JPS61199013A - Method for controlling continuous heating furnace - Google Patents

Method for controlling continuous heating furnace

Info

Publication number
JPS61199013A
JPS61199013A JP4037485A JP4037485A JPS61199013A JP S61199013 A JPS61199013 A JP S61199013A JP 4037485 A JP4037485 A JP 4037485A JP 4037485 A JP4037485 A JP 4037485A JP S61199013 A JPS61199013 A JP S61199013A
Authority
JP
Japan
Prior art keywords
temperature
furnace
function
temp
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4037485A
Other languages
Japanese (ja)
Inventor
Satoshi Kohama
小濱 聡
Nobunori Wakamiya
若宮 宣範
Makoto Tsuruta
誠 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Mitsubishi Electric Corp
Original Assignee
Kobe Steel Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Mitsubishi Electric Corp filed Critical Kobe Steel Ltd
Priority to JP4037485A priority Critical patent/JPS61199013A/en
Publication of JPS61199013A publication Critical patent/JPS61199013A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the ejection temp. of each material with good accuracy and to reduce fuel consumption by determining the heating-up curve to minimize fuel flow rate with each material in accordance with the fuel flow rate by taking the future fluctuation of an in-furnace temp., furnace well temp. and material temp. into consideration. CONSTITUTION:A burner 105 for combustion and a furnace temp. detector 104 are disposed in a continuous heating furnace 101 divided to plural control zones and the flow rate is so controlled by a fuel flow rate controller 103 that the set temp. for each of the control zones determined by a function 106 to determine the furnace temp. is attained. A material information function 102 instructs the material information including the size, weight, ejection temp., etc., of the materials of the furnace to the function 106. The function 106 consists of a function 20 to calculate the present temp., a function 21 to determine the heating-up curve, a function 22 to calculate the future temp. and a function 23 to calculate the set furnace temp. and is periodically started. The function 20 calculates the present material temp. by a model 5 for calculating the furnace temp., a model 6 for calculating the furnace wall temp. and a model 7 for calculating the material temp. in accordance with the material information. The function 21 determines the heating-up curve of each material under the minimization of each fuel.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、複数の制御帯を有する連続式加熱炉の制御
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of controlling a continuous heating furnace having a plurality of control zones.

〔従来の技術〕[Conventional technology]

従来、この種の加熱炉の温度制御として、オンラインで
昇温曲線を決定する方法としては、例えば特開昭56−
75533号公報に示されているように、炉温から材料
温度を計算するモデル、および炉温と材料温度とから燃
料流量を計算するモデルの両弁線形モデルを用い、非線
形の燃料最少化を行なうために、炉温をステップ状に変
化させて摂動シミュレーション法(基準状態と摂動状態
においてシミュレーションを行ない線形化係数を決定す
る方法)を用いている。
Conventionally, as a method for determining the temperature rise curve online for temperature control of this type of heating furnace, for example, JP-A-56-
As shown in Publication No. 75533, nonlinear fuel minimization is performed using a double-valve linear model: a model that calculates material temperature from furnace temperature, and a model that calculates fuel flow rate from furnace temperature and material temperature. For this reason, we use a perturbation simulation method (a method in which linearization coefficients are determined by performing simulations in a standard state and a perturbed state) by changing the furnace temperature in steps.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

・上記のような従来の連続式加熱炉の制御方法では、一
般に炉温の計算ゾーンは燃料流量を制御できるゾーンよ
りも数が多いため、炉温を基にした摂動法による最適化
後の最適炉温および昇温曲線は、常に実現可能なパター
ンとは限らないという問題があった。
・In the conventional continuous heating furnace control method as described above, the number of calculation zones for the furnace temperature is generally greater than the number of zones that can control the fuel flow rate. There was a problem in that the furnace temperature and temperature rise curve were not always in a realizable pattern.

また、線形化係数および昇温パターンを決定する際、炉
壁への損失熱量、炉壁温度分布等を無視し、炉の応答遅
れを考慮せずに炉温をステップ状に変化させてシミュレ
ーションを行なっているため、実際の材料の昇温傾向お
よび炉の状態とかけ離れた昇温曲線が決定されるという
問題があった。
In addition, when determining the linearization coefficient and temperature increase pattern, the simulation is performed by ignoring heat loss to the furnace wall, furnace wall temperature distribution, etc., and changing the furnace temperature in steps without considering the furnace response delay. As a result, there was a problem in that a temperature increase curve was determined that was far from the actual temperature increase trend of the material and the furnace condition.

また、仮え何等かの昇温曲線が決定されたとしても、そ
の昇温パターンで焼き上げるための設定炉温か以下のよ
うな理由で充分な精度で決定されないという問題があっ
た。
Furthermore, even if some kind of temperature increase curve were determined, there was a problem in that it could not be determined with sufficient accuracy because the furnace temperature for baking with that temperature increase pattern was lower than the set temperature.

