JPH03140415A - Method for determining material heating-up curve in heating furnace - Google Patents

Method for determining material heating-up curve in heating furnace

Info

Publication number
JPH03140415A
JPH03140415A JP27765289A JP27765289A JPH03140415A JP H03140415 A JPH03140415 A JP H03140415A JP 27765289 A JP27765289 A JP 27765289A JP 27765289 A JP27765289 A JP 27765289A JP H03140415 A JPH03140415 A JP H03140415A
Authority
JP
Japan
Prior art keywords
temperature
slab
furnace
temp
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27765289A
Other languages
Japanese (ja)
Inventor
Makoto Tsuruta
誠 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27765289A priority Critical patent/JPH03140415A/en
Publication of JPH03140415A publication Critical patent/JPH03140415A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve dimensional accuracy at the time of rolling by picking up two kinds of temp. conditions, that is, temp. conditions in a skid part and temp. conditions in a part between skids in the method for introducing a slab into a continuous heating furnace having plural control zones and controlling the slab extraction temp. to the desired temp. CONSTITUTION:The average temps. of a slab in skid parts and in the parts between skids are determined, respectively, from the temp. prediction mathematical model of a slab, and the sensitivities of the slab extraction temp. to respective furnace temps. are determined from the above average temps., predicted residual in-furnace time, and the furnace temps. in respective zones by using an average slab temp. sensitivity formula at the time of extraction. Then, modified furnace temps. are determined by executing a modified furnace temp. computing formula from the sum total of the above sensitivities in respective zones and their deviations so that the deviations between the predicted extraction temp. of the slab heated at the above furnace temps. and the desired extraction temps. in the above skid parts are reduced to zero. Further, the computing of the slab sensitivity to the degree of soaking is performed from of extraction so that the degree of soaking, as the difference of the average temp. of the temps. in the parts between the above skid parts from the average temp. of the temps. in the above skid parts, reaches the desired temp. Successively, the final controlled furnace temps. in the respective zones are determined from the above modified furnace temp. computing formula.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は熱間圧延ラインにおける加熱炉の材料昇温曲
線決定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for determining a material temperature rise curve of a heating furnace in a hot rolling line.

〔従来の技術〕[Conventional technology]

第4図は、例えば特公昭58−18401号公報に示さ
れた従来の連続加熱炉の制御方法における鋼片の装入温
度を経過時間によって求める場合の工程を示す説明図で
ある。この発明は加熱炉の炉内温度を鋼片の温度に応じ
て制御するもので、鋼片の温度測定は種々実施されてい
るが、造塊後から加熱炉装入までの経過時間によって求
める場合について説明する。
FIG. 4 is an explanatory diagram showing a process for determining the charging temperature of a steel billet based on elapsed time in the conventional continuous heating furnace control method disclosed in, for example, Japanese Patent Publication No. 58-18401. This invention controls the temperature inside the heating furnace according to the temperature of the steel billet. Various methods of measuring the temperature of the steel billet have been carried out, but when it is determined by the elapsed time from the time of ingot formation to the time of charging into the heating furnace. I will explain about it.

まず、連続鋳造鋼片は溶鋼を連続鋳造した後、所定の鋼
片寸法に切断される。この時、鋼片温度は連続鋳造装置
に付随する水冷制御によって一定値(約800℃)に制
i卸され温度計によって測定枦 される。温鋼片として連続加熱炉に装入される鋼片は切
断後数時間経過した後、加熱炉に装入される。この時、
当該鋼片の切断時刻、該時刻の鋼片温度、連続加熱炉へ
の装入時刻、鋼片寸法により下記の伝熱方程式により装
入温度θinを算出する。
First, continuously cast steel billets are cut into predetermined billet sizes after continuously casting molten steel. At this time, the temperature of the steel billet is controlled to a constant value (approximately 800° C.) by water cooling control attached to the continuous casting device and measured by a thermometer. A steel billet that is charged into a continuous heating furnace as a hot steel billet is charged into a heating furnace several hours after being cut. At this time,
The charging temperature θin is calculated using the following heat transfer equation based on the cutting time of the steel slab, the temperature of the steel slab at the time, the time of charging into the continuous heating furnace, and the dimensions of the steel slab.

