JP2581832B2 - Temperature control method for continuous heating furnace - Google Patents

Temperature control method for continuous heating furnace

Info

Publication number
JP2581832B2
JP2581832B2 JP2202245A JP20224590A JP2581832B2 JP 2581832 B2 JP2581832 B2 JP 2581832B2 JP 2202245 A JP2202245 A JP 2202245A JP 20224590 A JP20224590 A JP 20224590A JP 2581832 B2 JP2581832 B2 JP 2581832B2
Authority
JP
Japan
Prior art keywords
temperature
extraction
furnace
slab
change amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2202245A
Other languages
Japanese (ja)
Other versions
JPH0488122A (en
Inventor
秀式 五味
嘉之 古河
和之 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2202245A priority Critical patent/JP2581832B2/en
Publication of JPH0488122A publication Critical patent/JPH0488122A/en
Application granted granted Critical
Publication of JP2581832B2 publication Critical patent/JP2581832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続式加熱炉の温度制御方法に関する。Description: TECHNICAL FIELD The present invention relates to a temperature control method for a continuous heating furnace.

〔従来技術〕(Prior art)

複数の連続する制御帯を有する連続加熱炉の温度制御
においては、従来より次のような技術が知られている。
In the temperature control of a continuous heating furnace having a plurality of continuous control zones, the following techniques are conventionally known.

各帯内の各スラブについて必要炉内温度を求め、該必
要炉内温度群のなかから各帯ごとに最も高い炉内温度を
代表炉内温度として温度制御する(特公昭51−30526号
公報)。
The required furnace temperature is determined for each slab in each zone, and the highest furnace temperature is controlled for each zone from the required furnace temperature group as a representative furnace temperature (JP-B-51-30526). .

加熱炉においてスラブの抽出時の予測温度と目標抽出
温度との差を評価関数に含み、その評価関数を最小にす
る設定炉内温度変更量を線形計画法で求める(特公昭61
−25771号公報)。
In the heating furnace, the difference between the predicted temperature at the time of slab extraction and the target extraction temperature is included in the evaluation function, and the amount of change in the set furnace temperature that minimizes the evaluation function is determined by a linear programming method.
-25771).

加熱炉においてスラブの予測温度と予め定めた昇温パ
ターンとの偏差に応じて設定炉内温度を計算する(特公
昭49−29403号公報)。
In the heating furnace, a set furnace temperature is calculated according to a deviation between a predicted temperature of the slab and a predetermined heating pattern (JP-B-49-29403).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、特公昭51−30526号公報は、加熱され難いス
ラブのみを対象に加熱するため、他のスラブは焼け過ぎ
となり燃料消費量が多くなるため、オペレータ介入量が
多い。特公昭61−25771号公報は、実際に目標抽出温
度,目標抽出下限温度等の各スラブの製造条件を満足
し、しかも、省エネルギー操業を行なうためには、評価
関数に複数個のスラブを考慮し、目標抽出温度,目標抽
出下限温度、及び燃料消費量の評価値等の複数個の条件
を有する必要があり、該評価関数を制御周期(2分)に
て線形計画法で計算するには、膨大な計算量となるとと
もに、計算誤差等のために最適解が求められないことが
発生するため、生産性阻害要因となる。また、線形計画
法では、最適解を求めるための条件設定に柔軟性がな
く、操業方針等の変化に対応出来ない。特公昭42−2940
3号公報の場合、炉内温度に対するスラブ温度の応答が
緩慢であるため、偏差を検知してから温度制御しても遅
すぎる。
However, Japanese Patent Publication No. 51-30526 discloses a method in which only slabs that are difficult to be heated are heated, and other slabs are over-burned and fuel consumption is increased. Japanese Patent Publication No. 61-25771 discloses that in order to satisfy the manufacturing conditions of each slab, such as a target extraction temperature and a target extraction lower limit temperature, and to perform an energy-saving operation, a plurality of slabs are considered in an evaluation function. , It is necessary to have a plurality of conditions such as a target extraction temperature, a target extraction lower limit temperature, and an evaluation value of fuel consumption. In order to calculate the evaluation function by a linear programming method in a control cycle (two minutes), In addition to the enormous amount of calculation, there is a case where an optimal solution cannot be obtained due to a calculation error or the like, which is a factor for inhibiting productivity. Further, in the linear programming, there is no flexibility in setting conditions for obtaining an optimal solution, and it is not possible to cope with a change in an operation policy or the like. Tokiko 42-2940
In the case of Japanese Patent Publication No. 3, since the response of the slab temperature to the furnace temperature is slow, it is too late to control the temperature after detecting the deviation.

