JPS6036452B2 - Control method for continuous heating furnace - Google Patents

Control method for continuous heating furnace

Info

Publication number
JPS6036452B2
JPS6036452B2 JP15838780A JP15838780A JPS6036452B2 JP S6036452 B2 JPS6036452 B2 JP S6036452B2 JP 15838780 A JP15838780 A JP 15838780A JP 15838780 A JP15838780 A JP 15838780A JP S6036452 B2 JPS6036452 B2 JP S6036452B2
Authority
JP
Japan
Prior art keywords
slab
temperature
heating furnace
continuous heating
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15838780A
Other languages
Japanese (ja)
Other versions
JPS5782426A (en
Inventor
宣範 若宮
芳治 浜崎
正禧 沓沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15838780A priority Critical patent/JPS6036452B2/en
Priority to US06/311,331 priority patent/US4394121A/en
Priority to DE3142992A priority patent/DE3142992C3/en
Priority to BR8107230A priority patent/BR8107230A/en
Priority to MX189993A priority patent/MX161415A/en
Publication of JPS5782426A publication Critical patent/JPS5782426A/en
Publication of JPS6036452B2 publication Critical patent/JPS6036452B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0034Regulation through control of a heating quantity such as fuel, oxidant or intensity of current
    • F27D2019/004Fuel quantity

Description

【発明の詳細な説明】 この発明はスラブなどの加熱に用いられる蓮統式加熱炉
の制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling a lotus style heating furnace used for heating slabs and the like.

一般に、連続式加熱炉の加熱制御においては、スラブを
圧延に適した温度に均一に加熱すると同時に加熱炉以後
の圧延ラインが要求するピッチに応じて焼き上げる必要
がある。
Generally, in heating control of a continuous heating furnace, it is necessary to uniformly heat the slab to a temperature suitable for rolling and at the same time to bake the slab according to the pitch required by the rolling line after the heating furnace.

従来、この種の制御としては炉内雰囲気温度を制御する
方法がとられているが、負荷(板厚等)の異なる多数の
スラブに対しての制御は極めてむつかしく、各制御帯の
温度設定値は負荷を無視して画一的に決定されている。
Conventionally, this type of control has been carried out by controlling the temperature of the atmosphere inside the furnace, but it is extremely difficult to control a large number of slabs with different loads (plate thickness, etc.), and the temperature setting value for each control zone is extremely difficult. is determined uniformly, ignoring the load.

本発明はこのような上記問題を解決することを目的とし
てなされたもので」負荷の異なる多数のスラブを目標抽
出温度1こ圧延ラィンの要求する時間で精度よく加熱す
ることが可能な加熱制御方法を提供することを目的とし
たものである。連続加熱炉の炉内温度分布は各制御帯の
没入燃料流量、各スラブ温度の関数として次式のように
表わされる。
The present invention has been made with the aim of solving the above-mentioned problems, and is a heating control method that can accurately heat a large number of slabs with different loads to a target extraction temperature in a time required by a rolling line. The purpose is to provide the following. The temperature distribution in the continuous heating furnace is expressed as a function of the immersed fuel flow rate in each control zone and the temperature of each slab as shown in the following equation.

Tgi=fi(△t,G,,G2、・・・GmTg,o
,Tg20,.・・Tgn〇,TS,,TS2,..
.TSm) …【11但し、(i=1一n
)TB:ガス温度 Tで:時間△t前のガス温度 Ts:スラブ温度 G:燃料流量 n:制御帯数 m:炉内スラブ数 又、各スラブの温度は、式01で決定されたガス温度T
giの関数として次式のように表わされる。
Tgi=fi(△t,G,,G2,...GmTg,o
, Tg20,.・・Tgn〇, TS,, TS2, . ..
.. TSm) ...[11 However, (i=1-n
) TB: Gas temperature at T: Gas temperature before time Δt Ts: Slab temperature G: Fuel flow rate n: Number of control zones m: Number of slabs in the furnace Also, the temperature of each slab is the gas temperature determined by formula 01 T
It is expressed as a function of gi as shown in the following equation.

TSj=gi(△t,Tg,, Tg2,…,T6n,
TSjo) ・・・【21但し、
(j=1…m)Ts。
TSj=gi(△t, Tg,, Tg2,..., T6n,
TSjo) ... [21 However,
(j=1...m)Ts.