境界条件 ■中心 0表面 但し、θ(t、x):材料温度 t;時刻(切断時刻からの経過 時間) X;厚方向座標(0≦x<H/ 2) P;材料密度 C;材料比熱 λ;材料熱伝導率 H;鋼片厚 初期条件 θ(0,x)=θ。boundary condition ■Center 0 surface However, θ(t, x): material temperature t: Time (elapsed time since disconnection time) time) X; Thickness direction coordinate (0≦x<H/ 2) P; material density C: Material specific heat λ; material thermal conductivity H: Slab thickness initial conditions θ(0,x)=θ.

θ0;連続鋳造終了時鋼片温度 ε;雰囲気との輻射率 θ□、;雰囲気温度 なお、装入時間までの経過時間t、とするとき、次式の
如く装入温度θi11としては厚み方向の平均温度を採
用する。
θ0: Billet temperature at the end of continuous casting ε: Emissivity with the atmosphere θ□, ;Ambient temperature When the elapsed time until the charging time is t, the charging temperature θi11 in the thickness direction is calculated as shown in the following equation. Adopt the average temperature.

装入温度θ、7が求まれば、加熱炉内では該装入温度θ
5、を初期値として該鋼片の抽出予測温度が目標抽出温
度と一致するように多帯の炉温度を制御し、抽出までの
各帯残在炉時間を基に伝熱方程式を各帯炉温を仮定した
上で解き、抽出温度を予測して目標値との偏差があった
場合には再度仮定した炉温を修正して一致するまで繰り
返し計算を行い、設定炉温を求め、その結果で材料の昇
温曲線を決定する。
Once the charging temperature θ, 7 is determined, the charging temperature θ is determined in the heating furnace.
5. Using 5 as an initial value, control the furnace temperature of the multiple zones so that the predicted extraction temperature of the steel billet matches the target extraction temperature, and calculate the heat transfer equation for each zone based on the remaining furnace time of each zone until extraction. If there is a deviation from the target value, correct the assumed furnace temperature again and repeat the calculation until it matches. Find the set furnace temperature. Determine the temperature rise curve of the material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の加熱炉の材料昇温曲線決定方法は以上のように行
われているので、−度仮定した炉温で予測と目的の偏差
があった場合の修正量を試行錯誤で行わざるを得ず、ま
た、伝熱方程式を解いているため炉内のスラブ(鋼片)
本数が多くなると計1算に時間がかかり、オンライン向
きでない。また、圧延工程を考慮するとスキッド(滑り
部材)間とスキッド部の温度差について(以下、均熱度
と略称)何も考慮していないため圧延時の寸法精度が低
下する等の課題があった。
The conventional method for determining the material temperature rise curve for a heating furnace is as described above, so it is necessary to use trial and error to determine the amount of correction when there is a deviation between the predicted and desired furnace temperature. , Also, since the heat transfer equation is solved, the slab (steel billet) in the furnace
When the number of books is large, it takes a long time to calculate the total, so it is not suitable for online use. In addition, when considering the rolling process, there were problems such as a decrease in dimensional accuracy during rolling because no consideration was given to the temperature difference between the skids (sliding members) and the skid part (hereinafter referred to as soaking degree).

この発明は上記のような課題を解消するためになされた
もので短時間で決定することができると共に、スキッド
部及びスキッド間の2種の温度条件を取り込み圧延時の
寸法精度を向上させることができる加熱炉内の材料昇温
曲線決定方法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to determine the temperature in a short time, and also to improve the dimensional accuracy during rolling by incorporating two types of temperature conditions at the skid part and between the skids. The purpose of this study is to obtain a method for determining the material temperature rise curve in a heating furnace.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る加熱炉の材料昇温曲線決定方法は、スキ
ッド部とスキッド間の2種類のスラブ平均温度をスラブ
平均温度計算式によって求め、予測モデルを用いて炉温
に対する抽出時のスラブ温度の感度を抽出時スラブ羊均
温度感度式の計算によって求める。更に抽出目標とスラ
ブ予測抽出温度との偏差を零に収束させるため修正炉温
計算式を実行して昇温曲線を決定するようにしたもので
ある。
The method for determining a material temperature rise curve for a heating furnace according to the present invention calculates two types of slab average temperatures between the skid part and the skid using a slab average temperature calculation formula, and uses a prediction model to determine the slab temperature at the time of extraction with respect to the furnace temperature. Sensitivity is determined by calculating the slab sheep average temperature sensitivity formula during extraction. Furthermore, in order to converge the deviation between the extraction target and the predicted slab extraction temperature to zero, a modified furnace temperature calculation formula is executed to determine the temperature increase curve.