本発明は、上記のような従来の課題を改善することを
目的とする。
An object of the present invention is to improve the conventional problems as described above.

〔問題を解決するための手段〕[Means for solving the problem]

本発明は、このような点に鑑みてなされたものであ
り、複数の連続する制御帯を有する連続式加熱炉の温度
制御方法において:順次に装入及び抽出される全てのス
ラブの抽出時における目標抽出温度、および目標抽出下
限温度を満足して、なおかつ、燃焼消費量を最適にして
省エネルギーを図るための各制御帯の最適設定炉内温度
を求めるに際して、順次に装入及び抽出される全てのス
ラブに対して抽出時の目標抽出温度と予測抽出温度の
差,目標抽出下限温度と予測抽出下限温度の差,および
燃料消費量の評価値を炉内温度変更量で表わした評価関
数を用い、該評価関数について炉内温度変更量で偏微分
を行ない零として炉内温度変更量を求め、該評価関数を
最小にする最適設定炉内温度変更量を求める、ことを特
徴とする。
The present invention has been made in view of such a point, and in a temperature control method for a continuous heating furnace having a plurality of continuous control zones, it is necessary to extract all slabs which are sequentially charged and extracted. When finding the optimum set furnace temperature of each control zone for satisfying the target extraction temperature and the target extraction lower limit temperature, and optimizing the combustion consumption to save energy, all of the charges that are sequentially charged and extracted The difference between the target extraction temperature and the predicted extraction temperature at the time of extraction, the difference between the target extraction lower limit temperature and the predicted extraction lower limit temperature, and the fuel consumption evaluation value for the slab at the time of extraction were calculated using the evaluation function expressed in the furnace temperature change amount. And performing partial differentiation on the evaluation function with the in-furnace temperature change amount to obtain an in-furnace temperature change amount as zero, and obtaining an optimum set in-furnace temperature change amount that minimizes the evaluation function.

〔作用〕[Action]

本発明によれば、評価関数を最小にす最適設定炉内温
度変更量を求める際に、結果を収束させるための繰り出
し計算が不要であり、一意的に結果が得られるので、計
算量が従来に比べて大幅に低減され、計算機の負荷が低
減される。また、評価関数の重み関数を各スラブ条件及
び各制御帯別の炉内温度変更量に対して調整及び決定す
ることができ、事前に調整及び決定しておくことによ
り、オンラインにてダイナミックに変更することができ
る。これにより例えば、高品質化,省エネルギー化等の
操業変化に対応して加熱炉の最適操業が可能になる。
According to the present invention, when calculating the optimal setting furnace temperature change amount that minimizes the evaluation function, it is not necessary to perform a payout calculation for converging the result, and a unique result can be obtained. And the load on the computer is reduced. In addition, the weight function of the evaluation function can be adjusted and determined for each slab condition and the amount of furnace temperature change for each control zone. By adjusting and determining in advance, it can be dynamically changed online. can do. Thereby, for example, the optimum operation of the heating furnace can be performed in response to operation changes such as high quality and energy saving.

本発明の好ましい態様においては、順次装入及び抽出
される全てのスラブについて、現在時刻から抽出時刻ま
での制御周期毎(例えば2分間隔)の前記最適設定炉内
温度を予測する。これにより、熱片材と冷片材および高
温抽出材と低温抽出材などのように大幅に条件の異なる
操業に対応することができる。
In a preferred aspect of the present invention, the optimum set furnace temperature is predicted for each control cycle (for example, every two minutes) from the current time to the extraction time for all slabs that are sequentially charged and extracted. This makes it possible to cope with operations under greatly different conditions, such as a hot piece and a cold piece, and a high-temperature extractor and a low-temperature extractor.

また好ましい態様においては、評価関数のスラブ昇温
影響係数を、ARMAモデル式の係数の積算により求める。
これにより、スラブ昇温影響係数を簡単に求めることが
でき、計算機で処理を行なう上で非常に効果的に発明を
実施しうる。
In a preferred embodiment, the slab heating influence coefficient of the evaluation function is obtained by integrating the coefficients of the ARMA model formula.
As a result, the slab temperature rise influence coefficient can be easily obtained, and the invention can be implemented very effectively when processing is performed by a computer.

