JP2716551B2 - Heating furnace material heating curve determination method - Google Patents

Heating furnace material heating curve determination method

Info

Publication number
JP2716551B2
JP2716551B2 JP1300991A JP30099189A JP2716551B2 JP 2716551 B2 JP2716551 B2 JP 2716551B2 JP 1300991 A JP1300991 A JP 1300991A JP 30099189 A JP30099189 A JP 30099189A JP 2716551 B2 JP2716551 B2 JP 2716551B2
Authority
JP
Japan
Prior art keywords
temperature
slab
furnace
heating
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1300991A
Other languages
Japanese (ja)
Other versions
JPH03162526A (en
Inventor
鶴田  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1300991A priority Critical patent/JP2716551B2/en
Publication of JPH03162526A publication Critical patent/JPH03162526A/en
Application granted granted Critical
Publication of JP2716551B2 publication Critical patent/JP2716551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱間圧延ラインにおける加熱炉の材料昇
温曲線決定方法に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a method for determining a material temperature rise curve of a heating furnace in a hot rolling line.

〔従来の技術〕[Conventional technology]

第4図は、例えば特公昭58−18401号公報に示された
従来の温鋼片の装入温度を経過時間によって求める行程
の説明図である。連続鋳造鋼片は溶鋼を連続鋳造したの
ち所定の鋼片寸法に切断される。そのときスラブ温度は
連続鋳造装置に付随する水冷制御によって一定値(約80
0℃)に制御され、温度計によってスラブ温度が測定さ
れる。温鋼片として連続加熱炉に装入されるスラブは切
断後数時間経過した後、加熱炉に装入される。この時、
当該スラブの切断時刻、該時刻のスラブ温度、連続加熱
炉への装入時刻、スラブ寸法により、下記の伝熱方程式
により装入温度θinを算出する。
FIG. 4 is an explanatory view of a process for obtaining the charging temperature of a conventional hot slab according to the elapsed time, for example, disclosed in Japanese Patent Publication No. 58-18401. The continuous cast billet is cut into predetermined billet dimensions after continuously casting molten steel. At that time, the slab temperature was kept at a constant value (approximately 80
0 ° C), and the slab temperature is measured by a thermometer. A slab charged to a continuous heating furnace as a hot slab is charged to the heating furnace several hours after cutting. At this time,
Based on the cutting time of the slab, the slab temperature at the time, the charging time into the continuous heating furnace, and the slab dimensions, the charging temperature θ in is calculated by the following heat transfer equation.

θ(t,x):材料温度 t:時刻(切断時刻からの経過時間) x:厚方向座標(0≦x≦H/2) ρ:材料密度 C:材料比熱 λ:材料熱伝導率 H:スラブ厚 初期条件 θ(0,x)=θ θ0:連続鋳造終了時鋼片温度 境界条件 中心 表面 ε:雰囲気との輻射率 θair:雰囲気温度 なお、装入時間までの経過時間をtinとするとき、次
式の如く装入温度θinとしては厚み方向の平均温度を採
用する。
θ (t, x): Material temperature t: Time (elapsed time from cutting time) x: Coordinates in thickness direction (0 ≦ x ≦ H / 2) ρ: Material density C: Material specific heat λ: Material thermal conductivity H: Slab thickness Initial condition θ (0, x) = θ 0 θ 0 : Slab temperature at the end of continuous casting Boundary condition Center surface ε: emissivity to atmosphere θ air : atmosphere temperature When the elapsed time until the charging time is defined as t in , the average temperature in the thickness direction is adopted as the charging temperature θ in as in the following equation.

装入温度θinが求まれば、加熱炉内では該装入温度θ
inを初期値として該スラブの抽出予測温度が目標温度と
一致するように各帯の炉温度を制御するものである。
Once the charging temperature θ in is obtained, the charging temperature θ in the heating furnace is obtained.
The furnace temperature in each zone is controlled so that the predicted extraction temperature of the slab coincides with the target temperature using in as an initial value.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の加熱炉の材料昇温曲線決定方法は以上のように
行われているので、一度仮定した炉温で予測と目標の偏
差があると、その修正を試行錯誤で行わざるを得ず、ま
た伝熱方程式を解いているため、炉内のスラブ本数が多
くなると非常に計算時間がかかり、オンライン向きでな
い。さらに、圧延工程を考慮すると、スキッド間とスキ
ッド部の温度差(以下、均熱度という)について特に考
慮していないため圧延時の寸法精度が出しにくいなどの
課題があった。
Since the conventional method of determining a material heating curve of a heating furnace is performed as described above, once there is a deviation between the prediction and the target at the assumed furnace temperature, the correction must be performed by trial and error, and Since the heat transfer equation is solved, it takes a long time to calculate if the number of slabs in the furnace increases, and it is not suitable for online use. Furthermore, when the rolling process is considered, there is a problem that it is difficult to obtain dimensional accuracy during rolling because a temperature difference between the skids and the skid portion (hereinafter, referred to as a soaking degree) is not particularly considered.