〔作用〕[Effect]

この発明における加熱炉の材料昇温曲線決定方法は連続
加熱炉に装入されるスラブによって変化する炉内温度の
制御を短時間で行うために、スキラド部とスキッド間の
2種類のスラブ平均温度を予測するモデルと抽出時の感
度計算を用いて収束計算し、昇温曲線を決める方法を採
用しているので、計算時間の短縮と圧延寸法精度が向上
する。
The method for determining the material temperature rise curve of a heating furnace in this invention is to determine the average temperature of two types of slabs between the skirad section and the skid in order to quickly control the temperature inside the furnace, which changes depending on the slab charged into the continuous heating furnace. This method uses a model that predicts the temperature and a sensitivity calculation at the time of extraction to perform convergence calculations and determine the temperature rise curve, which reduces calculation time and improves rolling dimensional accuracy.

[発明の実施例] 以下、この発明の一実施例を図について説明する。第1
図は加熱炉の概念図を示すもので、所定の熱帯を夫々安
定に維持するために、該熱帯を、例えば、予熱帯、加熱
帯、均熱帯の3ゾーンに分は温度制御する。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1st
The figure shows a conceptual diagram of a heating furnace. In order to maintain each predetermined tropical zone stably, the temperature of the tropical zone is controlled into three zones, for example, a pre-heating zone, a heating zone, and a soaking zone.

また、第3図は加熱炉の制御方式を示すブロック図であ
り、図において、20は現状温度計算手段、21は昇温
曲線計算手段、22は設定炉温計算手段で炉温設定手段
106を構成し、前記現状温度計算手段20にはパラメ
ータとして材料情報手段102から情報が与えられる。
FIG. 3 is a block diagram showing a heating furnace control system. In the figure, 20 is a current temperature calculation means, 21 is a temperature rise curve calculation means, and 22 is a set furnace temperature calculation means, which controls the furnace temperature setting means 106. Information is given to the current temperature calculation means 20 as a parameter from the material information means 102.

また、101はゾーン分けされた加熱炉で複数組の燃料
流量制御器103を有し、各ゾーン毎に独立して温度制
御を可能とするため炉温検出器104及び燃焼用バーナ
105を備えている。
Further, 101 is a heating furnace divided into zones and has multiple sets of fuel flow rate controllers 103, and is equipped with a furnace temperature detector 104 and a combustion burner 105 to enable independent temperature control for each zone. There is.

次に、第2図のフローチャートを参照し、材料昇温曲線
決定の計算方法について説明する。まず、スラブ平均温
度θ1.と設定炉温θJlの方程式を(1)及び(2)
式に示す。
Next, a calculation method for determining a material temperature increase curve will be described with reference to the flowchart in FIG. First, the slab average temperature θ1. and equations (1) and (2) for the set furnace temperature θJl.
As shown in the formula.

θ、1=θ5.+(θgl−θ、+−+)eXp(−α
Jlt+/H)        ・・・ (1)・・・
 (2) ここで、θ、I: aJI: θ、I: Cp: t   : γ   : Hニ スラブ平均温度 修正係数 設定炉温 比熱 予測残在炉時間 比重 スラブ厚 σ :ステファン・ボルツマン定数 i :帯(L=1.3) j ニスキッド部/スキッド間 (j=1.2) 前記(1)式は予測残在短時間1+、スラブ厚H1設定
炉温θ1.が与えられれば各帯出側スラブ平均温度θ1
が求まる(スラブの温度予測数式モデル)。
θ,1=θ5. +(θgl-θ, +-+)eXp(-α
Jlt+/H)... (1)...
(2) Here, θ, I: aJI: θ, I: Cp: t: γ: H Nislab average temperature correction coefficient setting Furnace temperature specific heat prediction Remaining furnace time Specific gravity Slab thickness σ: Stefan-Boltzmann constant i: Band ( L=1.3) j Niskid part/skid gap (j=1.2) The above equation (1) is based on the predicted remaining time 1+, slab thickness H1, set furnace temperature θ1. If given, the average temperature of each strip exit side slab θ1
is calculated (slab temperature prediction formula model).