すなわち、目標とする材料温度にするために必。In other words, it is necessary to achieve the target material temperature.

要な熱量qAは、 qA=C,G(θ、−θ、)Δt =α (T4−T’)      ・・・(1)A  
   gA     p 但し、Cp:比熱 G  :1it料重量 αA:伝達係数 θA:目標材料温度 θ :現在材料温度 TgA:設定炉温(絶対温度) T :現在材料温度(絶対温度) 入 :材料表面積 418時間刻み からθgAを逆算するなどして設定炉温を決定できるが
、伝熱係数は炉内位置、温度、燃焼パターンなどによっ
て変化し、定数としての取り扱いが困難なため精度良い
設定炉温を決定できなかった。
The required amount of heat qA is: qA=C,G(θ,-θ,)Δt=α(T4-T')...(1)A
gA p However, Cp: Specific heat G: 1it material weight αA: Transfer coefficient θA: Target material temperature θ: Current material temperature TgA: Set furnace temperature (absolute temperature) T: Current material temperature (absolute temperature) In: Material surface area 418 hours The set furnace temperature can be determined by back-calculating θgA from the increments, but the heat transfer coefficient changes depending on the position in the furnace, temperature, combustion pattern, etc., and it is difficult to treat it as a constant, so it is difficult to determine the set furnace temperature with accuracy. There wasn't.

また、材料1本毎の設定炉温か決定されたとしても、炉
に装入される材料はサイズ、物性値、加熱鋼種(鋼片の
抽出温度上φ下限、均熱度制限)の組み合せでグループ
にまとめてあり、炉内の材料グループは多品種少生産に
より、数10種にまたがる事もあり、その昇温−線通り
に各々の材料を焼き上げるのは困難であった。
In addition, even if the set furnace temperature is determined for each material, the materials charged into the furnace are grouped based on combinations of size, physical properties, and heating steel type (extraction temperature upper and lower limits of billet, and soaking degree limits). Due to high-variety, low-volume production, there are sometimes dozens of material groups in the furnace, and it is difficult to bake each material in line with the temperature rise.

この発明はかかる問題点を解決する次めになされたもの
で、各材料の抽出温度を精度よく制御できるとともに、
燃料消費量を低減させることができる連続式加熱炉の制
御方法を得ることを目的とする。
This invention was made to solve these problems, and it is possible to precisely control the extraction temperature of each material, and
The purpose of this invention is to obtain a control method for a continuous heating furnace that can reduce fuel consumption.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る連続式加熱炉の制御方法は、燃料流量を
基にし炉内温度、炉壁温度、材料温度の将来の変動をも
考慮して、各材料につき燃料流量が最少となる最適な昇
温曲線を決定し、こうして求められた最適昇温曲線、現
在および将来の材料温度、さらには将来の炉温の各要素
に基づき材料1本毎の設定炉温を求め、さらに炉内の様
々な材料を各々の昇温曲線に沿って平均的あるいはある
材料を優先的に焼き上げるために、各材料の設定炉温に
炉温設定用重み係数を乗じ加重平均した値を各制御脩の
炉温設定値とするようにしたものである。
The control method for a continuous heating furnace according to the present invention takes into account future fluctuations in the furnace internal temperature, furnace wall temperature, and material temperature based on the fuel flow rate, and optimizes the heating rate to minimize the fuel flow rate for each material. Determine the temperature curve, determine the set furnace temperature for each material based on the optimum temperature rise curve obtained in this way, the current and future material temperatures, and each element of the future furnace temperature. In order to bake the materials on average or preferentially bake a certain material along each heating curve, set the furnace temperature of each control unit by multiplying the set furnace temperature of each material by the weighting coefficient for furnace temperature setting and use the weighted average value. It is set as a value.

〔作用〕[Effect]

この発明においては、燃料流量を基にし炉内温度、炉壁
温度、材料温度の将来の変動をも考慮して、各材料につ
いて燃料流量が最少となる昇温曲線を決定しているので
、実現可能な最適昇温曲線が得られる。また、このよう
にして求められた最適昇温曲線、現在および将来の材料
温度、さらには将来の炉温の各要素に基づき材料1本毎
の設定炉温を求めるとともに、炉内の様々な材料を各々
の昇温曲線に沿って平均的あるいはある材料を優先的に
焼き上げることを可能とするため、上記設定炉温を補正
するようにしているので、各材料の抽出温度を精度よく
制御できる。
In this invention, the temperature rise curve that minimizes the fuel flow rate for each material is determined based on the fuel flow rate, taking into account future fluctuations in the furnace temperature, furnace wall temperature, and material temperature. A possible optimal heating curve is obtained. In addition, we determine the set furnace temperature for each material based on the optimum temperature rise curve obtained in this way, the current and future material temperatures, and the future furnace temperature, and also calculate the temperature of the various materials in the furnace. In order to make it possible to bake on average or preferentially a certain material along each temperature increase curve, the set furnace temperature is corrected, so the extraction temperature of each material can be controlled with high precision.