この発明は上記のような課題を解決するためになされ
たもので、計算時間も短く、かつ2種類の温度(スキッ
ド部およびスキッド間)を考慮して圧延の寸法精度を向
上させる加熱炉の材料昇温曲線決定方法を得ることを目
的とする。
The present invention has been made in order to solve the above-described problems, and has a short calculation time, and improves the dimensional accuracy of rolling in consideration of two types of temperatures (between a skid portion and a skid). It is intended to obtain a method for determining a heating curve.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る加熱炉の昇温曲線決定方法は、スラブ
の現在温度を材料情報と実績炉温とを用いて現状温度計
算手段により推定し、その推定したスラブ温度を基にス
キッド部およびスキッド間の各制御帯出側温度を各帯出
側温度予測手段によって予測し、その予測した制御出側
温度が目標温度と異なるとスラブ温度感度計算手段によ
って各帯炉温に対するスラブの温度感度を計算し、前記
目標温度に対する偏差と温度感度とを基に目標抽出温度
が満足されていない場合、目標均熱度が満足されている
かいないかでそれぞれに対応して異なるアルゴリズムを
用いた修正炉温計算手段によって修正炉温を求め、各帯
出側温度予測、スラブ温度感度計算および修正炉温計算
とを繰り返して収束演算し炉温設定を行うようにしたも
のである。
The method for determining a heating temperature curve of a heating furnace according to the present invention includes estimating a current temperature of a slab by a current temperature calculating means using material information and an actual furnace temperature, and based on the estimated slab temperature, a distance between a skid portion and a skid. Each control exit temperature is predicted by each exit temperature prediction means, and when the predicted control exit temperature is different from the target temperature, the slab temperature sensitivity calculation means calculates the temperature sensitivity of the slab to each zone furnace temperature by the slab temperature sensitivity calculation means, If the target extraction temperature is not satisfied based on the deviation with respect to the target temperature and the temperature sensitivity, the correction furnace temperature calculation means using a different algorithm corresponding to each of the target extraction temperatures depending on whether the target soaking degree is satisfied or not. The temperature is calculated, and the prediction of the temperature on the exit side, the calculation of the slab temperature sensitivity, and the calculation of the corrected furnace temperature are repeated to perform the convergence calculation and set the furnace temperature.

〔作 用〕(Operation)

この発明における炉温の設定を行うについては、第1
の現状温度計算手段によって材料情報と実績炉温とから
現在の材料温度を計算する。第2には各帯出側温度予測
手段によって現在の材料温度から各帯出側温度を予測
し、その結果が目標値と異なればスラブ温度感度計算手
段で各帯炉温に対するスラブ温度の感度を計算する。続
いて、第3に修正炉温計算手段で目標との偏差と感度と
を基に修正炉温を求め昇温曲線を決定するので、寸法精
度の高い制御が可能となる。
Regarding the setting of the furnace temperature in the present invention, the first
The current material temperature is calculated from the material information and the actual furnace temperature by the current temperature calculating means. Secondly, each outgoing side temperature predicting means predicts each outgoing side temperature from the current material temperature, and if the result is different from the target value, the slab temperature sensitivity calculating means calculates the slab temperature sensitivity with respect to each furnace temperature. . Subsequently, third, the corrected furnace temperature is calculated by the corrected furnace temperature calculating means based on the deviation from the target and the sensitivity, and the temperature rise curve is determined. Therefore, control with high dimensional accuracy can be performed.

〔発明の実施例〕(Example of the invention)

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は、例えばホットコイルの圧延工程において、
連続加熱炉でスラブを加熱する連続加熱炉の概要を図示
したもので、図において、1は予熱帯、2は加熱帯、3
は均熱帯、4はスラブで連続加熱炉の左方から装入され
矢印の方向に通過する。
FIG. 1, for example, in a hot coil rolling process,
This figure shows an outline of a continuous heating furnace for heating a slab with a continuous heating furnace.
Is a tropical zone, and 4 is a slab that is charged from the left side of the continuous heating furnace and passes in the direction of the arrow.

