JPH0532446B2 - - Google Patents

Info

Publication number
JPH0532446B2
JPH0532446B2 JP4037785A JP4037785A JPH0532446B2 JP H0532446 B2 JPH0532446 B2 JP H0532446B2 JP 4037785 A JP4037785 A JP 4037785A JP 4037785 A JP4037785 A JP 4037785A JP H0532446 B2 JPH0532446 B2 JP H0532446B2
Authority
JP
Japan
Prior art keywords
temperature
furnace
flow rate
function
fuel flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4037785A
Other languages
Japanese (ja)
Other versions
JPS61199016A (en
Inventor
Satoshi Kohama
Nobunori Wakamya
Makoto Tsuruta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4037785A priority Critical patent/JPS61199016A/en
Publication of JPS61199016A publication Critical patent/JPS61199016A/en
Publication of JPH0532446B2 publication Critical patent/JPH0532446B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、複数の制御帯を有する連続式加熱
炉の制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of controlling a continuous heating furnace having a plurality of control zones.

〔従来の技術〕[Conventional technology]

従来、この種の加熱炉の温度制御として、オン
ラインで昇温曲線を決定する方法としては、例え
ば特開昭56−75533号公報に示されているように、
炉温から材料温度を計算するモデル、および炉温
と材料温度とから燃料流量を計算するモデルの両
非線形モデルを用い、非線形の燃料最少化を行な
うために、炉温をステツプ状に変化させて摂動シ
ミユレーシヨン法(基準状態と摂動状態において
シミユレーシヨンを行ない線形化係数を決定する
方法)を用いている。
Conventionally, as a method for determining the temperature rise curve online for temperature control of this type of heating furnace, for example, as shown in Japanese Patent Application Laid-Open No. 56-75533,
Using both nonlinear models, one that calculates the material temperature from the furnace temperature and the other that calculates the fuel flow rate from the furnace and material temperatures, the furnace temperature is varied in steps in order to perform nonlinear fuel minimization. A perturbation simulation method (a method in which linearization coefficients are determined by performing simulations in a reference state and a perturbation state) is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の連続式加熱炉の制御方法で
は、一般に炉温の計算ゾーンは燃料流量を制御で
きるゾーンよりも数が多いため、炉温を基にした
摂動法による最適化後の最適炉温および昇温曲線
は、常に実現可能なパターンとは限らないという
問題があつた。
In the conventional continuous heating furnace control method as described above, the number of calculation zones for the furnace temperature is generally greater than the number of zones that can control the fuel flow rate. There was a problem in that the temperature and temperature rise curves were not always in achievable patterns.

また、線形化係数および昇温パターンを決定す
る際、炉壁への損失熱量、炉壁温度分布等を無視
し、炉の応答遅れを考慮せずに炉温をステツプ状
に変化させてシミユレーシヨンを行なつているた
め、実際の材料の昇温傾向および炉の状態とかけ
離れた昇温曲線が決定されるという問題があつ
た。
In addition, when determining the linearization coefficient and temperature increase pattern, the simulation is performed by ignoring heat loss to the furnace wall, furnace wall temperature distribution, etc., and changing the furnace temperature in steps without considering the response delay of the furnace. As a result, there was a problem in that a temperature rise curve was determined that was far from the actual temperature rise trend of the material and furnace conditions.

また、たとえなんらかの昇温曲線が決定された
としても、炉に装入される材料はサイズ、物性
値、加熱鋼種(鋼片の抽出温度上・下限、均熱度
制限)の組み合わせグループにまとめてあり、炉
内の材料グループは多品種少生産により、数10種
にまたがる事もあり、その昇温曲線通りに各々の
材料を焼き上げるのは困難であつた。
In addition, even if some kind of temperature rise curve is determined, the materials charged into the furnace are grouped into combinations of size, physical properties, and type of heated steel (upper and lower limits of extraction temperature of billets, and limits on soaking degree). Due to high-mix, low-volume production, there are sometimes dozens of material groups in the furnace, and it is difficult to bake each material according to the temperature rise curve.