〔実施例〕〔Example〕

以下、この発明の原理について説明する。 The principle of this invention will be explained below.

炉温計算モデルは、以下の様にして構成されている0 第1図に示すように加熱炉を炉長方向にn個に分割し、
各分割されたメツシュについて各々次のような熱バラン
ス方程式をたてる。
The furnace temperature calculation model is constructed as follows. As shown in Figure 1, the heating furnace is divided into n pieces in the furnace length direction,
The following heat balance equation is established for each divided mesh.

Tgi C・□  ・・俸炉温の温度変化 (It =Qi     ・・・燃料、空気の顕熱+ Hg・W
□  ・・・燃料発熱量 子G1+□・Gpg−Tgi+1・・上流よシの排ガス
熱量−G−C・T  ・・下流への排ガス熱量i  I
)g  gl −・他メツシュ炉温よジのふく射 串・・炉壁よりのふく射 +Σ K3□、((T8t+273’)’−CTg□+
273’l’t=1 ・舎・材料へのふく射 ” C2(Ty+、−Tgi ) 十c3(Tsi−T
gj)・・・炉壁、材料への対流 −Qwi    ・・・スキッド冷却水損失・ 拳 ・
 (3) ここでHgは燃料の単位流量当りの発熱量、cpgは排
ガス比熱、G1げ各メツシュの排ガス流量であり、K工
ij、に2□*、Ks16は、それぞれふく射交換係故
、C工、 C2,C3は定数である。また、nは炉長分
割数、mにスラブ本数である。
Tgi C・□ ・・Temperature change in furnace temperature (It = Qi ・・sensible heat of fuel, air + Hg・W
□ ...Fuel heat generation quantum G1 + □・Gpg-Tgi+1 ... Exhaust gas calorific value from upstream - G-C・T ... Exhaust gas calorific value i I
) g gl -・Other mesh furnace heating radiation skewer・・Radiation from the furnace wall +Σ K3□, ((T8t+273')'-CTg□+
273'l't=1 ・Radiation to buildings/materials" C2 (Ty+, -Tgi) 10c3 (Tsi-T
gj)...Convection to the furnace wall and materials-Qwi...Skid cooling water loss・Fist・
(3) Here, Hg is the calorific value per unit flow rate of fuel, cpg is the specific heat of the exhaust gas, and the exhaust gas flow rate of each mesh in G1. C2, C3 are constants. Further, n is the number of furnace length divisions, and m is the number of slabs.

上記式(8)は、燃料流t−が与えられれば、炉壁温度
、スラブ温度を既知とすれば、次のように変形される。
The above equation (8) can be transformed as follows if the fuel flow t- is given and the furnace wall temperature and slab temperature are known.

+ΣB  @T  +c、     (1=1. 1l
llllrl)klk  gk   l ・・・(4) これは、n元連立の非線形微分方程式であるが、1st
ep前の炉内温度分布を出発値として、時間に関して離
散化し、ニュートン法等を用いて収束させれば、簡単に
新しい炉内温度分布を計算できる。
+ΣB @T +c, (1=1. 1l
llllrl) klk gk l...(4) This is a nonlinear differential equation with n elements, but the 1st
By using the in-furnace temperature distribution before ep as a starting value, discretizing it with respect to time and converging it using Newton's method, etc., a new in-furnace temperature distribution can be easily calculated.

また、材料温間モデルは、良く知られている2次元の熱
伝導方程式よシ次のように表わせる。
Furthermore, the material warm model can be expressed using the well-known two-dimensional heat conduction equation as follows.

表面における境界条件は、 ここで、xtd材料厚み方向、Yは材料の巾方向を表わ
し、d工・G2はそれぞれ材料厚み、材料中を表わす。
The boundary conditions at the surface are: Here, xtd represents the material thickness direction, Y represents the width direction of the material, and d and G2 represent the material thickness and the inside of the material, respectively.

また、cs、λ8.γ8はそれぞれ材料の比熱、熱伝導
率、比重であり、qsは材料の表面熱流束であり次式で
表わせる。
Also, cs, λ8. γ8 is the specific heat, thermal conductivity, and specific gravity of the material, respectively, and qs is the surface heat flux of the material, which can be expressed by the following equation.