次に、設定炉温および材料昇温曲線決定の計算方法に
ついて述べる。まず、スラブ4が装入されてから現時点
の炉内位置でのスラブ4の平均温度の推定には(1)式
の伝熱方程式を一定周期で解く。
Next, a method of calculating the set furnace temperature and the material temperature rise curve will be described. First, in order to estimate the average temperature of the slab 4 at the current position in the furnace after the slab 4 is charged, the heat transfer equation of the equation (1) is solved at regular intervals.

また、境界条件は(2)式で解く。 The boundary condition is solved by equation (2).

ここで、λ :熱伝導率 T :スラブ内部温度 Cp :比熱 U,D:スラブ上部,下部 γ :比重 H :スラブ厚 q :熱流束 Tを平均温度に換算する。 Here, λ: thermal conductivity T: slab internal temperature C p : specific heat U, D: upper and lower slabs γ: specific gravity H: slab thickness q: heat flux T is converted to an average temperature.

n :スラブメッシュ分割数 こうして、現在スラブ平均温度が求まる。この温度を
基に下記各帯出側平均温度予測モデルにより各帯制御炉
温を計算し材料昇温曲線を決定する。
n: Number of slab mesh divisions Thus, the current slab average temperature is obtained. Based on this temperature, the temperature of each zone control furnace is calculated by the following average temperature prediction model for each zone, and the material temperature rise curve is determined.

θji=θgi+(θji-1−θgi)exp(−αiti/H) ……(4) ここで、 θji:スラブ平均温度 ai :調整係数 θgi:設定炉温 Cp :比熱 ti :予測在炉時間 γ :比重 H :スラブ厚 σ :STEFAN−BOLTZMAWN定数 i :帯(i=1,3) j :スキッド部/スキッド間(j=1,2) 前記(4)式はti,H,θgiが与えられれば、各帯出側
スラブ平均温度θjiが求まる。
θ ji = θ gi + (θ ji-1 −θ gi ) exp (−α i t i / H) …… (4) Here, θ ji : average slab temperature a i : adjustment coefficient θ gi : set furnace temperature C p : specific heat t i : predicted furnace time γ: specific gravity H: slab thickness σ: STEFAN-BOLTZMAWN constant i: band (i = 1,3) j: between the skid portion and the skid (j = 1,2) In the equation (4), given t i , H, θ gi , the average slab temperature θ ji on each banding side can be obtained.

また、各帯設定炉温θgiで偏微分することにより各帯
設定炉温に対する抽出時スラブ平均温度感度が求まる。
Further, by performing partial differentiation with each zone setting furnace temperature θ gi , the average slab temperature sensitivity at the time of extraction with respect to each zone setting furnace temperature is obtained.

Fji=θj3gi(j=1、2 i=1、3) ……(6) 目標値は抽出目標温度θout と目標均熱度Δθout
の2個あり、(7),(8)式で表される。
F ji = θ j3 / θ gi (j = 1, 2 i = 1, 3) (6) The target values are the extraction target temperature θ out * and the target soaking degree Δθ out *.
And are represented by equations (7) and (8).

|θ13−θout |Δθ ……(7) θ23−θ13Δθout ……(8) 目標の制約は(8)式が緩く、(7)式が厳しいの
で、(8)式が先に満足される場合があり、次の2つの
方式で各帯制御炉温を計算により求める。
| Θ 13 −θ out * | Δθ D (7) θ 23 −θ 13 Δθ out * (8) As for the constraint of the target, the expression (8) is loose and the expression (7) is severe, so that (8) The equation may be satisfied first, and each zone control furnace temperature is calculated by the following two methods.

(i)温鋼片が予熱帯に存在する場合 (7),(8)式どちらも満足しない場合 (7)式のみ満足されない場合 (9)式あるいは(10)式で各帯設定炉温の補正分Δ
θgiを求め、初期の各帯設定炉温θgiに補正分Δθgi
加算し、各帯設定炉温θgiを修正する。
(I) When the warm steel slab exists in the pre-tropical zone When neither equation (7) nor (8) is satisfied When only equation (7) is not satisfied Using equation (9) or (10), the correction Δ for each zone setting furnace temperature
θ gi is obtained, and the correction Δθ gi is added to the initial zone setting furnace temperature θ gi to correct each zone setting furnace temperature θ gi .