この発明はかかる問題点を解決するためになさ
れたもので、実現可能でかつ実際に即した昇温曲
線が得られ、各材料の抽出温度の精度向上および
燃料消費量の低減を図ることができる連続式加熱
炉の制御方法を得ることを目的とする。
This invention was made in order to solve these problems, and it is possible to obtain a temperature increase curve that is both achievable and realistic, and to improve the accuracy of the extraction temperature of each material and reduce fuel consumption. The purpose of this study is to obtain a control method for a continuous heating furnace.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る連続式加熱炉の制御方法は、燃
料流量を基にし炉内温度、炉壁温度、および材料
温度の各要素をも考慮して、各材料につき燃料流
量が最少となる最適な昇温曲線を決定し、この昇
温曲線に沿つて炉内の様々な材料を平均的あるい
はある材料を優先的に焼き上げるために、各材料
の設定炉温に炉温設定用重み係数を乗じ加重平均
した値を各制御帯の炉温設定値とするようにした
ものである。
The control method for a continuous heating furnace according to the present invention takes into consideration various factors such as the furnace internal temperature, furnace wall temperature, and material temperature based on the fuel flow rate, and optimizes the heating rate to minimize the fuel flow rate for each material. In order to determine the temperature curve and bake various materials in the furnace on average or preferentially bake a certain material along this temperature rise curve, the set furnace temperature of each material is multiplied by the weighting coefficient for furnace temperature setting and the weighted average is calculated. This value is used as the furnace temperature setting value for each control zone.

〔作用〕[Effect]

この発明においては、燃料流量を基にし炉内温
度、炉壁温度、および材料温度の各要素をも考慮
して、各材料について燃料流量が最少となる昇温
曲線を決定しているので、実現可能な最適昇温曲
線が得られる。また各材料の設定炉温に炉温設定
用重み係数を乗じ加重平均した値を各制御帯の炉
温設定値としているので、炉内の様々な材料を平
均的あるいはある材料を優先的に焼き上げる際の
各材料の抽出温度を精度よく制御できる。
In this invention, the temperature rise curve that minimizes the fuel flow rate for each material is determined based on the fuel flow rate, taking into account the elements of the furnace temperature, furnace wall temperature, and material temperature. A possible optimal heating curve is obtained. In addition, since the furnace temperature setting value for each control zone is the weighted average value obtained by multiplying the furnace temperature setting for each material by the weighting coefficient for furnace temperature setting, the various materials in the furnace can be fired on average or with priority. The extraction temperature of each material can be controlled with precision.

〔実施例〕〔Example〕

以下、この発明の原理について説明する。 The principle of this invention will be explained below.

炉温計算モデルは以下の様にして構成されてい
る。
The furnace temperature calculation model is constructed as follows.

第1図に示す様に加熱炉を炉長方向にn個に分
割し各分割されたメツシユについて各々次の様な
熱バランス方程式をたてる。
As shown in FIG. 1, the heating furnace is divided into n pieces in the furnace length direction, and the following heat balance equation is established for each divided mesh.

C1・dTgi/dt …炉温の温度変化 =Qi …燃料、空気の顕熱 +Hg・Wi …燃料発熱量 +Gi+1・Cpg・Tgi+1 …上流よりの排ガス熱量 −Gi・Cpg・Tgi …下流への排ガス熱量 +oj=1 K1ij{(Tgj+273)4−(Tgi+273)4} …他メツシユ炉温よりのふく射 +ok=1 K2ik{(Twk+273)4−(Tgi+273)4} …炉壁よりのふく射 +nl=1 K3i{(Ts+273)4−(Tgi+273)4} …材料へのふく射 +C2(Twi−Tgi)+C3(Tsi−Tgi
…炉壁、材料への対流 −Qwi …スキツド冷却水損失…(1) ここでHgは燃料の単位流量当りの発熱量、Cpg
は排ガス比熱、Giは各メツシユの排ガス流量であ
り、K1ij,K2ik,K3iはそれぞれふく射交換係
数、C1,C2,C3は定数である。また、nは炉長
分割数、mはスラブ本数である。
C 1・dT gi /dt … Temperature change in furnace temperature = Q i … Sensible heat of fuel and air +H g・W i … Fuel calorific value +G i+1・C pg・T gi+1 … Exhaust gas calorific value from upstream −G i・C pg・T gi … Calorific value of exhaust gas downstream + oj=1 K 1ij {(T gj +273) 4 −(T gi +273) 4 } …Radiation from other mesh furnace temperatures + ok =1 K 2ik {(T wk +273) 4 −(T gi +273) 4 } ...Radiation from furnace wall + nl=1 K 3i {(T s +273) 4 −(T gi +273) 4 } ...Material Radiation to +C 2 (T wi −T gi ) +C 3 (T si −T gi )
… Convection to the furnace wall and materials −Q wi … Skid cooling water loss… (1) Here, H g is the calorific value per unit flow rate of fuel, C pg
is the exhaust gas specific heat, G i is the exhaust gas flow rate of each mesh, K 1ij , K 2ik , and K 3i are radiation exchange coefficients, and C 1 , C 2 , and C 3 are constants. Further, n is the number of furnace length divisions, and m is the number of slabs.