:時間△t前のスラブ温度本発明は上記{11式と‘2
1式をくり返し使用して任意時刻後の各スラブ温度Ts
j*を予測し、第1図に示す各スラブの目標昇温曲線と
の偏差の和を最少とするように、各制御帯の燃料流量を
決定することを特徴とするものである。
: Slab temperature before time Δt The present invention is based on the above {11 formula and '2
Using one formula repeatedly, each slab temperature Ts after an arbitrary time is determined.
j* is predicted, and the fuel flow rate in each control zone is determined so as to minimize the sum of deviations from the target temperature rise curve of each slab shown in FIG.

以下、本発明の一実施例における制御方法を図について
説明する。
Hereinafter, a control method in an embodiment of the present invention will be explained with reference to the drawings.

第2図において、1は加熱炉、2は燃焼用バーナ、3は
燃料流量計、4は燃料調節バルブ、5は演算装置である
In FIG. 2, 1 is a heating furnace, 2 is a combustion burner, 3 is a fuel flow meter, 4 is a fuel control valve, and 5 is a calculation device.

流量設定は演算装置5において、ある時間間隔△tごと
になされる。
The flow rate setting is made in the arithmetic unit 5 at certain time intervals Δt.

まず、始めに、上記時間間隔△t間に流量計3で指示さ
れた実績流量の平均値および前回計算時のガス温度およ
びスラブ温度をもとに今回までガス温度分布およびスラ
ブ温度分布を、ある時間間隔△tl(△tl=△t/N
NZI)きざみで式‘1}および式■を交互にくり返
し使用し、現時刻のガス温度分布および各スラブ温度を
決定する。次に、今計算した現時刻のガス温度分布およ
び各スラブ温度を初期値として投入燃料流量を仮定して
、将来△t2後(△t2=N2△[ N221)のガス
温度分布および各スラブ温度Tsjを前述の方法で予測
計算する。
First, based on the average value of the actual flow rate indicated by the flowmeter 3 during the above time interval Δt and the gas temperature and slab temperature at the previous calculation, the gas temperature distribution and slab temperature distribution up to this time are calculated as follows. Time interval △tl (△tl=△t/N
NZI) Equation '1} and Equation (2) are used alternately and repeatedly in increments to determine the gas temperature distribution and each slab temperature at the current time. Next, assuming the input fuel flow rate with the gas temperature distribution and each slab temperature calculated at the current time as initial values, the gas temperature distribution and each slab temperature Tsj after △t2 in the future (△t2=N2△[N221) is predicted and calculated using the method described above.

次に、現時刻のスラブ位置Xoおよびスラブ送搬情報か
ら△t2後のスラブ位置×△t*を予測し、内部に保有
している第1図に示す各スラブの目標昇温曲線より△t
2後、各スラブ目標温度Tsj*を求める。上記予測温
度Tsjと目標温度Tsj*より偏差指標Jnを次のよ
うに決定する。
Next, the slab position x △t* after △t2 is predicted from the slab position Xo at the current time and the slab transport information, and △t
2, each slab target temperature Tsj* is determined. The deviation index Jn is determined from the predicted temperature Tsj and the target temperature Tsj* as follows.

Jn=晋Qj(TSi*−TSj)2 ‐‐糊j:
1但し、Qj:各スラブに対する重み係数 演算装置5はこのJnの値を最小にするよう各制御帯の
流量を設定する。
Jn=JinQj(TSi*-TSj)2 --Gluej:
1 However, Qj: Weighting coefficient for each slab The calculation device 5 sets the flow rate of each control band so as to minimize the value of Jn.