式(5)は、式(6)の境界条件を用いれば、通常の差
分手法で解(1!ができる。
Equation (5) can be solved (1!) using the boundary condition of Equation (6) using a normal difference method.

炉壁温度モデルは、第1因に示されているように炉長方
向分割毎のメツシュ内において、厚み方向のみの1次元
熱伝導方程式によって、次のように表わせる。
As shown in the first factor, the furnace wall temperature model can be expressed as follows using a one-dimensional heat conduction equation in the thickness direction only within the mesh for each division in the furnace length direction.

炉内表面における境界条件は、 −(T  +273)’+c2(Tg、−Tw)   
・ ・ (91炉外表面における境界条件は、 ここで、Xは炉壁厚み方向、G3は炉壁の厚み、C,λ
、yl 1.、)d炉壁の比熱、熱伝導率、比重を表わ
しており、HoUTは外音3熱伝導率、T1□1は外部
温度を示している。式(8)も、式(9)1式叫の境界
条件を用いる事により通常の差分方程式で解く事が可能
となる。
The boundary condition on the inner surface of the furnace is -(T +273)'+c2(Tg, -Tw)
・ ・ (91 The boundary conditions on the outer surface of the furnace are: where X is the thickness direction of the furnace wall, G3 is the thickness of the furnace wall, C, λ
, yl 1. ,)d represents the specific heat, thermal conductivity, and specific gravity of the furnace wall, HoUT represents the external sound 3 thermal conductivity, and T1□1 represents the external temperature. Equation (8) can also be solved by a normal difference equation by using the boundary condition of Equation (9).

上記3つのモデルを組み合わせて使用する事により、燃
料流量を与えれば、炉温、材料温度、炉壁温度の現在値
を初期値として炉温、材料温度、炉壁温間、3者の将来
温度が計算出来る。
By using the above three models in combination, if the fuel flow rate is given, the current values of the furnace temperature, material temperature, and furnace wall temperature are used as initial values, and the future temperatures of the furnace temperature, material temperature, furnace wall temperature, and the can be calculated.

次に燃料を最少とする材料の昇温曲線の決定方法を第2
図に示す流れ図に従って説明する。なお図中、(1)は
昇温曲線決定の第1steps (2)は同様の’il
c 25top、 (81ij:同様の第3step、
(4)は同様ノ第4stop、(5)は炉温計算モデル
、(6)は炉壁温度計算モデル、(7)は材料温度計算
モデル、(8)は材料通過位置炉温の計算、(9)は平
均温度、均熱度の計算、叫は線形化係数の計算、CI環
は線形計画法(LP)の計算である。
Next, the second method for determining the temperature rise curve of the material that minimizes the amount of fuel is explained.
The explanation will be given according to the flowchart shown in the figure. In the figure, (1) is the first step of determining the temperature rise curve (2) is the same 'il
c 25top, (81ij: similar third step,
(4) is the same fourth stop, (5) is the furnace temperature calculation model, (6) is the furnace wall temperature calculation model, (7) is the material temperature calculation model, (8) is the calculation of the material passing position furnace temperature, ( 9) is the calculation of the average temperature and degree of thermal uniformity, ``The ``Circle'' is the calculation of the linearization coefficient, and ``CI ring'' is the calculation of the linear programming (LP).

まず、第1stop(1)として、現在の流量wK  
でもって全材料が抽出されるまでの時間、3つのモデル
(5) 、 (6)、 (γ)を繰り返して使用する事
により、各材料抽出時の平均温度T5+、内1熱度(最
高温度−最低温度)ΔT0、および材料通過時の各位置
での炉内温度Tg□。が計算できる。
First, as the first stop (1), the current flow rate wK
Therefore, by repeatedly using the three models (5), (6), and (γ) until all materials are extracted, the average temperature at the time of each material extraction is T5+, of which 1 degree (maximum temperature - minimum temperature) ΔT0, and furnace temperature Tg□ at each position when the material passes. can be calculated.

次に、第2step(2)として、各燃量流量制御帯毎
に上記燃料流tをΔvrK11だけs tap状に変化
させる事によって、前記第15tep(1)と同様に各
流量変化時の各材料抽出時平均温度〒3、均熱度ΔTK
1および材料通過時の炉内温度Tg11−を計算する事
が可能になる。
Next, as a second step (2), by changing the fuel flow t by ΔvrK11 in a tap shape for each fuel flow rate control band, each material at each flow rate change is changed as in the fifteenth step (1). Average temperature during extraction 〒3, soaking degree ΔTK
1 and the furnace temperature Tg11- when the material passes through.