上記式(1)は、燃料流量wが与えられれば、炉壁
温度、スラブ温度を既知とすれば、次の様に変形
される。
The above equation (1) can be transformed as follows if the fuel flow rate w is given and the furnace wall temperature and slab temperature are known.

される。be done.

dTgi/dt=oj=1 Aij(Tgj+273)4ok Bik・Tgk+Ci(i=1…n) …(2) これは、n元連立の非線形微分方程式である
が、1step前の炉内温度分布を出発値として、時
間に関して離散化し、ニユートン法等を用いて収
束させれば、簡単に新しい炉内温度分布を計算で
きる。
dT gi /dt= oj=1 A ij (T gj +273) 4 + ok B ik・T gk +C i (i=1...n) ...(2) This is an n-element simultaneous nonlinear differential equation However, by using the furnace temperature distribution one step before as a starting value, discretizing it with respect to time, and converging it using Newton's method, etc., it is possible to easily calculate a new furnace temperature distribution.

また、材料温度モデルは、良く知られている2
次元の熱伝導方程式より次の様に表わせる。
In addition, the material temperature model is the well-known 2
From the dimensional heat conduction equation, it can be expressed as follows.

dTs/dt=λs/Cs・γs(d2Ts/dx2+d2Ts/dy
2)…(3) 表面における境界条件は、 ここで、xは材料厚み方向、yは材料の巾方向
を表わし、d1,d2はそれぞれ材料厚み、材料巾を
表わす。また、Cs,λs,γsはそれぞれ材料の比
熱、熱伝導率、比重であり。qsは材料の表面熱流
束であり次式で表わせる。
dT s /dt=λ s /C s・γ s (d 2 T s /dx 2 +d 2 T s /dy
2 )…(3) The boundary conditions at the surface are: Here, x represents the material thickness direction, y represents the material width direction, and d 1 and d 2 represent the material thickness and material width, respectively. Also, C s , λ s , and γ s are the specific heat, thermal conductivity, and specific gravity of the material, respectively. q s is the surface heat flux of the material and can be expressed by the following equation.

qso 〓 〓i=1 K3i{(Tgi+273)4−(Ts+273)4}+C3(Ts
−Tg)…(5) 式(3)は、式(4)の境界条件を用いれば、通常の差
分手法で解く事ができる。
q s = o 〓 〓 i=1 K 3i {(T gi +273) 4 −(T s +273) 4 }+C 3 (T s
−T g )...(5) Equation (3) can be solved by a normal difference method using the boundary condition of Equation (4).

炉壁温度モデルは、第1図に示されている様に
炉長方向分割毎のメツシユ内において、厚み方向
のみの1次元熱伝導方程式によつて次の様に表わ
せる。
As shown in FIG. 1, the furnace wall temperature model can be expressed as follows using a one-dimensional heat conduction equation in the thickness direction only within the mesh for each division in the furnace length direction.