また本発明によれば、順次装入,抽出される全てのス
ラブと複数個の評価値が設定可能なため、各種操業条件
および各スラブ条件においても加熱炉最適操業ができ、
なおかつ、該評価関数の重み関数を各スラブ毎、および
各制御帯毎に任意に選択することにより、たとえば、品
質指向・省エネルギー指向等の操業変化に対応した加熱
炉最適操業ができる。また、最適設定炉内温度変更量を
繰り返し収束計算をせず一意的に求めることができるた
め、制御周期の細分化および計算機負荷低減が図れる。
Further, according to the present invention, since all slabs to be charged and extracted sequentially and a plurality of evaluation values can be set, the heating furnace can be optimally operated under various operating conditions and slab conditions.
In addition, by arbitrarily selecting the weighting function of the evaluation function for each slab and each control band, for example, a heating furnace optimal operation corresponding to an operation change such as quality-oriented and energy-saving oriented can be performed. Further, since the optimally set furnace temperature change amount can be uniquely obtained without repeatedly performing convergence calculation, the control cycle can be subdivided and the computer load can be reduced.

〔実施例〕〔Example〕

以下、この発明の実施例を詳細に説明する。ここで
は、最適炉内温度変更量を求める評価関数Jを、次式の
ように抽出温度・抽出下限温度、及よび燃料流量消費量
を評価値とした2次形式とする。
Hereinafter, embodiments of the present invention will be described in detail. Here, the evaluation function J for obtaining the optimum amount of change in the furnace temperature is a secondary form in which the extraction temperature, the extraction lower limit temperature, and the fuel flow rate consumption are evaluated as in the following equation.

評価関数J =Σr・(抽出温度・抽出下限温度評価値) +Σq・(燃料流量消費量評価値) =(A・Δu−B)TR(A・Δu−B)−PT(A・Δu
−B) +ΔuTQΔu+WTΔu ……(1) ここで、 A:予測昇温履歴過程変更による抽出温度変化量を表わす
スラブ昇温影響係数(拘束条件行列)(m×n) Δu:炉内温度変更量(n×l) A・Δu:スラブ抽出温度変化量(m×l) B:スラブ抽出温度必要変更量(拘束条件ベクトル)(m
×l) (目標抽出温度−予測抽出温度,目標下限温度−予測下
限温度の両方を考慮) R:重み関数(m×m) Q:重み関数(n×n) P:重み関数(非負ベクトル)(m×l) W:重み関数(非負ベクトル)(n×l) m:2×(スラブ本数) n:予測時間(分)/制御周期(分)×制御帯数 である。
Evaluation function J = Σr ・ (Evaluation value of extraction temperature / extraction lower limit temperature) 2 + Σq ・ (Evaluation value of fuel flow rate consumption amount) 2 = (A ・ Δu-B) TR (A ・ Δu-B) -P T (A・ Δu
−B) + Δu T QΔu + W T Δu (1) where, A: Slab heating influence coefficient (constraint condition matrix) representing the amount of change in extraction temperature due to the change of the predicted heating history process (m × n) Δu: In the furnace A.Δu: Slab extraction temperature change (m × l) B: Slab extraction temperature required change (restriction condition vector) (m
× l) (considering both target extraction temperature-prediction extraction temperature and target lower limit temperature-prediction lower limit temperature) R: weight function (m × m) Q: weight function (n × n) P: weight function (non-negative vector) (M × l) W: weight function (non-negative vector) (n × l) m: 2 × (number of slabs) n: prediction time (minute) / control cycle (minute) × number of control bands

この実施例では、最適炉内温度変更量を求めるため
に、上記評価関数Jが最小値になる点を求める。即ち、
評価関数JをΔuにて偏微分し、その結果が0となる点
が評価関数Jの最小点であり、最適炉内温度変更量の計
算式は式の第(2)式のようになる。
In this embodiment, a point at which the evaluation function J becomes a minimum value is obtained in order to obtain the optimum furnace temperature change amount. That is,
The point at which the evaluation function J is partially differentiated by Δu and the result becomes 0 is the minimum point of the evaluation function J, and the calculation formula of the optimum furnace temperature change amount is as shown in the following equation (2).