Jnの値を最小にする方法としては公知の最適化手法(
例えば最急降下法)を用いればよい。演算器5で以上の
計算が終了すれば、演算器5は設定値を燃料調節バルブ
4に指示しバーナー2の燃料流量を調節する。以上のよ
うにこの発明によれば、負荷の異なる多数のスラブに対
して抽出温度を精度よく制御することが可能な連続式加
熱炉の制御方法を提供することができる。
A known optimization method (
For example, the steepest descent method may be used. When the calculation unit 5 completes the above calculation, the calculation unit 5 instructs the set value to the fuel control valve 4 to adjust the fuel flow rate of the burner 2. As described above, according to the present invention, it is possible to provide a method for controlling a continuous heating furnace that can accurately control the extraction temperature for a large number of slabs with different loads.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスラブの目標昇温特性を示す曲線図、第2図は
この発明の一実施例による連続式加熱炉の制御方法を適
用した装置を示す概略図である。 図中、1は加熱炉、2はバーナー、3は流量計、4は調
節バルブ、5は演算器。第1図 第2図
FIG. 1 is a curve diagram showing target temperature increase characteristics of a slab, and FIG. 2 is a schematic diagram showing an apparatus to which a continuous heating furnace control method according to an embodiment of the present invention is applied. In the figure, 1 is a heating furnace, 2 is a burner, 3 is a flow meter, 4 is a control valve, and 5 is a computing unit. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 連続式加熱炉の各制御帯の燃料流量を仮定し、任意
時刻後の上記炉内各スラブの温度を予測し、この予測温
度と上記各スラブの目標昇温曲線との偏差を求め、上記
各偏差の2乗に係数を掛けたものの和が最少になるよう
に上記各制御帯の燃料流量を決定するようにしたことを
特徴とする連続式加熱炉の制御方法。
1 Assuming the fuel flow rate in each control zone of the continuous heating furnace, predict the temperature of each slab in the furnace after an arbitrary time, find the deviation between this predicted temperature and the target temperature rise curve of each slab, and calculate the A method for controlling a continuous heating furnace, characterized in that the fuel flow rate in each of the control zones is determined so that the sum of the squares of the deviations multiplied by coefficients is minimized.
JP15838780A 1980-11-08 1980-11-08 Control method for continuous heating furnace Expired JPS6036452B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15838780A JPS6036452B2 (en) 1980-11-08 1980-11-08 Control method for continuous heating furnace
US06/311,331 US4394121A (en) 1980-11-08 1981-10-14 Method of controlling continuous reheating furnace
DE3142992A DE3142992C3 (en) 1980-11-08 1981-10-29 Method and device for heat control of a continuous furnace
BR8107230A BR8107230A (en) 1980-11-08 1981-11-06 PROCESS FOR CONTROL OF A CONTINUOUS REHEATING OVEN
MX189993A MX161415A (en) 1980-11-08 1981-11-06 METHOD FOR CONTROLLING A CONTINUOUS REHEAT OVEN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15838780A JPS6036452B2 (en) 1980-11-08 1980-11-08 Control method for continuous heating furnace

Publications (2)

Publication Number Publication Date
JPS5782426A JPS5782426A (en) 1982-05-22
JPS6036452B2 true JPS6036452B2 (en) 1985-08-20

Family

ID=15670605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15838780A Expired JPS6036452B2 (en) 1980-11-08 1980-11-08 Control method for continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS6036452B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151709A (en) * 1984-01-18 1985-08-09 Kawasaki Steel Corp Temperature controller for industrial furnace
JPH0743608B2 (en) * 1985-11-19 1995-05-15 株式会社安川電機 Digital controller using future target value and past manipulated variable information
JPS62118406A (en) * 1985-11-19 1987-05-29 Yaskawa Electric Mfg Co Ltd Control system using information of future target value, past manipulated variable and deviation at time of trial
JPH0259902A (en) * 1988-08-26 1990-02-28 Hitachi Ltd Control device for plant
JP7225066B2 (en) * 2019-09-17 2023-02-20 株式会社神戸製鋼所 Steel temperature prediction method

Also Published As

Publication number Publication date
JPS5782426A (en) 1982-05-22

Similar Documents

Publication Publication Date Title
JPS5947324A (en) Controlling method of heating in heating furnace
US4606529A (en) Furnace controls
US4394121A (en) Method of controlling continuous reheating furnace
JPS6036452B2 (en) Control method for continuous heating furnace
US4368034A (en) Heating control method for continuously heating furnace
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
Yoshitani et al. Optimal slab heating control with temperature trajectory optimization
JP3537215B2 (en) Heating furnace temperature controller
JP3072680B2 (en) Heating furnace temperature control method and apparatus
JPH01184233A (en) Sheet temperature control method for continuously annealing furnace
JPS61199013A (en) Method for controlling continuous heating furnace
JPH01259131A (en) Method of controlling temperature of strip in continuous annealing furnace
JPH0327608B2 (en)
JPS61199019A (en) Method for controlling continuous heating furnace
JPH0532448B2 (en)
JPH0532446B2 (en)
JP3796808B2 (en) Combustion control method and apparatus for continuous heating furnace
JPS5818401B2 (en) Continuous heating furnace control method
JPH06287643A (en) Device for controlling strip temperature of continuous steel strip heat treatment line
JPS6022049B2 (en) Furnace temperature setting control method for multi-zone heating furnace
JPH032213B2 (en)
JPS61170508A (en) Method for erasing skid mark in continuous heating furnace
Kamata et al. Computer control system for continuous reheating furnace
JPS61199022A (en) Method for controlling continuous heating furnace
JPS6254025A (en) Method for controlling heating of steel material heating furnace