まず、ステップST1ではテーブル値にて各帯炉温初期
値θ11をセットする。なお、(3)式の抽出時スラブ
平均温度感度式を用いれば、各帯炉温θ3.で偏微分す
ることにより各帯炉温に対するスラブ平均温度感度が求
まる。
First, in step ST1, each zone furnace temperature initial value θ11 is set using table values. In addition, if the slab average temperature sensitivity equation during extraction of equation (3) is used, each zone furnace temperature θ3. The slab average temperature sensitivity for each zone furnace temperature can be determined by partial differentiation.

F、、= a e 、、/aθ、k        ・
 (3)(j=1.2   k =1.3) ステップST2で(1)、(2)式より抽出時のスラブ
平均温度θJl(スキッド部)が求まり、そしてステッ
プST3で(4)式を満足するか否かのチエツクを行う
F, , = a e , , /aθ,k ・
(3) (j = 1.2 k = 1.3) In step ST2, the slab average temperature θJl (skid part) during extraction is determined from equations (1) and (2), and in step ST3, equation (4) is calculated. Check whether you are satisfied or not.

θ、3+ Σ F +k・Δθgk=θ13^1 (目標値) (4) 続いて、ステップST4で(3)式の偏微分をして感度
を求める。ここで、ステップST5において、(5)式
のようにして、修正炉温の修正量Δθ。を求める(修正
炉温計算式)。
θ, 3+ Σ F +k·Δθgk=θ13^1 (target value) (4) Next, in step ST4, equation (3) is partially differentiated to find the sensitivity. Here, in step ST5, the correction amount Δθ of the corrected furnace temperature is determined as shown in equation (5). (modified furnace temperature calculation formula).

(6) 式では修正炉温のゲインβが求まる。(6) The gain β of the corrected furnace temperature can be found using the formula.

=e13AI′ −〇 (6) θ、、wax  、各帯設定炉温上限値θ 、ff1l
n  、各帯設定炉温下限値そして、ゲインβを・(5
)式に代入することにより、修正量Δθ、5が求まる。
= e13AI' -〇(6) θ, , wax , upper limit value of furnace temperature set for each zone θ , ff1l
n, the lower limit of the furnace temperature set in each zone, and the gain β as ・(5
), the correction amount Δθ,5 is found.

θ1.に(5)式で求めた修正量を加算する(θ1.+
Δθ11→θ、1)。そして、(4)式を満たすように
なるまでステップST2〜ST5の処理を繰り返す。
θ1. Add the correction amount obtained by equation (5) to (θ1.+
Δθ11→θ, 1). Then, the processing in steps ST2 to ST5 is repeated until formula (4) is satisfied.

最終的にステップST5で求まった設定炉温θ、1を用
いてスキッド部、スキッド間の修正係数Hな入力として
各帯出側スキッド部/スキッド間スラブ平均温度θ、l
の計算を(1)式により行う。
Finally, using the set furnace temperature θ, 1 found in step ST5, the correction coefficient H between the skid section and the skid is input as the average slab temperature θ, l of each strip side skid section/between the skids.
is calculated using equation (1).

そして、ステップST7でθ、3がθ 、AIM、θ2
゜がθ1.AIM+Δθ 、Al11を満足するか否か
を(7)式を用いてチエツクする。
Then, in step ST7, θ, 3 is θ, AIM, θ2
° is θ1. It is checked using equation (7) whether AIM+Δθ and Al11 are satisfied.

・・・ (7) ここで、八〇g+=c+  ・Δθg□    ・・・
(8)・・・ (9) ステップST8では、(1)式を偏微分して(3)式よ
りスキッド部/スキッド間スラブ感度を求める。
... (7) Here, 80g+=c+ ・Δθg□ ...
(8)... (9) In step ST8, equation (1) is partially differentiated to obtain the skid portion/inter-skid slab sensitivity from equation (3).

ステップST9では前記(7)、(8)、(9)式を連
立して修正炉温(修正量)を求める。そして、設定炉温
θ、lにステップST5で求めた修正量を加算する。こ
うして、(1)、(3)。
In step ST9, the corrected furnace temperature (correction amount) is obtained by simultaneously applying equations (7), (8), and (9). Then, the correction amount obtained in step ST5 is added to the set furnace temperature θ, l. Thus, (1), (3).

(7)、(8)式を繰り返して013.θ23  が目
標値になるようにΔ01kを修正しながら収束計算を行
い、設定炉温θ。を決定する。この設定炉温により材料
の昇温曲線が求まる。
Repeat equations (7) and (8) to obtain 013. Perform convergence calculations while correcting Δ01k so that θ23 becomes the target value, and set the furnace temperature θ. Determine. The temperature rise curve of the material is determined by this set furnace temperature.