Δu=(ATRA+Q)-1(ATRB−W/2+ATP/2) ……
(2) 第(2)式により、結果の収束のための繰り返し計算
を必要とすることなく、最適設定炉内温度変更量(Δu
)を一意的に求めることができ、なおかつ、該評価関
数の重み関数を各スラブ毎および各制御帯毎に任意に選
択することにより、たとえば、後述するように品質指向
・省エネルギー指向等の操業変化に対応した加熱炉最適
操業ができる。
Δu * = (A T RA + Q) -1 (A T RB-W / 2 + A T P / 2) ......
(2) According to the equation (2), the amount of change in the optimally set furnace temperature (Δu
* ) Can be uniquely obtained, and the weighting function of the evaluation function can be arbitrarily selected for each slab and each control band, so that, for example, operations such as quality-oriented and energy-saving oriented as described later. Optimal operation of heating furnaces that respond to changes.

ここで、上記評価関数を構成する拘束条件について説
明する。まず、スラブ昇温影響係数(A)の考え方につ
いて説明する。ある制御帯の制御周期(Δt)におい
て、炉内温度をΔu変更した時の該制御帯出側のスラブ
温度の変化量(ΔT)は次の第(3)式のように表現で
きる。
Here, the constraints forming the evaluation function will be described. First, the concept of the slab temperature rise influence coefficient (A) will be described. In a control cycle (Δt) of a certain control zone, a change amount (ΔT) of the slab temperature on the control zone exit side when the furnace temperature is changed by Δu can be expressed by the following equation (3).

ΔT=∂T/∂u ……(3) よって、各制御帯の炉内温度変更量を、Δt刻みで現
時刻t0からtnまでに拡張して上式を考えると、スラブの
抽出温度変更量は次の第(4)式のようになる。
ΔT = ∂T / ∂u ...... (3 ) Therefore, the furnace temperature change amount of the control zone, given the above equation extends from the current time t 0 in increments Δt to t n, the slab extraction temperature The amount of change is as shown in the following equation (4).

ここで、 ΔTk(tout,x):スラブ厚み方向のxポイント抽出温度
変化量 Δu1,Δu2,Δu3:各制御帯の炉内温度変更量(ex予熱
帯,加熱帯,均熱帯) t1,t2,t3:各制御帯の残り在帯時間(ex予熱帯,加熱
帯,均熱帯) k:スラブ番号 である。
Here, ΔTk (t out , x): x-point extraction temperature change in the slab thickness direction Δu 1 , Δu 2 , Δu 3 : furnace temperature change in each control zone (ex pre-tropical zone, heating zone, uniform tropical zone) t 1 , t 2 , t 3 : Remaining occupancy time of each control zone (ex pre-tropical zone, heating zone, isotropical zone) k: Slab number

ここでは、抽出温度・抽出下限温度を以下のように定
義する。
Here, the extraction temperature / extraction lower limit temperature is defined as follows.

抽出温度=T(tout,0) 抽出下限温度=T(tout,1) T(tout,0):全断面平均温度 T(tout,1):オンスキッド部断面平均温度 この定義に従って、第(4)式をもとにスラブ昇温影
響係数(A)を求めると第3図のようになる。ここで、
偏微分項は次の第(5)式のようなARMAモデル式の係数
(a,b)より第(6)式のように簡単に求めることがで
き、計算機にて処理をする上で非常に有効である。
Extraction temperature = T (t out , 0) Extraction lower limit temperature = T (t out , 1) T (t out , 0): Average temperature of the entire cross section T (t out , 1): Average temperature of the on-skid section According to this definition When the slab temperature rise influence coefficient (A) is obtained based on the equation (4), the result is as shown in FIG. here,
The partial differential term can be easily obtained from the coefficient (a, b) of the ARMA model equation as shown in the following equation (5), as shown in equation (6). It is valid.

Tn=Σaj・Tn-j+Σbj・un-j ……(5) 但し、 n:現在時刻 j:時刻 T:スラブ温度 u:炉内温度 ここで、 k:スラブ番号 i:焼熱帯(=1),加熱帯(=2),均熱帯(=3) である。 Tn = Σa j · T nj + Σb j · u nj ...... (5) However, n: the current time j: Time T: slab temperature u: furnace temperature here, k: Slab number i: Burning tropics (= 1), heating zone (= 2), uniform tropics (= 3) It is.