次に、m 35iep(11として、以下の線形化係数
の計算α0)を実行する。第2stop(2)の処置に
より、非線形方程式の解である抽出時各材料平均温度、
均熱度お工び各材料通過時の各計算ゾーンでの炉内温度
は、次のように線形化する事ができる。
Next, m 35iep (as 11, the following linearization coefficient calculation α0) is executed. By the second stop (2), the average temperature of each material at the time of extraction, which is the solution of the nonlinear equation,
The furnace temperature in each calculation zone when each material passes through the soaking process can be linearized as follows.

ここで、KMAXは燃料流量制御帯の数であり、PlX
Here, KMAX is the number of fuel flow control bands, and PlX
.

P2K”3iKは各々流量を変化させた場合の線形化係
数であり、次で与えられる。
P2K''3iK is a linearization coefficient when each flow rate is changed, and is given by the following.

また、各燃料流itは、ΔWxを各制御帯の変化量とす
ると、 WK =WK  +ΔWK を表わす事ができる。
Further, each fuel flow it can be expressed as WK = WK + ΔWK, where ΔWx is the amount of change in each control band.

昇温曲線を求めるうえでの制約条件は、材料の冶金学的
制約および炉操業上の制約から次のようなものである。
The constraints in determining the temperature rise curve are as follows due to metallurgical constraints of the material and constraints on furnace operation.

ここで、添字M工N、 MAXはそれぞれの下限値およ
び上限値を示している。
Here, the subscripts M, N and MAX indicate the respective lower and upper limits.

また、最適化の評価関係は、燃料最少化であるから次の
ようになる。
Furthermore, the evaluation relationship for optimization is as follows since it is fuel minimization.

式qηの制約条件下での式(18)の最少化は通常の線
形計画法(LP)の計算(転)で求める事が可能である
Minimization of equation (18) under the constraint condition of equation qη can be obtained by ordinary linear programming (LP) calculations.

上記解の泥倉が各材料の最適流iw  であり、Opt 第4stop(4)としてこの流filtを基にして前
記3モデル(6) + (6)、(7)により、抽出ま
での各材料の最適昇温曲線を計算する事が可能となる。
The mud tank of the above solution is the optimal flow iw of each material, and as Opt 4th stop (4), each material is extracted by the above three models (6) + (6), (7) based on this flow filt It becomes possible to calculate the optimal temperature rise curve for

こうして求まった昇温曲線に沿ってΔを時間後に材料を
焼き上げるのに必要な熱量は式(1)で求められ、Δを
時間後に温度θ2になるのに要した熱jjk q 、は
q、 = Cp@G・(θ2−θp)Δt=α(Tg、
4−Tp4)    ■−・α9)但し、θ2:将来材
料温朋 T g 、:将来炉温(絶対温度) となる。上記式α力、式α呻でαF:α□とすると、材
料に対する設定炉温θgAは となる。こうして求まった設定炉温になるように燃料流
量を制御する事により、鋼片温度を目標通りに精度良く
焼き上げる事ができる。第3図はこの状態を示す。
The amount of heat required to bake the material after Δ time along the temperature rise curve obtained in this way is determined by equation (1), and the heat jjk q, required to reach the temperature θ2 after Δ time, is q, = Cp@G・(θ2−θp)Δt=α(Tg,
4-Tp4) ■-・α9) However, θ2: future material temperature T g ,: future furnace temperature (absolute temperature). If αF: α□ in the above equations α force and α equation, then the set furnace temperature θgA for the material will be. By controlling the fuel flow rate so as to reach the set furnace temperature determined in this manner, the steel billet temperature can be fired with high precision to the target temperature. FIG. 3 shows this state.

たとえば式(社)によると、目標温度θ□が現状温度θ
、より高く将来温度θ7が現状温度θ、より低いケース
が生じたとすると、将来、現状の燃料流量を維持するな
らば目標とする昇温パターンより低い昇温となるため、
現状の燃料流量を増加させる方向に作動するであろう。
For example, according to the formula (sha), the target temperature θ□ is the current temperature θ
If a case occurs where the future temperature θ7 is higher than the current temperature θ and lower than the current temperature θ, the temperature increase will be lower than the target temperature increase pattern if the current fuel flow rate is maintained in the future.
It will act to increase the current fuel flow rate.

また、上記と逆の場合、すなわちθ□〈θ9.θア〉θ
、のケースが生じたとすると現状の燃料流量のままでは
、昇温パターンより高くなってしまうため、現状の燃料
流量を下げる方向に作動するであろう。
Also, in the case opposite to the above, that is, θ□<θ9. θa〉θ
If the case of , occurs, if the current fuel flow rate remains unchanged, the temperature will become higher than the temperature increase pattern, so the current fuel flow rate will be lowered.