dTw/dt=λw/Cw・γw・d2Tw/dx2 …(6) 炉内表面における境界条件は、 dTw/dx|x=0=1/λwo 〓 〓i=1 K2ij{(Tgi+273)4−(Tw+273)4}+C2(Tgi−T
w)…(7) 炉外表面における境界条件は、 dTw/dx|x=d3=1/λw・HOUT・(Tw−Tair) …(8) ここで、xは炉壁厚み方向、d3は炉壁の厚み、
Cw,γw,λwは炉壁の比熱、熱伝導率、比重を表
わしており、HOUTは外部熱伝達率、Tairは外部温
度を示している。式(6)も、式(7)、式(8)の境界条件
を用いる事により通常の差分方程式で解く事が可
能となる。
dT w /dt=λ w /C w・γ w・d 2 T w /dx 2 …(6) The boundary condition at the inner surface of the furnace is dT w /dx| x=0 =1/λ wo 〓 〓 i=1 K 2ij {(T gi +273) 4 −(T w +273) 4 }+C 2 (T gi −T
w )…(7) The boundary condition on the outer surface of the furnace is dT w /dx | x=d3 = 1/λ w・H OUT・(T w −T air )…(8) Here, x is the furnace wall thickness direction, d 3 is the thickness of the furnace wall,
C w , γ w , and λ w represent the specific heat, thermal conductivity, and specific gravity of the furnace wall, H OUT represents the external heat transfer coefficient, and T air represents the external temperature. Equation (6) can also be solved by a normal difference equation by using the boundary conditions of Equations (7) and (8).

上記3つのモデルを組み合わせて使用する事に
より、燃料流量を与えれば、炉温、材料温度、炉
壁温度の現在値を初期値として炉温、材料温度、
炉壁温度、3者の将来温度が計算出来る。
By using the above three models in combination, if the fuel flow rate is given, the current values of the furnace temperature, material temperature, and furnace wall temperature are used as initial values, and the furnace temperature, material temperature,
Furnace wall temperature and future temperatures of the three parties can be calculated.

次に、燃料を最少とする材料の昇温曲線の決定
方法を第2図に示す流れ図に従つて説明する。な
お、図中、1は昇温曲線決定の第1step、2は同
様の第2step、3は同様の第3step、4は同様の第
4step、5は炉温計算モデル、6は炉壁温度計算
モデル、7は材料温度計算モデル、8は材料通過
位置炉温の計算、9は平均温度、10は線形化係
数の計算、11は線形計画法(LP)の計算であ
る。
Next, a method for determining a temperature increase curve for a material that requires the least amount of fuel will be explained with reference to the flowchart shown in FIG. In addition, in the figure, 1 is the first step of temperature rise curve determination, 2 is the same second step, 3 is the same third step, and 4 is the same step.
4 steps, 5 is furnace temperature calculation model, 6 is furnace wall temperature calculation model, 7 is material temperature calculation model, 8 is calculation of material passing position furnace temperature, 9 is average temperature, 10 is linearization coefficient calculation, 11 is linear This is a planning method (LP) calculation.

まず、第1step1として、現在の流量WK oでも
つて全材料が抽出されるまでの時間、3つのモデ
ル5,6,7を繰り返して使用する事により、各
材料抽出時の平均温度s o、均熱度(最高温度−
最低温度)ΔTs o、及び材料通過時の各位置での
炉内温度Tgi oが計算できる。
First, as step 1, by repeatedly using three models 5, 6, and 7 for the time until all materials are extracted at the current flow rate W K o , the average temperature S o at the time of each material extraction, Soaking degree (maximum temperature -
The minimum temperature) ΔT s o and the furnace temperature T gi o at each position when the material passes through can be calculated.

次に、第2step2として、各燃料流量制御毎に
上記燃料流量をΔwK *だけstep状に変化させる事
によつて、前記第1step1と同様に、各流量変化
時の各材料抽出時平均温度s k、均熱度ΔTs k、お
よび材料通過時の炉内温度Tgi kを計算する事が可
能になる。
Next, as a second step 2, by changing the fuel flow rate stepwise by Δw K * for each fuel flow rate control, the average temperature s at the time of each material extraction at each flow rate change is calculated as in the first step 1. k , the soaking degree ΔT s k , and the furnace temperature T gi k when the material passes through.