次に、スラブ抽出温度必要変更量(B)の考え方につ
いて以下に説明する。
Next, the concept of the required change amount (B) of the slab extraction temperature will be described below.

ここで、 Ti(tout,0):Siスラブの抽出時全断面平均予測温度(A
RMAモデルによる予測値) Ti(tout,1):Siスラブの抽出時オンスキッド部断面平
均予測温度(ARMAモデルによる予測値) である。
Here, Ti (t out , 0): Average predicted temperature of all cross sections at the time of extraction of Si slab (A
Ti (t out , 1): Average predicted temperature of on-skid section cross section at the time of extraction of Si slab (predicted value by ARMA model).

以上のように、拘束条件(A,B)を求めることにより
第(2)式を解くことができるが、本発明の特徴の1つ
である重み係数による操業変化への対応例を以下に示
す。
As described above, the equation (2) can be solved by obtaining the constraint conditions (A, B). An example of how the weight coefficient, which is one of the features of the present invention, corresponds to the operation change is shown below. .

たとえば、スラブ条件が抽出下限温度規制材の時な
ど、上記の重みを変更することにより、該スラブを優先
にした最適操業が可能である。
For example, when the slab condition is the extraction lower limit temperature regulating material or the like, by changing the above-mentioned weight, the optimum operation in which the slab is given priority can be performed.

たとえば、省えネルギーに優れた後段負荷操業等も、
上記の重みを変更することにより可能である。ここで
は、重みRとPの関係を次式とし、係数K1(1×m)に
よりPを決定する。
For example, the latter-stage load operation that saves energy is also
It is possible by changing the above weights. Here, the relationship between the weights R and P is expressed by the following equation, and P is determined by the coefficient K 1 (1 × m).

P=K1・R K1を大きくすると抽出温度,抽出下限温度に対して安
全サイズとなり、K1を小さくすると抽出温度,抽出下限
温度に対して最適方向な操業となる。
P = K 1 · R K 1 and increasing the extraction temperature, it is safe size for extracting the lower limit temperature, the extraction temperature to reduce K 1, the optimum direction operation to the extracted minimum temperature.

また、重みQとWの関係を次式とし、係数K2(1×
n)により重みWを決定する。
The relationship between the weights Q and W is expressed by the following equation, and the coefficient K 2 (1 ×
The weight W is determined by n).

W=K2・Q K2を大きくすると設定炉内温度を積極的に下げて、K2
を小さくすると設定炉内温度を一定に保とうとする操業
となる。
Increasing W = K 2 · Q K 2 actively lowers the set furnace temperature and increases K 2
If the value of is reduced, the operation is to keep the set furnace temperature constant.

以上に示した制御方法を用いて評価関数の重みを変更
した例を第1図と第2図に示す。
FIGS. 1 and 2 show examples in which the weight of the evaluation function is changed using the control method described above.

第1図に示した例は、重みを安全方向での焼き上げ設
定にしたものであり、図から明らかなように、目標温度
をすべて満足している。第2図に示した例は、重みを省
エネルギー指向での焼き上げ設定にしたものであり、図
から明らかなように、目標温度に対して良好に追従して
いることが分かる。燃料原単位は、かなりこまめにオペ
レータが介入したとき以上の結果が得られた。
In the example shown in FIG. 1, the weight is set to bake in the safe direction, and as is clear from the figure, all the target temperatures are satisfied. In the example shown in FIG. 2, the weight is set for baking in an energy-saving orientation, and as can be seen from the figure, it follows that the target temperature is favorably followed. The unit fuel consumption was much better than when the operator intervened quite frequently.

〔発明の効果〕〔The invention's effect〕

以上詳述したように本発明によれば、複数個のスラブ
に対して抽出時の目標抽出温度・目標抽出下限温度、お
よび燃料消費量の評価値を含む評価係数を用いて、重み
関数を各スラブ毎、および各制御帯毎に任意に選択でき
るため、品質指向・省エネルギー指向等の操業変化に対
応した加熱炉最適操業が可能となり、オペレータ介入頻
度減少および燃料原単位低減が図れる。
As described above in detail, according to the present invention, a weighting function is set for each of a plurality of slabs by using a target extraction temperature and a target extraction lower limit temperature at the time of extraction, and an evaluation coefficient including an evaluation value of fuel consumption. Since the selection can be made arbitrarily for each slab and each control zone, the heating furnace optimal operation corresponding to the operation change such as quality-oriented and energy-saving-oriented can be performed, and the frequency of operator intervention and the fuel consumption rate can be reduced.