一般に加熱炉において炉温の計算ゾーンは制御できるゾ
ーンより多く、設定位置の温度にするには、制御用温度
に換算し直す事によって初めて、その位置における設定
値を確保できる。そこでT  ’  ”  Tgh  
”  (Tg(j)−Tg(x))        ・
 ・ ・ @1)A に)内は炉温分布が前述で判明しているので設定炉温に
対する補正項に対応し、こうする事である材料に対する
必要な炉温か確実に得られる。
Generally, in a heating furnace, there are more calculation zones for furnace temperature than controllable zones, and in order to obtain the temperature at the set position, the set value at that position can only be secured by converting it back to the control temperature. So T'” Tgh
” (Tg(j)-Tg(x)) ・
・ ・ @1) In A), since the furnace temperature distribution is known above, it corresponds to the correction term for the set furnace temperature, and by doing this, the necessary furnace temperature for a certain material can be obtained reliably.

但し、T ′:設定炉温 A Tg(j) :炉温設定用ゾーンの炉温Tg(K) :
炉温設定用ゾーンを含む帯の制御用温度計の存在するジ
ー ン こうして、材料1本毎の設定炉温は決定されたが、この
設定値を基に各制御帯に対する炉温設定値を以下の式に
よって求める。
However, T': Set furnace temperature A Tg (j): Furnace temperature Tg (K) of furnace temperature setting zone:
In this way, the set furnace temperature for each material was determined.Based on this set value, the furnace temperature set value for each control zone was determined as follows. Obtained by the formula.

ここでC(1)は各々の材料に対する設定用室み係数で
あり、C(1)をすべて同じにすると各々の昇温パター
ンに沿って平均的に焼き上がるであろうし、操業上ある
材料を優先的に焼き上げようとするならば、その材料に
関するC(1)の重みを高める事で実現可能となる。第
4図はこの状態を示す。
Here, C(1) is the setting room coefficient for each material, and if all C(1) are the same, baking will be averaged along each temperature increase pattern, and depending on the operation, If you want to bake preferentially, this can be achieved by increasing the weight of C(1) regarding the material. FIG. 4 shows this state.

次にこの発明の一実施例に基づく加熱、炉制御について
第5図を参照して説明する。
Next, heating and furnace control based on an embodiment of the present invention will be explained with reference to FIG.

第5図において、複数の制御帯に分割された加熱炉(1
01)には燃焼用バーナ(105)、炉温検出器(10
4)が配置されておシ、炉温設定機能(106)によっ
て設定されたか各制御帯毎の設定温度になるよう燃料流
量制御器(103) Kよって流量が制御されている。
In Fig. 5, a heating furnace (1
01) includes a combustion burner (105) and a furnace temperature detector (10).
4) is arranged, and the flow rate is controlled by the fuel flow rate controller (103) K so that the temperature is set by the furnace temperature setting function (106) or set for each control zone.

(102)は材料情報機能であり、炉内の材料の寸法重
量、抽出温度、炉内搬送情報等の材料情報を炉温設定機
能(106)に指示する。
A material information function (102) instructs the furnace temperature setting function (106) to provide material information such as the dimensions and weight of the material in the furnace, extraction temperature, and furnace conveyance information.

炉温設定機能(106)は、現状温度計算機能(社)と
昇温曲線決定機能(21)と将来温度計算機能(4)と
設定炉温計算機能(転))とからなっており、周期的に
起動される。現状温度計算機能□□□は、材料情報を基
にして炉温計算モデル(5)、炉壁温度計算モデル(6
)、材料温度計算モデル(γ)により、現在の材料温度
を計算する。昇温曲線決定機能伐1)は、この発明の説
明で述べたように第2図に示す流れ図に従って各材料毎
の昇温曲線を各々燃量最少化の下に決定する0 将来温度計算機能(4)は現状温度計X機能(財)と同
様のロジックで将来の材料温度、炉温を計算する。
The furnace temperature setting function (106) consists of a current temperature calculation function (company), a temperature increase curve determination function (21), a future temperature calculation function (4), and a set furnace temperature calculation function (conversion). is activated. The current temperature calculation function □□□ uses the furnace temperature calculation model (5) and furnace wall temperature calculation model (6) based on material information.
), the current material temperature is calculated using the material temperature calculation model (γ). As described in the explanation of this invention, the temperature rise curve determination function 1) determines the temperature rise curve for each material according to the flowchart shown in FIG. 2 while minimizing the amount of fuel. 4) calculates the future material temperature and furnace temperature using the same logic as the current thermometer X function (goods).