次に、第3step3として、以下の線形化係数の
計算10を実行する。第2step2の処置により、
非線形方程式の解である抽出時各材料平均温度、
均熱度、及び各材料通過時の各計算ゾーンでの炉
内温度は、次の様に線形化する事ができる。
Next, as a third step 3, the following linearization coefficient calculation 10 is executed. By the treatment of 2nd step 2,
The average temperature of each material at the time of extraction, which is the solution of the nonlinear equation,
The degree of soaking and the furnace temperature in each calculation zone when each material passes can be linearized as follows.

ss oKMAXK=1 P1K・ΔwK …(9) ΔTs=ΔTs+PKMAXK=1 2K ・ΔwK …(10) Tgi=Tgi oKMAXK=1 P3iK・ΔwK …(11) ここで、KMAXは燃料流量制御帯の数であり、
P1K,P2K,P3iKは各々流量を変化させた場合の線
形化係数であり、次で与えられる。
s = s o + KMAXK=1 P 1K・Δw K …(9) ΔT s = ΔT s +P KMAXK=1 2K・Δw K …(10) T gi =T gi oKMAXK=1 P 3iK・Δw K …(11) Here, KMAX is the number of fuel flow control bands,
P 1K , P 2K , and P 3iK are linearization coefficients when the flow rate is changed, and are given as follows.

P1K=(Ts K−Ts O)/ΔwK * …(12) P2K=(ΔTs K−ΔTs O)/ΔwK * …(13) P3iK=(Tgi K−Tgi O)/ΔwK * …(14) また、各燃料流量は、ΔwKを各制御帯の変化
量とすると、 wK=wK O+ΔwK を表わす事ができる。
P 1K = (T s K −T s O )/Δw K * …(12) P 2K = (ΔT s K −ΔT s O )/Δw K * …(13) P 3iK = (T gi K −T gi O )/Δw K * (14) Furthermore, each fuel flow rate can be expressed as w K = w K O + Δw K , where Δw K is the amount of change in each control band.

昇温曲線を求めるうえでの制約条件は、材料の
冶金学的制約および炉操業上の制約から次の様な
ものである。
The constraints in determining the temperature rise curve are as follows due to metallurgical constraints of the material and constraints on furnace operation.

TsMIN≦Ts≦Ts MAX ΔTsMIN≦ΔTs≦ΔTs MAX TgiMIN≦Tgi≦TgiMAX wK MIN≦wK≦wK MAX …(15) ここで、添字MIN,MAXはそれぞれの下限値
及び上限値を示している。
T s MIN≦T s ≦T s MAX ∆T s MIN≦∆T s ≦∆T s MAX T giMIN ≦T gi ≦T giMAX w K MIN ≦w K ≦w K MAX …(15) Here, the subscripts MIN, MAX are Each lower limit value and upper limit value are shown.

また、最適化の評価関係は燃料最少化であるか
ら次の様になる。
Furthermore, since the evaluation relationship for optimization is fuel minimization, it is as follows.

Φ=KMAXK=1 wK …(16) 式(15)の制約条件下での式(16)の最少化は通常の線
形計画法(LP)の計算11で求めるとが可能で
ある。
Φ= KMAXK=1 w K (16) Minimization of Equation (16) under the constraint condition of Equation (15) can be obtained by ordinary linear programming (LP) calculation 11.

上記解の流量が各材料の最適流量wKpptであり、
第4step4としてこの流量を基にして前記3モデ
ル5,6,7により、抽出までの各材料の最適昇
温曲線を計算する事が可能となる。
The flow rate of the above solution is the optimal flow rate w Kppt of each material,
As the fourth step 4, it becomes possible to calculate the optimal temperature rise curve for each material until extraction using the three models 5, 6, and 7 based on this flow rate.

こうして求まつた昇温パターンを基に目標温度
が決定されると各々の材料に対する炉温設定位置
における設定炉温が、前述の現状材料温度、目標
温度などから決定され得るであろう。
Once the target temperature is determined based on the temperature increase pattern determined in this way, the set furnace temperature at the furnace temperature setting position for each material can be determined from the above-mentioned current material temperature, target temperature, etc.

一般に加熱炉において炉温の計算ゾーンは制御
できるゾーンより多く、設定位置の温度にするに
は、制御用温度に換算し直す事によつて初めて、
その位置における設定値を確保できる。そこで、 TgA′=TgA+(Tg(j)−Tg(k)) …(17) ( )内は炉温分布が前述で判明しているの
で、設定炉温に対する補正項に対応し、こうする
事である材料に対する必要な炉温が確実に得られ
る。
Generally, in a heating furnace, there are more zones for calculating the furnace temperature than zones that can be controlled, and in order to reach the temperature at the set position, it is necessary to convert it back to the control temperature.
The setting value at that position can be secured. Therefore, T gA ′=T gA + (T g (j)−T g (k)) …(17) The values in parentheses correspond to the correction term for the set furnace temperature, since the furnace temperature distribution is known above. However, this ensures that the necessary furnace temperature for a given material is obtained.