次にこの発明の一実施例に基づ(加熱炉制御について第
3図を参照して説明する。
Next, based on one embodiment of the present invention (heating furnace control) will be explained with reference to FIG.

第3図において、複数の制御帯に分割された加熱炉10
1には燃焼用バーナ105、炉温検出器104が配置さ
れており、炉温設定手段106によって設定された各制
御帯毎の設定温度になるよう燃料流量制御器103によ
って流量が制御されている。102は材料情報手段であ
り、炉内の材料の寸法、重量、抽出温度、炉内搬送情報
等の材料情報を炉温設定手段106に指示する。
In FIG. 3, the heating furnace 10 is divided into a plurality of control zones.
1, a combustion burner 105 and a furnace temperature detector 104 are arranged, and the flow rate is controlled by a fuel flow rate controller 103 so as to reach the set temperature for each control zone set by the furnace temperature setting means 106. . Reference numeral 102 denotes a material information means, which instructs the furnace temperature setting means 106 with material information such as the dimensions, weight, extraction temperature, and conveyance information of the material in the furnace.

炉温設定手段106は、現状温度計算手段20と昇温曲
線計算手段21と設定炉温計算手段22とからなってお
り、周期的に起動される。現状温度計算手段20は材料
情報を基にして実績炉温を用いて現在の材料温度を計算
する。
The furnace temperature setting means 106 includes a current temperature calculation means 20, a temperature increase curve calculation means 21, and a set furnace temperature calculation means 22, and is activated periodically. The current temperature calculation means 20 calculates the current material temperature using the actual furnace temperature based on the material information.

昇温曲線計算手段21は上述したように各材料毎の昇温
曲線を決定する。設定炉温計算手段22は求まった設定
炉温を燃料流量制御器103に指示する。
The temperature increase curve calculation means 21 determines the temperature increase curve for each material as described above. The set furnace temperature calculation means 22 instructs the determined furnace temperature to the fuel flow rate controller 103.

〔発明の効果] 以上のようにこの発明によれば、スキッド部とスキッド
間の2種類のスラブ平均温度を予測するモデルと、前記
予測モデルを用いて炉温に対する抽出時のスラブ温度の
感度を求める計算式、及び目標との偏差を零に収束させ
る計算アルゴリズムをもって材料昇温曲線を決定するの
で、計算時間も短縮され、加熱炉のオンライン制御に適
切であると共に、スラブの圧延寸法精度を向上させる昇
温曲線を決定することができる効果がある。
[Effects of the Invention] As described above, according to the present invention, there is a model that predicts two types of slab average temperatures between the skid section and the skid, and the sensitivity of the slab temperature during extraction to the furnace temperature is calculated using the prediction model. Since the material temperature rise curve is determined using the calculation formula to be obtained and the calculation algorithm that converges the deviation from the target to zero, calculation time is shortened, making it suitable for online control of heating furnaces and improving the accuracy of slab rolling dimensions. This has the effect of being able to determine the temperature rise curve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加熱炉の一般的な構成を示す概念図、第2図は
この発明の一実施例による材料昇温曲線決定の計算方法
を示すフローチャート、第3図はこの発明の一実施例に
よる加熱炉の制御方式を示すブロック図、第4図は従来
のスラブの装入温度を経過時間によって求める場合の工
程を示す説明図である。 図において、Sr1、Sr1はスラブ温度計算、Sr4
.Sr1はスラブ感度計算、Sr1.Sr1は修正炉温
計算である。
FIG. 1 is a conceptual diagram showing the general configuration of a heating furnace, FIG. 2 is a flowchart showing a calculation method for determining a material temperature rise curve according to an embodiment of the present invention, and FIG. 3 is a diagram according to an embodiment of the present invention. FIG. 4 is a block diagram illustrating a heating furnace control system, and is an explanatory diagram illustrating a conventional process for determining the slab charging temperature based on elapsed time. In the figure, Sr1 and Sr1 are slab temperature calculations, Sr4
.. Sr1 is slab sensitivity calculation, Sr1. Sr1 is a modified furnace temperature calculation.

Claims (1)

【特許請求の範囲】[Claims] 複数の制御帯を有する連続式加熱炉にスラブを装入し、
スラブの抽出温度を目標温度に制御する加熱炉の材料昇
温曲線決定方法において、前記スラブの温度予測数式モ
デルを用いてスキッド部およびスキッド間のスラブ平均
温度をスラブ平均温度計算式によって求め、前記スラブ
平均温度および予測残在炉時間と各帯の炉温とからスラ
ブ抽出温度の各炉温に対する感度を抽出時スラブ平均温
度感度式を用いて求め、前記炉温で加熱したスラブの予
測抽出温度と前記スキッド部の抽出目標温度との偏差を
零にするように各帯の前記感度の総和と該偏差とで修正
炉温計算式を実行して修正炉温を求め、前記スキッド間
とスキッド部の平均温度の差である均熱度が目標温度に
なるように前記抽出時スラブ平均温度感度式を用いて均
熱度のスラブ感度計算を実行し、続いて前記修正炉温計
算式により最終的な各帯制御炉温を求めるようにしたこ
とを特徴とする加熱炉の材料昇温曲線決定方法。
Load the slab into a continuous heating furnace with multiple control zones,
In a method for determining a material temperature rise curve for a heating furnace in which the extraction temperature of a slab is controlled to a target temperature, the average temperature of the slab in the skid portion and between the skids is determined by the slab average temperature calculation formula using the temperature prediction formula model of the slab, The sensitivity of the slab extraction temperature to each furnace temperature is calculated from the slab average temperature, predicted remaining furnace time, and furnace temperature of each zone using the slab average temperature sensitivity formula at the time of extraction, and the predicted extraction temperature of the slab heated at the above furnace temperature is calculated. A corrected furnace temperature calculation formula is executed using the sum of the sensitivities of each zone and the deviation so as to make the deviation between the extraction target temperature of the skid part and the extraction target temperature of the skid part zero, and the corrected furnace temperature is calculated between the skids and the skid part. The slab sensitivity calculation for the soaking degree is performed using the slab average temperature sensitivity formula at the time of extraction so that the soaking degree, which is the difference between the average temperatures of A method for determining a material temperature rise curve for a heating furnace, characterized in that a zone controlled furnace temperature is determined.
JP27765289A 1989-10-25 1989-10-25 Method for determining material heating-up curve in heating furnace Pending JPH03140415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27765289A JPH03140415A (en) 1989-10-25 1989-10-25 Method for determining material heating-up curve in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27765289A JPH03140415A (en) 1989-10-25 1989-10-25 Method for determining material heating-up curve in heating furnace

Publications (1)

Publication Number Publication Date
JPH03140415A true JPH03140415A (en) 1991-06-14

Family

ID=17586412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27765289A Pending JPH03140415A (en) 1989-10-25 1989-10-25 Method for determining material heating-up curve in heating furnace

Country Status (1)

Country Link
JP (1) JPH03140415A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9044663B2 (en) 2010-06-07 2015-06-02 Hiturn As Snowboard

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9044663B2 (en) 2010-06-07 2015-06-02 Hiturn As Snowboard

Similar Documents

Publication Publication Date Title
US4606529A (en) Furnace controls
JPS6111289B2 (en)
JP3710572B2 (en) Heating furnace control device
JPH03140415A (en) Method for determining material heating-up curve in heating furnace
JP3007107B2 (en) Material heating curve determination method for heating furnace
JP2716551B2 (en) Heating furnace material heating curve determination method
JPH0663039B2 (en) Temperature control device for heating furnace
JPS6254024A (en) Method for controlling automatic combustion in heating furnace
JPH0565883B2 (en)
JPS5812325B2 (en) Control method for continuous heating furnace
JPH03264620A (en) Method for deciding temperature raising curve of material in heating furnace
JPH05255762A (en) Method for controlling furnace temperature of continuous heating furnace
JPS6133884B2 (en)
JPH09209044A (en) Operation of continuous type steel cast slab heating furnace
JPH076001B2 (en) Furnace temperature setting device for continuous heating furnace
JPS5818401B2 (en) Continuous heating furnace control method
JP3982042B2 (en) Combustion control method for continuous heating furnace
JPH01281391A (en) Furnace temperature setting device for a continuous heating furnace
JPS6411686B2 (en)
JPH06306453A (en) Method for eliminating skid mark in continuous heating furnace
JPH0360887B2 (en)
JPS63307217A (en) Method for controlling temperature of stepped shaft in heating furnace
JPH0759722B2 (en) Induction heating control method during subsequent induction heating of a slab previously gas-heated
JPH0532448B2 (en)
JPH0469209B2 (en)