設定炉温計算機能+23)Fi、各材料毎の目標昇温曲
線と現状温度とを比較して、各制御帯の炉温を計算し、
燃料流量制御器(103)に設定炉温を指示する0 しかして、燃料流量を基にして炉内温度、炉壁温度、材
料温度の将来の変動をも考慮して、各材料について燃料
流量が最少となる実現可能な昇温曲線を決定しているた
め、各材料の抽出温度を精度良く制御できるばかりでな
く、燃料流量の低減効果が非常に大きくなる。
Setting furnace temperature calculation function + 23) Fi, calculates the furnace temperature for each control zone by comparing the target temperature rise curve for each material and the current temperature,
Instruct the fuel flow rate controller (103) to set the furnace temperature. Therefore, based on the fuel flow rate, the fuel flow rate for each material is determined by taking into account future fluctuations in the furnace internal temperature, furnace wall temperature, and material temperature. Since the minimum realizable temperature increase curve is determined, not only can the extraction temperature of each material be controlled with high accuracy, but the effect of reducing the fuel flow rate is also very large.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、燃料流量を基にし炉内
温度、炉壁温度、材料温度の将来の変動をも考慮して、
各材料につき燃料流量が最少となる最適な昇温曲線を決
定するようにして因るので、実現可能な最適昇温曲線が
得られる。
As explained above, this invention takes into consideration future fluctuations in the furnace temperature, furnace wall temperature, and material temperature based on the fuel flow rate.
Since the optimum temperature rise curve for each material with the minimum fuel flow rate is determined, a achievable optimum temperature rise curve can be obtained.

また、このようにして求められた最適昇温曲線、現在お
よび将来の材料温度、さらには将来の炉温の各要素に基
づき材料1本毎の設定炉Bを求めるとともに、炉内の様
々な材料を各々の昇温曲線に沿って平均的あるいけある
材料を優先的に焼き上げるために、各材料の設定炉温に
炉温設定用重み係敬を乗じ加重平均した値を各制御帯の
炉温設定値とするようにしているので、各材料の抽出温
度fr精変よ〈制御でき、しかも燃料消費量を低減させ
ることができる等の効果がある。
In addition, the furnace setting B for each material is determined based on the optimum temperature rise curve determined in this way, the current and future material temperatures, and the future furnace temperature. In order to preferentially bake materials that have an average temperature along each heating curve, the set furnace temperature of each material is multiplied by the weight for setting the furnace temperature, and the weighted average value is calculated as the furnace temperature of each control zone. Since the extraction temperature fr of each material is set to a set value, it is possible to precisely control the extraction temperature fr, and there are effects such as being able to reduce fuel consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は加熱炉の炉温計算ゾーン分割を示す概略図、第
2図は最適昇温曲線決定の流れ図、第3図は炉温設定値
決定概念図、第4図は炉温設定値の補正値決定概念図、
第5図はこの発明の一実施態様を示す全体構成図である
。 (5)・・炉温計算モデル (6)・・炉壁温度計算モデル (7)・・材料温度計算モデル 120)・・現状温度計算機能 (21)・・昇温曲線計算機能 彌・・将来温度計算機能 −)・・設定炉温計算機能 (101)・争加熱炉  (103)・・燃料流量制御
(104)・・炉温検出器     器(105)・・
燃焼用バーナ (106)・・炉温設定機能 なお、図中、同一符号は同−又は相当部分を示す。
Figure 1 is a schematic diagram showing the furnace temperature calculation zone division of a heating furnace, Figure 2 is a flowchart for determining the optimum temperature rise curve, Figure 3 is a conceptual diagram of determining the furnace temperature set value, and Figure 4 is a diagram of the furnace temperature set value. Conceptual diagram of correction value determination,
FIG. 5 is an overall configuration diagram showing one embodiment of the present invention. (5) Furnace temperature calculation model (6) Furnace wall temperature calculation model (7) Material temperature calculation model 120) Current temperature calculation function (21) Temperature rise curve calculation function... Future Temperature calculation function -) Setting furnace temperature calculation function (101) Warm heating furnace (103) Fuel flow control (104) Furnace temperature detector (105)
Combustion burner (106): Furnace temperature setting function In the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 複数の制御帯を有する連続式加熱炉の加熱炉制御におい
て、燃料流量に基づき非定常熱バランス式により炉温の
時間変化を計算する第1機能、炉温から炉壁内部温度の
時間変化を計算する第2機能、炉温から材料内部温度の
時間変化を計算する第3機能、上記第1、第2、第3の
各機能を用い各制御帯の現状燃料流量での材料抽出時平
均温度、均熱度、および材料通過時の各炉温をそれぞれ
計算する第4機能、上記第1、第2、第3の各機能を用
い各制御帯の燃料流量を現状流量からある一定値変化さ
せた時の材料抽出時平均温度、均熱度、および材料通過
時の各炉温をそれぞれ計算する第5機能、上記第4、第
5の各機能の結果に基づき現状燃料流量まわりでの線形
化係数を計算しこれを用いて制約条件下で熱料最少化と
なる最適燃料流量を計算する第6機能、および上記第1
、第2第3の各機能を用い材料の現在位置より抽出まで
の昇温曲線を決定する第7機能を備え、上記第7機能に
、第6機能で得られた最適燃料流量を入力して最適昇温
曲線を求め、現在の材料温度、将来の材料温度、および
将来の炉温と上記最適昇温曲線との各要素に基づき炉温
設定位置における材料の設定炉温を決め、さらに炉内の
各材料の昇温曲線に沿つて平均的あるいは所要材料につ
いて優先的に焼き上げるために、各材料の設定炉温に炉
温設定用重み係数を乗じ加重平均した値を各制御帯の炉
温設定値とすることを特徴とする連続式加熱炉の制御方
法。
In the furnace control of a continuous heating furnace that has multiple control zones, the first function calculates the time change in the furnace temperature using an unsteady heat balance formula based on the fuel flow rate, and calculates the time change in the furnace wall internal temperature from the furnace temperature. A second function to calculate the temporal change in material internal temperature from the furnace temperature, a third function to calculate the average temperature at the time of material extraction at the current fuel flow rate in each control zone using each of the first, second, and third functions. A fourth function that calculates the soaking degree and each furnace temperature when the material passes through, and when the fuel flow rate in each control zone is changed by a certain value from the current flow rate using the first, second, and third functions described above. The fifth function calculates the average temperature during material extraction, the degree of soaking, and each furnace temperature when the material passes through, and calculates the linearization coefficient around the current fuel flow rate based on the results of the fourth and fifth functions above. and a sixth function that uses this to calculate the optimal fuel flow rate that minimizes the heating charge under constraint conditions, and the first function described above.
, a seventh function for determining a temperature increase curve from the current position of the material to extraction using the second and third functions, and inputting the optimal fuel flow rate obtained in the sixth function to the seventh function. Find the optimal temperature rise curve, determine the set furnace temperature of the material at the furnace temperature setting position based on the current material temperature, future material temperature, future furnace temperature, and each element of the above optimal temperature rise curve, and then In order to bake the required materials on average or preferentially along the temperature rise curve of each material, set the furnace temperature of each control zone by multiplying the set furnace temperature of each material by the weighting coefficient for furnace temperature setting and use the weighted average value. 1. A method for controlling a continuous heating furnace, characterized in that:
JP4037485A 1985-02-27 1985-02-27 Method for controlling continuous heating furnace Pending JPS61199013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4037485A JPS61199013A (en) 1985-02-27 1985-02-27 Method for controlling continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4037485A JPS61199013A (en) 1985-02-27 1985-02-27 Method for controlling continuous heating furnace