但し、 TgA′:設定炉温 Tg(j):炉温設定用ゾーンの炉温 Tg(k):炉温設定用ゾーンを含む帯の制御用温
度計の存在するゾーン こうして、材料1本毎の設定炉温は決定されたが
この設定値を基に各制御帯に対する炉温設定値を
以下の式によつて求める。
However, T gA ′: Furnace temperature setting T g (j): Furnace temperature of the furnace temperature setting zone T g (k): Zone where the control thermometer exists in the zone including the furnace temperature setting zone Thus, material 1 The set furnace temperature for each control zone has been determined, and based on this set value, the furnace temperature set value for each control zone is calculated using the following formula.

TgK=Σc(i)T′gA(i)/Σc(i) …(18) ここでc(i)は各々の材料に対する設定用重み係
数であり、c(i)をすべて同じにすると各々の昇温
パターンに沿つて平均的に焼き上がるであろう
し、操業上ある材料を優先的に焼き上げようとす
るならば、その材料に関するc(i)の重みを高める
事で実現可能となる。第3図はこの状態を示す。
T gK = Σc(i)T′ gA (i)/Σc(i) …(18) Here, c(i) is the setting weighting coefficient for each material, and if all c(i) are the same, each It will be baked on average according to the temperature increase pattern, and if you want to preferentially bake a certain material during operation, you can achieve this by increasing the weight of c(i) related to that material. FIG. 3 shows this state.

次にこの発明の一実施例に基づく加熱炉制御に
ついて第4図を参照して説明する。
Next, heating furnace control based on an embodiment of the present invention will be explained with reference to FIG. 4.

第4図において、複数の制御帯に分割された加
熱炉101には燃焼用バーナ105、炉温検出器
104が配置されており、炉温設定機能106に
よつて設定された各制御帯毎の設定温度になる
様、燃料流量制御器103によつて流量が制御さ
れている。102は材料情報機能であり、炉内の
材料の寸法、重量、抽出温度、炉内搬送情報等の
材料情報を炉温設定機能106に指示する。
In FIG. 4, a combustion burner 105 and a furnace temperature detector 104 are arranged in a heating furnace 101 divided into a plurality of control zones, and each control zone is set by a furnace temperature setting function 106. The flow rate is controlled by a fuel flow rate controller 103 so that the set temperature is achieved. A material information function 102 instructs the furnace temperature setting function 106 to provide material information such as the dimensions, weight, extraction temperature, and conveyance information of the material in the furnace.

炉温設定機能106は、現状温度計算機能20
と昇温曲線決定機能21と設定炉温計算機能22
とからなつており、周期的に起動される。現状温
度計算機能20は、材料情報を基にして炉温計算
モデル5、炉壁温度計算モデル6、材料温度計算
モデル7により、現在の材料温度を計算する。昇
温曲線決定機能21は、この発明の説明で述べた
様に第2図に示す流れ図に従つて各材料毎の昇温
曲線を各々燃料最少化の下に決定する。
The furnace temperature setting function 106 is the current temperature calculation function 20.
, temperature rise curve determination function 21 and set furnace temperature calculation function 22
It consists of , and is activated periodically. The current temperature calculation function 20 calculates the current material temperature using a furnace temperature calculation model 5, a furnace wall temperature calculation model 6, and a material temperature calculation model 7 based on the material information. The temperature increase curve determination function 21 determines the temperature increase curve for each material while minimizing fuel according to the flowchart shown in FIG. 2, as described in the explanation of the present invention.

設定炉温計算機能22は、各材料毎の目標昇温
曲線と現状温度とを比較して、各制御帯の炉温を
計算し、燃料流量制御器103に設定炉温を指示
する。
The set furnace temperature calculation function 22 compares the target temperature increase curve for each material with the current temperature, calculates the furnace temperature of each control zone, and instructs the fuel flow rate controller 103 to set the furnace temperature.

