計、9:溶接点検出器、10:油圧シリンダ、11
:油圧シリンダ制御装置、12:制御装置、13:銅帯
搬送速度計、14:鋼帯張力B1.15:冷媒温度計、
16:入側プライドルロール、17:出側プライドルロ
ール 第6図 ンを去pmロー/し用勇イ立 手続補正書(方式) %式% ■、 事件の表示 昭和59年特許願第013907号 2 発明の名称 連続焼鈍設備における鋼帯の冷却制御方法3、補正をす
る者 事件との関係 特許出願人 東京都千代田区大手町二丁目6番3号 (665)新日本製鐵株式會社 代表者 武 1) 豊 6 補1にの対象 第4図 第S図
Fig. 1 is a side view of a cooling device showing a first embodiment of the present invention, Fig. 2 is a diagram showing dimensions of main parts of the cooling device, and Fig. 3 is a side view of a cooling device showing a second embodiment of the invention. Fig. 4 is a diagram showing the effect of the second embodiment of the present invention, Fig. 5 is a diagram showing the cooling control effect of the conventional method, and Fig. 6 is a diagram showing the effect of the cooling control in the width direction caused by the first roll. It is a figure which shows the amplification factor of the temperature difference on the exit side of the final cooling roll. 1.2.3.4.5: Refrigerant f inside: Cooling rolls (of which 2 and 4 are movable), 6: Steel strip, 7: Inlet side thermometer that measures the temperature of the steel strip, 8 : Exit thermometer that measures the temperature of the steel strip, 9: Welding point detector, 10: Hydraulic cylinder, 11
: Hydraulic cylinder control device, 12: Control device, 13: Copper strip conveyance speed meter, 14: Steel strip tension B1.15: Refrigerant thermometer,
16: Entry side priddle roll, 17: Output side priddle roll Figure 6 Leave pm low / use procedure amendment (method) % formula % ■, Indication of the case 1988 Patent Application No. 013907 2 Title of the invention: Method 3 of controlling cooling of steel strip in continuous annealing equipment; Relationship with the amended case; Patent applicant: 2-6-3 Otemachi, Chiyoda-ku, Tokyo (665); Takeshi, representative of Nippon Steel Corporation; 1) Figure 4, Figure S, subject to Yutaka 6 Supplement 1

Claims (3)

【特許請求の範囲】[Claims] (1)連続焼鈍設備内に設置され、内部に冷媒を貫流さ
せた1本ないし複数本の冷却用ロールに銅帯を巻付け、
該奉伺は長さを変更させる機構を有する銅帯の冷却装置
を制御するに際し、銅帯の搬送順序、寸法、物性値を記
した作業予定表を配憶17、予め得られる関係式から巻
付角を計算し、巻付角を変更させる機構を制御する制御
装置を設け、該冷却用ロールの入側に銅帯温度計、銅帯
の溶接線検出器を設け、該冷却装置内に銅帯の張力計、
冷媒温度計、銅帯搬送速度計を設け、溶接線通過本数と
作業予定表から認識する通過中の鋼帯の寸法、物性値と
冷却用ロール入側鋼帯温度、銅帯張力、冷媒温度、銅帯
搬送速度とを前記関係式に代入して鋼帯の冷却用ロール
に対する巻付角を定期的に計算し、その値に基づいて巻
付角を変更するとともに、銅帯の溶接線が冷却用ロール
を通過中に巻付角を制御することを特徴とする連続焼鈍
設備における銅帯の冷却制御方法。
(1) A copper strip is wrapped around one or more cooling rolls that are installed in a continuous annealing facility and have a refrigerant flowing through them.
When controlling a cooling device for copper strips that has a mechanism for changing the length, this service memorizes a work schedule that describes the conveyance order, dimensions, and physical properties of the copper strips17, and calculates them from relational equations obtained in advance. A control device is provided to calculate the wrapping angle and control a mechanism for changing the wrapping angle, and a copper strip thermometer and a copper strip weld line detector are provided on the inlet side of the cooling roll. belt tension meter,
A refrigerant thermometer and a copper strip conveyance speed meter are installed, and the dimensions and physical properties of the steel strip in transit, recognized from the number of weld lines passing and the work schedule, the temperature of the steel strip at the entrance of the cooling roll, the tension of the copper strip, the refrigerant temperature, The winding angle of the steel strip around the cooling roll is calculated periodically by substituting the copper strip conveyance speed into the above relational expression, and the winding angle is changed based on that value, and the weld line of the copper strip is cooled. A method for controlling cooling of a copper strip in continuous annealing equipment, the method comprising controlling the wrapping angle while passing through a roll.
(2)前記制御装置内の関係式に新たに該冷却用ロール
出側の制御鋼帯目標温度を修正する式を付加し、最終冷
却用ロール出側に鋼帯温度計を設け、該冷却用ロール出
側鋼帯温度計からの入力にょシ定期的に出側の制御鋼帯
目標温度を修正し巻付角を再計算し、銅帯の冷却用ロー
ルに対する巻付角を修正することを特徴とする特許請求
の範囲第1項記載の連続焼鈍設備における銅帯の冷却制
御方法。
(2) Add a new equation to the relational expression in the control device to correct the control steel strip target temperature on the exit side of the cooling roll, install a steel strip thermometer on the exit side of the final cooling roll, and Based on the input from the steel strip thermometer on the exit side of the roll, the control steel strip target temperature on the exit side is periodically corrected, the wrapping angle is recalculated, and the wrapping angle of the copper strip with respect to the cooling roll is corrected. A method for controlling cooling of a copper strip in a continuous annealing facility according to claim 1.
(3) 冷媒を貫流させた複数本の冷却用ロールにおい
て、鋼帯の該冷却用ロールに対する巻付角が、後続する
ロールになるにしたがって大きくなるように制御するこ
とを特徴とする特許請求の範囲第1項又は第2項記載の
連続焼鈍設備における銅帯の冷却制御方法。
(3) In a plurality of cooling rolls through which a refrigerant flows, the winding angle of the steel strip with respect to the cooling rolls is controlled so as to increase as the succeeding rolls become larger. A method for controlling cooling of a copper strip in continuous annealing equipment according to item 1 or 2.
JP1390784A 1984-01-28 1984-01-28 Method for controlling cooling of steel strip in continuous annealing installation Granted JPS60159127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1390784A JPS60159127A (en) 1984-01-28 1984-01-28 Method for controlling cooling of steel strip in continuous annealing installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1390784A JPS60159127A (en) 1984-01-28 1984-01-28 Method for controlling cooling of steel strip in continuous annealing installation

Publications (2)

Publication Number Publication Date
JPS60159127A true JPS60159127A (en) 1985-08-20
JPS6314051B2 JPS6314051B2 (en) 1988-03-29

Family

ID=11846241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1390784A Granted JPS60159127A (en) 1984-01-28 1984-01-28 Method for controlling cooling of steel strip in continuous annealing installation

Country Status (1)

Country Link
JP (1) JPS60159127A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060171A1 (en) * 2001-12-27 2003-07-24 Alcan International Limited Method of controlling metal strip temperature
CN111793748A (en) * 2020-07-16 2020-10-20 中冶赛迪技术研究中心有限公司 Power-off tension relief method for large vertical annealing furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060171A1 (en) * 2001-12-27 2003-07-24 Alcan International Limited Method of controlling metal strip temperature
US6755923B2 (en) * 2001-12-27 2004-06-29 Alcan International Limited Method of controlling metal strip temperature
CN111793748A (en) * 2020-07-16 2020-10-20 中冶赛迪技术研究中心有限公司 Power-off tension relief method for large vertical annealing furnace
CN111793748B (en) * 2020-07-16 2022-03-11 重庆赛迪热工环保工程技术有限公司 Power-off tension-eliminating method for large vertical annealing furnace

Also Published As

Publication number Publication date
JPS6314051B2 (en) 1988-03-29

Similar Documents

Publication Publication Date Title
KR100432682B1 (en) Metal plate flatness controlling method and device
JP4648176B2 (en) Water cooling control method for rolled material
US4243441A (en) Method for metal strip temperature control
JPS62158825A (en) Method for cooling hot rolled steel plate
JP4598586B2 (en) Cooling control method, apparatus, and computer program
EP2929949A1 (en) Device for cooling hot-rolled steel sheet
JPS60159127A (en) Method for controlling cooling of steel strip in continuous annealing installation
JP5000116B2 (en) Soaking furnace operation method in steel strip continuous treatment equipment
JP3596460B2 (en) Heat treatment method for thick steel plate and heat treatment equipment
JP3458758B2 (en) Method and apparatus for cooling steel sheet
JPS61253112A (en) Control method for cooling steel plate
JPH02179825A (en) Controller for cooling hot-rolled steel sheet
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
JP6645036B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
JP3058403B2 (en) Cooling control method for hot rolled steel sheet
JP3206533B2 (en) Controlled cooling method and apparatus for thick steel plate
JPH09239423A (en) Method for controlling water cooling in steel bar rolling equipment
KR20200099591A (en) Heating method and continuous annealing facility of steel sheet in continuous annealing
JP3783396B2 (en) Cooling method for high temperature steel sheet
JPS62112733A (en) Cooling method for hot rolled steel sheet
JPH0857523A (en) Controlled cooling method
JP7207335B2 (en) Plate temperature control method, heating control device, and metal plate manufacturing method
JPH02112813A (en) Temperature control method for rolling and cooling of wire rod, bar or the like
JP2001181744A (en) Method for preventing variation of width in continuous annealing equipment
JP2715683B2 (en) Roll cooling method and apparatus for continuous annealing furnace