そして、各帯設定炉温θgiの修正後、この各帯設定炉
温θgiを(4)、(5)式に代入算出し、再び(7)、
(8)式の判定条件を満足しているか否かをステップST
5、6で判断する。そして、(7)、(8)式の判定条
件を満足していない場合には、「各帯設定炉温θgiに補
正分Δθgiを加算し、各帯設定炉温θgiを修正し、修正
した各帯設定炉温θgiを(4)、(5)式に代入算出
し、再び(7)、(8)式の判定条件を満足しているか
否かをステップST5、6で判断する」過程を(7)、
(8)式の判定条件を満足するまで繰り返すことで、各
帯設定炉温θgiが求まる。
Then, after correction of each band set furnace temperature theta gi, the respective band set furnace temperature theta gi (4), by substituting calculated (5), again (7),
Step ST determines whether or not the judgment condition of equation (8) is satisfied.
Judge with 5 and 6. Then, (7), when not satisfied (8) of the determination condition, adds the correction amount [Delta] [theta] gi "to each band set furnace temperature theta gi, then modifying each band setting oven temperature theta gi, The corrected zone setting furnace temperature θ gi is substituted into the equations (4) and (5) and calculated, and it is determined again in steps ST5 and ST6 whether or not the determination conditions of the equations (7) and (8) are satisfied. (7)
By repeating until the determination condition of Expression (8) is satisfied, each zone setting furnace temperature θ gi is obtained.

(ii)温鋼片が加熱帯に存在する場合 (7),(8)式どちらも満足しない場合 (7)のみ満足しない場合 (iii)温鋼片が均熱帯に存在する場合 θ13+F13・Δθg3=θout ……(13) (i)の場合(9)式あるいは(10)式、(ii)の場
合(11)式あるいは(12)式、(iii)の場合(13)式
で求まったΔθgkを初期のθgkに加算して再度(4),
(5)式を計算し、(7),(8)式をチェックすると
いう過程を繰り返すことで各帯設定炉温が求まる。
(Ii) When a hot slab exists in the heating zone When neither equation (7) nor (8) is satisfied When only (7) is not satisfied (Iii) When the hot slab exists in the solitary tropics θ 13 + F 13 · Δθ g3 = θ out * (13) In the case of (i), the formula (9) or (10), and in the case of (ii) ( In the case of equation (11), equation (12), or (iii), Δθ gk obtained in equation (13) is added to the initial θ gk , and again (4),
By repeating the process of calculating the expression (5) and checking the expressions (7) and (8), each zone setting furnace temperature is obtained.

ここで、C11,C21,C22,C23,C31,C32は調整係数であ
る。
Here, C 11 , C 21 , C 22 , C 23 , C 31 , and C 32 are adjustment coefficients.

以上の処理で設定炉温および材料昇温曲線が決定され
る。
With the above processing, the set furnace temperature and the material temperature rise curve are determined.

次にこの発明の一実施例に基づく加熱炉制御動作を第
2図のフローチャートおよび第3図の連続加熱炉ブロッ
ク図を参照して説明する。
Next, the heating furnace control operation according to one embodiment of the present invention will be described with reference to the flowchart of FIG. 2 and the block diagram of the continuous heating furnace of FIG.

まず、複数の制御帯に分割された加熱炉101には燃焼
用バーナ105、炉温検出器104が配置されており、炉温設
定手段106によって設定された各制御帯毎の設定温度に
なるように燃料流量制御器103が動作して燃料流量が制
御される。材料情報手段102は炉内の材料の寸法,重
量,抽出温度および炉内搬送情報等の材料情報を炉温設
定手段106に指示する。
First, a combustion burner 105 and a furnace temperature detector 104 are arranged in the heating furnace 101 divided into a plurality of control zones, and the temperature is set to a set temperature for each control zone set by the furnace temperature setting means 106. Next, the fuel flow controller 103 operates to control the fuel flow. The material information means 102 instructs the furnace temperature setting means 106 of material information such as the size, weight, extraction temperature, and furnace transfer information of the material in the furnace.

炉温設定手段106は、現状温度計算手段20、各帯出側
温度予測手段21、スラブ温度感度計算手段22および修正
炉温計算手段23とからなっており、周期的に起動され
る。
The furnace temperature setting means 106 includes a current temperature calculating means 20, each outgoing side temperature predicting means 21, a slab temperature sensitivity calculating means 22, and a corrected furnace temperature calculating means 23, and is started periodically.