しかして、燃料流量を基にして炉内温度、炉壁
温度、材料温度の各要素をも考慮して、各材料に
ついて燃料流量が最少となる実現可能な昇温曲線
を決定しているため、各材料の抽出温度を精度良
く制御できるばかりでなく、燃料流量の低減効果
が非常に大きくなる。
Therefore, based on the fuel flow rate, we also take into consideration the elements of furnace temperature, furnace wall temperature, and material temperature, and determine a feasible temperature rise curve that minimizes the fuel flow rate for each material. Not only can the extraction temperature of each material be controlled with high precision, but the effect of reducing the fuel flow rate can be greatly increased.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、燃料流量を基
にして炉内温度、炉壁温度、及び材料温度の各要
素をも考慮して、各材料につき燃料流量が最少と
なる最適な昇温曲線を決定するようにしているの
で、実現可能な最適の昇温曲線が得られる。
As explained above, this invention determines the optimal temperature rise curve that minimizes the fuel flow rate for each material based on the fuel flow rate and also takes into account the elements of the furnace temperature, furnace wall temperature, and material temperature. As a result, the optimum temperature rise curve that can be achieved can be obtained.

また、炉内の様々な材料を上記各々の昇温曲線
に沿つて平均的あるいはある材料を優先的に焼き
上げるために、各材料の設定炉温に炉温設定用重
み係数を乗じ加重平均した値を各制御帯の炉温設
定値とするようにしているので、各材料の抽出温
度を精度よく制御でき、しかも燃料消費量を低減
させるとができる等の効果がある。
In addition, in order to bake the various materials in the furnace on average or preferentially bake a certain material along each of the temperature rise curves mentioned above, the set furnace temperature of each material is multiplied by the weighting coefficient for furnace temperature setting, and the weighted average value is calculated. Since the furnace temperature is set as the furnace temperature setting value for each control zone, the extraction temperature of each material can be controlled with high precision, and there are effects such as being able to reduce fuel consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は加熱炉の炉温計算ゾーン分割を示す概
略図、第2図は最適昇温曲線決定の流れ図、第3
図は炉温設定値の補正値決定概念図、第4図はこ
の発明の一実施態様を示す全体構成図である。 5……炉温計算モデル、6……炉壁温度計算モ
デル、7……材料温度計算モデル、20……現状
温度計算機能、21……昇温曲線計算機能、22
……設定炉温計算機能、101……加熱炉、10
3……燃料流量制御器、104……炉温検出器、
105……燃焼用バーナ、106……炉温設定機
能。
Figure 1 is a schematic diagram showing the zone division of the furnace temperature calculation, Figure 2 is a flowchart for determining the optimal heating curve, and Figure 3
The figure is a conceptual diagram for determining the correction value for the furnace temperature setting value, and FIG. 4 is an overall configuration diagram showing one embodiment of the present invention. 5...Furnace temperature calculation model, 6...Furnace wall temperature calculation model, 7...Material temperature calculation model, 20...Current temperature calculation function, 21...Temperature rise curve calculation function, 22
... Setting furnace temperature calculation function, 101 ... Heating furnace, 10
3...Fuel flow rate controller, 104...Furnace temperature detector,
105... Combustion burner, 106... Furnace temperature setting function.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の制御帯を有する連続式加熱炉の加熱制
御において、燃料流量に基づき非定常熱バランス
式により炉温の時間変化を計算する第1機能、炉
温から炉壁内部温度の時間変化を計算する第2機
能、炉温から材料内部温度の時間変化を計算する
第3機能、上記第1、第2、第3の各機能を用い
各制御帯の現状燃料流量での材料抽出時平均温
度、均熱度、および材料通過時の各炉温をそれぞ
れ計算する第4機能、上記第1、第2、第3の各
機能を用い各制御帯の燃料流量を現状流量からあ
る一定値変化させた時の材料抽出時平均温度、均
熱度、および材料通過時の各炉温をそれぞれ計算
する第5機能、上記第4、第5の各機能の結果に
基づき現状燃料流量まわりでの線形化係数を計算
しこれを用いて制約条件下で燃料最少化となる最
適燃料流量を計算する第6機能、および上記第
1、第2、第3の各機能を用い材料の現在位置よ
り抽出までの昇温曲線を決定する第7機能を備
え、上記第7機能に第6機能で得られた最適燃料
流量を入力して最適昇温曲線を求め、かつ炉内の
材料が各々の昇温曲線に沿つて平均的あるいは所
定の材料について優先的に焼き上げるために、
各々の材料の設定炉温に炉温設定用重み係数を乗
じて加重平均した値を各制御帯の炉温設定値とす
ることを特徴とする連続式加熱炉の制御方法。
1. In the heating control of a continuous heating furnace with multiple control zones, the first function is to calculate the time change in the furnace temperature using an unsteady heat balance formula based on the fuel flow rate.The first function is to calculate the time change in the furnace wall internal temperature from the furnace temperature. A second function to calculate the temporal change in material internal temperature from the furnace temperature, a third function to calculate the average temperature at the time of material extraction at the current fuel flow rate in each control zone using each of the first, second, and third functions. A fourth function that calculates the soaking degree and each furnace temperature when the material passes through, and when the fuel flow rate in each control zone is changed by a certain value from the current flow rate using the first, second, and third functions described above. The fifth function calculates the average temperature during material extraction, the degree of soaking, and each furnace temperature when the material passes through, and calculates the linearization coefficient around the current fuel flow rate based on the results of the fourth and fifth functions above. A sixth function uses this to calculate the optimal fuel flow rate that minimizes fuel under constraint conditions, and a temperature rise curve from the current position of the material to extraction using the first, second, and third functions above. The optimal fuel flow rate obtained in the sixth function is input to the seventh function to determine the optimal temperature rise curve, and the material in the furnace is averaged along each temperature rise curve. In order to preferentially bake a target or a predetermined material,
A method for controlling a continuous heating furnace, characterized in that a weighted average value of the set furnace temperature of each material multiplied by a weighting coefficient for setting the furnace temperature is set as the furnace temperature set value for each control zone.
JP4037785A 1985-02-27 1985-02-27 Method for controlling continuous heating furnace Granted JPS61199016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4037785A JPS61199016A (en) 1985-02-27 1985-02-27 Method for controlling continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4037785A JPS61199016A (en) 1985-02-27 1985-02-27 Method for controlling continuous heating furnace