また、最適設定炉内温度変更量を求めるための評価関
数を最小にする計算において、収束のための繰り返し計
算が不要であり、一意的に結果を求めることができるた
め、計算量を従来の諸方法に比べて著しく減少させ、計
算機負荷の低減が図れる。
In addition, in the calculation that minimizes the evaluation function for obtaining the optimum set furnace temperature change amount, iterative calculation for convergence is not required, and the result can be obtained uniquely. It is significantly reduced as compared with the method, and the computer load can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第2図は本発明の一実施例における抽出温
度特性を示すグラフ、第3図は第(4)式から求められ
た各スラブ昇温影響係数(A)の集合を示すマップであ
る。
1 and 2 are graphs showing extraction temperature characteristics in one embodiment of the present invention, and FIG. 3 is a map showing a set of slab temperature rise influence coefficients (A) obtained from equation (4). is there.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の連続する制御帯を有する連続式加熱
炉の温度制御方法において: 順次に装入及び抽出される全てのスラブの抽出時におけ
る目標抽出温度、および目標抽出下限温度を満足して、
なおかつ、燃焼消費量を最適にして省エネルギーを図る
ための各制御帯の最適設定炉内温度を求めるに際して、
順次に装入及び抽出される全てのスラブに対して抽出時
の目標抽出温度と予測抽出温度の差,目標抽出下限温度
と予測抽出下限温度の差,および燃料消費量の評価値を
炉内温度変更量で表わした評価関数を用い、該評価関数
について炉内温度変更量で偏微分を行ない零として炉内
温度変更量を求め、該評価関数を最小にする最適設定炉
内温度変更量を求める、ことを特徴とする連続式加熱炉
の温度制御方法。
1. A method for controlling the temperature of a continuous heating furnace having a plurality of continuous control zones, wherein a target extraction temperature and a target extraction lower limit temperature at the time of extracting all slabs to be charged and extracted sequentially are satisfied. hand,
In addition, when calculating the optimum set furnace temperature of each control zone for optimizing combustion consumption and saving energy,
The difference between the target extraction temperature and the predicted extraction temperature at the time of extraction, the difference between the target extraction lower limit temperature and the predicted extraction lower limit temperature, and the evaluation value of fuel consumption for all slabs that are charged and extracted sequentially are calculated as the furnace temperature. Using the evaluation function represented by the change amount, partial differentiation is performed on the evaluation function with the furnace temperature change amount to obtain a furnace temperature change amount as zero, and an optimum set furnace temperature change amount that minimizes the evaluation function is obtained. And a method for controlling the temperature of a continuous heating furnace.
【請求項2】順次装入及び抽出される全てのスラブにつ
いて、現在時刻から抽出時刻まで、制御周期毎の前記最
適設定炉内温度を予測する、前記請求項1記載の連続式
加熱炉の温度制御方法。
2. The temperature of the continuous heating furnace according to claim 1, wherein, for all the slabs to be charged and extracted sequentially, the optimum set furnace temperature is predicted for each control cycle from the current time to the extraction time. Control method.
【請求項3】前記評価関数を次に示す評価関数Jとし、
それのスラブ昇温影響係数(拘束条件行列A)を、ARMA
モデル式の係数の積算により求め、(燃料流量消費量評
価値)としては、炉温変動評価値(ΔuTQΔu)と炉
温変更量評価値(WTΔu)の和で表わした前記請求項1
記載の連続式加熱炉の温度制御方法。 評価関数J =Σr・(抽出温度・抽出下限温度評価値) +Σq・(燃料流量消費量評価値) =(A・Δu−B)TR(A・Δu−B)−PT(A・Δu
−B) +ΔuTQΔu+WTΔu 但し、 A:スラブ昇温影響係数(拘束条件行列)(m×n) Δu:炉内温度変更量(n×l) A・Δu:スラブ抽出温度変化量(m×l) B:スラブ抽出温度必要変更量(拘束条件ベクトル)(m
×l) R:重み関数(m×m) Q:重み関数(n×n) P:重み関数(非負ベクトル)(m×l) W:重み関数(非負ベクトル)(n×l) m:2×(スラブ本数) n:予測時間(分)/制御周期(分)×制御帯数 である。
3. The evaluation function is defined as the following evaluation function J,
The slab heating effect coefficient (constraint condition matrix A)
The fuel flow rate consumption value is obtained by integrating the coefficients of the model formula, and the (fuel flow rate consumption evaluation value) 2 is represented by the sum of the furnace temperature fluctuation evaluation value (Δu T QΔu) and the furnace temperature change amount evaluation value (W T Δu). Item 1
A method for controlling the temperature of a continuous heating furnace as described in the above. Evaluation function J = Σr ・ (Evaluation value of extraction temperature / extraction lower limit temperature) 2 + Σq ・ (Evaluation value of fuel flow rate consumption amount) 2 = (A ・ Δu-B) TR (A ・ Δu-B) -P T (A・ Δu
−B) + Δu T QΔu + W T Δu where A: slab heating influence coefficient (constraint condition matrix) (m × n) Δu: furnace temperature change (n × l) A · Δu: slab extraction temperature change (m × l) B: Slab extraction temperature required change amount (constraint condition vector) (m
× l) R: weight function (m × m) Q: weight function (n × n) P: weight function (non-negative vector) (m × l) W: weight function (non-negative vector) (n × l) m: 2 X (number of slabs) n: prediction time (minutes) / control cycle (minutes) x number of control bands.
JP2202245A 1990-07-30 1990-07-30 Temperature control method for continuous heating furnace Expired - Lifetime JP2581832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2202245A JP2581832B2 (en) 1990-07-30 1990-07-30 Temperature control method for continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2202245A JP2581832B2 (en) 1990-07-30 1990-07-30 Temperature control method for continuous heating furnace

Publications (2)

Publication Number Publication Date
JPH0488122A JPH0488122A (en) 1992-03-23
JP2581832B2 true JP2581832B2 (en) 1997-02-12

Family

ID=16454358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2202245A Expired - Lifetime JP2581832B2 (en) 1990-07-30 1990-07-30 Temperature control method for continuous heating furnace

Country Status (1)

Country Link
JP (1) JP2581832B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117055652B (en) * 2023-09-04 2024-03-08 山东胜星食品科技有限公司 Intelligent temperature regulation and control method for food processing baking oven based on big data

Also Published As

Publication number Publication date
JPH0488122A (en) 1992-03-23

Similar Documents

Publication Publication Date Title
CN106636610B (en) A kind of double dimension walking beam furnace heating curve optimal setting methods based on time and furnace superintendent
US4373364A (en) Method of controlling the temperature of a heating furnace
US4255133A (en) Method for controlling furnace temperature of multi-zone heating furnace
CN106636606A (en) Heating furnace temperature control method based on simulation model
JP2581832B2 (en) Temperature control method for continuous heating furnace
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
Yoshitani et al. Optimal slab heating control with temperature trajectory optimization
JP2809925B2 (en) Sheet temperature control method for continuous annealing furnace
JP3297741B2 (en) Furnace temperature control method for continuous heating furnace
KR101286558B1 (en) Method for Determining Set-point Temperature of Each Zone of Reheating Furnace
JPH05255762A (en) Method for controlling furnace temperature of continuous heating furnace
JPH076001B2 (en) Furnace temperature setting device for continuous heating furnace
JPH02138420A (en) Combustion control method for heating furnace
JPS5858905A (en) Controlling method for optimum rolling in hot rolling
JPH08311567A (en) Device for controlling temperature in heating furnace
CN110490383B (en) Integrated production heat plan optimization method based on slab clustering
JPH0867918A (en) Method for deciding furnace temperature in continuous type heating furnace
JP3796808B2 (en) Combustion control method and apparatus for continuous heating furnace
CN115011786A (en) Furnace temperature optimization method and device for dynamically sensing working condition of heating furnace
JPS609087B2 (en) Heating control method for continuous heating furnace
JPS6133884B2 (en)
JPS6125771B2 (en)
JPH05230526A (en) Temperature control method for continuous heating furnace
JPS61199013A (en) Method for controlling continuous heating furnace
JP2716551B2 (en) Heating furnace material heating curve determination method