まず、現状温度計算手段20は材料情報手段102から出
力される材料情報を基にして実績炉温を参照し、現在の
材料温度を計算する(ステップST1)。次に、その計算
結果から求めた初期炉温を設定する(ステップST2)。
各帯出側温度予測手段21は現在の材料温度を基に各帯出
側温度を予測し(ステップST3)、目標と異なればスラ
ブ温度感度計算手段22で各帯炉温に対するスラブ温度の
感度を計算し(ステップST6,ST7)、修正炉温計算手段2
3を用いて目標との偏差と感度を基に目標抽出温度が満
足されていない場合、目標均熱度が満足されているかい
ないかでそれぞれに対応して異なるアルゴリズムで修正
炉温を求める(ステップST8〜ST10)。こうして決定さ
れた設定炉温を燃料流量制御器103に指示する(ステッ
プST11)。
First, the current temperature calculation means 20 calculates the current material temperature by referring to the actual furnace temperature based on the material information output from the material information means 102 (step ST1). Next, the initial furnace temperature obtained from the calculation result is set (step ST2).
Each outgoing side temperature prediction means 21 predicts each outgoing side temperature based on the current material temperature (step ST3). (Steps ST6 and ST7), modified furnace temperature calculation means 2
If the target extraction temperature is not satisfied based on the deviation from the target and the sensitivity using 3, the corrected furnace temperature is obtained by a different algorithm depending on whether the target soaking degree is satisfied or not (step ST8). ~ ST10). The set furnace temperature thus determined is instructed to the fuel flow controller 103 (step ST11).

〔発明の効果〕〔The invention's effect〕

以上のように、この場合によれば、現状の材料温度を
求める現状温度計算手段と、その材料が炉内から出る時
の各帯出側温度を予測する各帯出側温度予測手段と、も
し前記予測が目標値よりずれていればスラブ温度の感度
を計算するスラブ温度感度計算手段と、最後に温度修正
を修正炉温計算手段で行うようにしたので、予測計算に
伝熱方程式を用いて直接解くことになり、計算時間が短
縮されるほか、抽出温度と均熱度の2つの目標値を満足
するように昇温曲線を決定しているため高精度の制御が
可能となる効果がある。
As described above, according to this case, the present temperature calculating means for obtaining the current material temperature, and the respective outlet temperature predicting means for predicting each outlet temperature when the material leaves the furnace, If the value is different from the target value, the slab temperature sensitivity calculation means for calculating the sensitivity of the slab temperature and finally the temperature correction is performed by the corrected furnace temperature calculation means, so that it is directly solved using the heat transfer equation for the prediction calculation As a result, the calculation time is shortened, and since the temperature rise curve is determined so as to satisfy the two target values of the extraction temperature and the soaking degree, high-precision control is possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例による連続加熱炉の概要
図、第2図はこの発明の動作順序を示すフローチャー
ト、第3図はこの発明の一実施例による加熱炉の制御系
統図、第4図は従来の温鋼片の装入温度経過時間説明図
である。 4はスラブ、20は現状温度計算手段、21は各帯出温度予
測手段、22はスラブ温度感度計算手段、23は修正炉温計
算手段、101は加熱炉である。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a schematic diagram of a continuous heating furnace according to one embodiment of the present invention, FIG. 2 is a flowchart showing an operation sequence of the present invention, FIG. 3 is a control system diagram of the heating furnace according to one embodiment of the present invention, FIG. FIG. 4 is an explanatory diagram of the elapsed time of the charging temperature of the conventional hot steel slab. 4 is a slab, 20 is a current temperature calculating means, 21 is each band temperature predicting means, 22 is a slab temperature sensitivity calculating means, 23 is a corrected furnace temperature calculating means, and 101 is a heating furnace. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炉内温度制御帯を複数有する加熱炉にスラ
ブを装入して連続加熱する際の昇温曲線を決定する加熱
炉の材料昇温曲線決定方法において、材料情報と実績炉
温とを伝熱方程式に代入し、前記スラブの現在平均温度
を推定する現状温度計算手段と、前記現状温度計算手段
で推定した前記スラブの現在平均温度を各帯出側平均温
度予測モデルに代入することにより、スキッド部および
スキッド間の各制御帯出側温度を予測する各帯出側温度
予測手段と、前記予測した制御帯出側温度が目標温度と
異なる場合には、各帯出側スラブ平均温度を求め、この
各帯出側スラブ平均温度を各帯設定炉温で偏微分するこ
とにより、各帯設定炉温に対する温度感度を計算するス
ラブ温度感度計算手段と、このスラブ温度感度計算手段
により計算された温度感度に対して目標抽出温度が満足
されていない場合、目標均熱度が満足されているか否か
により、温鋼片の存在する前記炉内温度制御帯に対応し
て異なるアルゴリズムを用いて修正炉温を求め、各帯出
側温度予測、スラブ温度感度計算および修正炉温計算と
を繰り返して収束演算し、炉温設定を行う修正炉温計算
手段とを備えたことを特徴とする加熱炉の材料昇温曲線
決定方法。
1. A method for determining a material temperature rise curve of a heating furnace for determining a temperature rise curve when a slab is charged into a heating furnace having a plurality of furnace temperature control zones and continuously heated. Into a heat transfer equation, a current temperature calculating means for estimating a current average temperature of the slab, and a current average temperature of the slab estimated by the current temperature calculating means, and substituting the current average temperature prediction model for each band. By means of each exit temperature prediction means for predicting each control exit temperature between the skid portion and the skid, and when the predicted control exit temperature is different from the target temperature, each exit slab average temperature is obtained. Slab temperature sensitivity calculation means for calculating the temperature sensitivity for each zone setting furnace temperature by partially differentiating the average temperature of each stripping side slab with each zone setting furnace temperature, and the slab temperature sensitivity calculation means If the target extraction temperature is not satisfied with respect to the temperature sensitivity, the modified furnace using a different algorithm corresponding to the in-furnace temperature control zone where the hot slab exists, depending on whether or not the target soaking degree is satisfied. A heating furnace material characterized by comprising a corrected furnace temperature calculating means for obtaining a temperature, repeatedly performing a converging operation by repeatedly performing each outgoing side temperature prediction, a slab temperature sensitivity calculation and a corrected furnace temperature calculation, and setting a furnace temperature. How to determine the heating curve.
JP1300991A 1989-11-20 1989-11-20 Heating furnace material heating curve determination method Expired - Fee Related JP2716551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1300991A JP2716551B2 (en) 1989-11-20 1989-11-20 Heating furnace material heating curve determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1300991A JP2716551B2 (en) 1989-11-20 1989-11-20 Heating furnace material heating curve determination method