Publications (2)

Publication Number Publication Date
JPS61199016A JPS61199016A (en) 1986-09-03
JPH0532446B2 true JPH0532446B2 (en) 1993-05-17

Family

ID=12578953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4037785A Granted JPS61199016A (en) 1985-02-27 1985-02-27 Method for controlling continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS61199016A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291514A (en) * 1991-07-15 1994-03-01 International Business Machines Corporation Heater autotone control apparatus and method

Also Published As

Publication number Publication date
JPS61199016A (en) 1986-09-03

Similar Documents

Publication Publication Date Title
JPS5947324A (en) Controlling method of heating in heating furnace
CN106636606A (en) Heating furnace temperature control method based on simulation model
CN110100141A (en) For controlling the system and method for the temperature graph of the steel plate in continuous annealing line
CN108495941A (en) The temperature control equipment and temprature control method of steel plate
US4394121A (en) Method of controlling continuous reheating furnace
GB2171816A (en) Heating control method of heat furnace
JP2008024966A (en) Method for controlling furnace temperature in continuous type heating furnace, and method for producing steel material
JPH0532446B2 (en)
Yoshitani et al. Optimal slab heating control with temperature trajectory optimization
JPH0532450B2 (en)
JP6665475B2 (en) Furnace temperature setting method and furnace temperature setting device
JPH0532445B2 (en)
JPS6036452B2 (en) Control method for continuous heating furnace
JPS61199013A (en) Method for controlling continuous heating furnace
JP3537215B2 (en) Heating furnace temperature controller
JPH0420969B2 (en)
JPH0532449B2 (en)
JPS61199018A (en) Method for controlling heating of heating furnace
JPS61261433A (en) Method for controlling temperature of heating furnace
JPH0532447B2 (en)
JPS61199019A (en) Method for controlling continuous heating furnace
JPH066735B2 (en) Combustion control method for continuous heating furnace
JPS6254024A (en) Method for controlling automatic combustion in heating furnace
JP2581832B2 (en) Temperature control method for continuous heating furnace
JPS5818401B2 (en) Continuous heating furnace control method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term