Publications (1)

Publication Number Publication Date
JPS61199013A true JPS61199013A (en) 1986-09-03

Family

ID=12578874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4037485A Pending JPS61199013A (en) 1985-02-27 1985-02-27 Method for controlling continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS61199013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104805277A (en) * 2014-01-24 2015-07-29 宝山钢铁股份有限公司 Temperature control method for pulse-type slab heating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104805277A (en) * 2014-01-24 2015-07-29 宝山钢铁股份有限公司 Temperature control method for pulse-type slab heating furnace

Similar Documents

Publication Publication Date Title
JPS5947324A (en) Controlling method of heating in heating furnace
CN110100141A (en) For controlling the system and method for the temperature graph of the steel plate in continuous annealing line
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
JPS61199013A (en) Method for controlling continuous heating furnace
JPS61261433A (en) Method for controlling temperature of heating furnace
JP3537215B2 (en) Heating furnace temperature controller
JPS6036452B2 (en) Control method for continuous heating furnace
JPS61199016A (en) Method for controlling continuous heating furnace
CN115029517B (en) Strip steel continuous annealing dynamic specification changing stage plate temperature control method and device
JPH066735B2 (en) Combustion control method for continuous heating furnace
JPS61199019A (en) Method for controlling continuous heating furnace
JPH0532450B2 (en)
JPH0327608B2 (en)
JPH0532448B2 (en)
JPH09296229A (en) Method for controlling combustion of continuous heating furnace
JPS61199018A (en) Method for controlling heating of heating furnace
JPH0532449B2 (en)
JPS609087B2 (en) Heating control method for continuous heating furnace
JP3796808B2 (en) Combustion control method and apparatus for continuous heating furnace
JPS5818401B2 (en) Continuous heating furnace control method
JPS61199022A (en) Method for controlling continuous heating furnace
JPH0532445B2 (en)
JPS5848010B2 (en) Heating furnace automatic combustion control method
JPH0420969B2 (en)
RU1789045C (en) Method of heating control of blanks in multizone internally fired furnace