Publications (2)

Publication Number Publication Date
JPH03162526A JPH03162526A (en) 1991-07-12
JP2716551B2 true JP2716551B2 (en) 1998-02-18

Family

ID=17891514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1300991A Expired - Fee Related JP2716551B2 (en) 1989-11-20 1989-11-20 Heating furnace material heating curve determination method

Country Status (1)

Country Link
JP (1) JP2716551B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822523A (en) * 1981-07-31 1983-02-09 株式会社東芝 Ground-fault channel selecting relay
JPS6423527A (en) * 1987-07-20 1989-01-26 Matsushita Electronics Corp Cantilever paddle

Also Published As

Publication number Publication date
JPH03162526A (en) 1991-07-12

Similar Documents

Publication Publication Date Title
JPS6111289B2 (en)
JP2716551B2 (en) Heating furnace material heating curve determination method
JP3710572B2 (en) Heating furnace control device
JP3007107B2 (en) Material heating curve determination method for heating furnace
JP2786760B2 (en) Prediction method of rolling temperature of steel sheet in hot rolling
JPH0663039B2 (en) Temperature control device for heating furnace
JPH03140415A (en) Method for determining material heating-up curve in heating furnace
JPH0160530B2 (en)
JPS5818401B2 (en) Continuous heating furnace control method
JPH0469208B2 (en)
JPS6411686B2 (en)
JPS6133884B2 (en)
JPH0532448B2 (en)
JPS6411691B2 (en)
JP2581832B2 (en) Temperature control method for continuous heating furnace
JPH03264620A (en) Method for deciding temperature raising curve of material in heating furnace
JP3982042B2 (en) Combustion control method for continuous heating furnace
JPH09209044A (en) Operation of continuous type steel cast slab heating furnace
JPS5812325B2 (en) Control method for continuous heating furnace
JPH06306453A (en) Method for eliminating skid mark in continuous heating furnace
JPH05255762A (en) Method for controlling furnace temperature of continuous heating furnace
JPS5825428A (en) Forecasting method for temperature elevation in heating furnace
JP2023125249A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate
JP2023125248A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate
JPH0532450B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees