JP7225066B2 - Steel temperature prediction method - Google Patents

Steel temperature prediction method Download PDF

Info

Publication number
JP7225066B2
JP7225066B2 JP2019168356A JP2019168356A JP7225066B2 JP 7225066 B2 JP7225066 B2 JP 7225066B2 JP 2019168356 A JP2019168356 A JP 2019168356A JP 2019168356 A JP2019168356 A JP 2019168356A JP 7225066 B2 JP7225066 B2 JP 7225066B2
Authority
JP
Japan
Prior art keywords
temperature
furnace
furnace temperature
burner
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019168356A
Other languages
Japanese (ja)
Other versions
JP2021046570A (en
Inventor
岳洋 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019168356A priority Critical patent/JP7225066B2/en
Publication of JP2021046570A publication Critical patent/JP2021046570A/en
Application granted granted Critical
Publication of JP7225066B2 publication Critical patent/JP7225066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼材の温度予測方法に関する。 The present invention relates to a temperature prediction method for steel materials.

鋼材を例えば連続加熱炉等で加熱する際、加熱炉内での鋼材の温度履歴は鋼材の品質に大きく影響する。目標とする温度履歴からの偏差が大きいと、脱炭と呼ばれる現象が発生し、所望の機械特性が得られなくなる可能性がある。そのため、製品の品質を担保するためには、加熱炉内における鋼材の温度履歴をオペレータが適切に制御する必要がある。 When a steel material is heated, for example, in a continuous heating furnace, the temperature history of the steel material in the heating furnace greatly affects the quality of the steel material. If the deviation from the target temperature history is large, a phenomenon called decarburization may occur, and desired mechanical properties may not be obtained. Therefore, in order to ensure product quality, it is necessary for the operator to appropriately control the temperature history of the steel material in the heating furnace.

オペレータが温度履歴を適切に制御するには、高精度の鋼材の温度予測が必要である。一方、生産性の観点からは温度予測の時間とコストを抑制する必要もある。そこで、バーナーの使用数量に基づいて総括熱吸収率(炉から鋼材への熱伝達効率)を補正することで鋼材の温度を予測する方法が提案されている(特開2018-3084号公報参照)。 Accurate steel temperature prediction is necessary for operators to properly control the temperature history. On the other hand, from the viewpoint of productivity, it is also necessary to suppress the time and cost of temperature prediction. Therefore, a method has been proposed for predicting the temperature of steel materials by correcting the overall heat absorption rate (heat transfer efficiency from the furnace to the steel materials) based on the number of burners used (see Japanese Patent Laid-Open No. 2018-3084). .

特開2018-3084号公報JP 2018-3084 A

加熱炉においては、操業条件によってはバーナーの使用数量が同じであっても、バーナーに供給される燃料の流量が異なる場合がある。この場合、バーナーの使用数量に基づく補正を行う上記特許文献1の方法では、鋼材の温度の予測精度を十分に向上させることが困難となる。 In a heating furnace, even if the number of burners used is the same, the flow rate of fuel supplied to the burners may differ depending on the operating conditions. In this case, it is difficult to sufficiently improve the accuracy of predicting the temperature of the steel material with the method of Patent Document 1, in which the correction is performed based on the number of burners used.

上記事情に鑑み、本発明は、加熱炉内の鋼材の温度を精度良く予測することができる鋼材の温度予測方法を提供することを課題とする。 In view of the above circumstances, it is an object of the present invention to provide a method for predicting the temperature of a steel material that can accurately predict the temperature of the steel material in the heating furnace.

上記課題を解決すべく本発明者らは以下のように鋭意研究を行った。すなわち、例えば加熱炉内の鋼材の温度を予測する方法として、バーナーよりも鋼材の搬送方向上流側及び下流側の位置で加熱炉内の温度をそれぞれ測定し、この2つの位置の温度(図5のT1、T2)を直線で結ぶことによって加熱炉内の各位置での温度を算出し(図5に破線で示す直線Ls)、この各温度に基づいて鋼材の温度を予測することが考えられる。 In order to solve the above problems, the present inventors conducted intensive research as follows. That is, for example, as a method of predicting the temperature of the steel material in the heating furnace, the temperature in the heating furnace is measured at positions upstream and downstream of the burner in the conveying direction of the steel material, and the temperatures at these two positions (Fig. 5 (T1, T2) of (T1, T2)) is calculated by calculating the temperature at each position in the heating furnace (straight line Ls shown by the dashed line in FIG. 5), and the temperature of the steel material can be predicted based on each temperature .

しかし、上記2つの位置の間では、バーナーからの熱の影響によって加熱炉内の温度が上記直線よりも増大し、しかもその増大の程度がバーナーの燃焼負荷、すなわちバーナーに供給する燃料の流量によって変動する。このため、上記方法では上記直線に基づく予測温度の精度が十分とはいえない。そこで、上記2つの位置とバーナーとの間にてバーナーの燃料流量に基づいて加熱炉内の温度を算出し、上記2つの位置での温度(T1、T2)に加え、算出した温度(図5のK1、K2)にも基づいて上記各位置での炉内温度を予測することで、上記各位置での鋼材の温度を精度良く予測できることを見出し、本発明を完成させるに至った。 However, between the above two positions, the heat from the burner causes the temperature in the heating furnace to rise above the straight line, and the degree of increase depends on the combustion load of the burner, that is, the flow rate of the fuel supplied to the burner. fluctuate. Therefore, the accuracy of the predicted temperature based on the straight line cannot be said to be sufficient with the above method. Therefore, the temperature in the heating furnace is calculated based on the fuel flow rate of the burner between the above two positions and the burner, and in addition to the temperatures (T1, T2) at the above two positions, the calculated temperature (Fig. 5 (K1, K2) of (K1, K2), the inventors have found that the temperature of the steel material at each position can be accurately predicted by predicting the furnace temperature at each position, and have completed the present invention.

すなわち、上記課題を解決するためになされた発明は、加熱炉内を搬送される鋼材の温度予測方法であって、上記加熱炉が上記鋼材の搬送方向に沿って配置された1又は複数のバーナーを備えており、上記搬送方向における上記バーナーより上流側の第1位置及び下流側の第2位置での上記加熱炉の炉内温度を測定する工程と、上記バーナーの燃料流量を測定する工程と、上記第1位置及び上記第2位置での測定炉内温度並びに上記バーナーの測定燃料流量に基づいて、上記第1位置と上記のバーナーとの間の第3位置及び上記バーナーと上記第2位置との間の第4位置での炉内温度を算出する工程と、上記第1位置及び上記第2位置での測定炉内温度、並びに上記第3位置及び上記第4位置での算出炉内温度に基づいて上記加熱炉内における上記搬送方向の各位置での炉内温度を予測する工程と、上記予測炉内温度に基づいて上記各位置での熱流束を算出する工程と、上記算出熱流束に基づいて上記各位置での上記鋼材の温度を算出する工程とを備え、上記炉内温度予測工程が、上記第1位置及び上記第2位置での測定炉内温度に基づいて上記各位置での基準炉内温度を算出する工程と、上記第3位置及び上記第4位置での算出炉内温度を用いて上記基準炉内温度を補正した補正炉内温度を算出する工程とを含む鋼材の温度予測方法である。 That is, an invention made to solve the above problems is a method for predicting the temperature of steel material conveyed in a heating furnace, wherein the heating furnace comprises one or more burners arranged along the conveying direction of the steel material. and measuring the temperature in the heating furnace at a first position upstream and a second position downstream from the burner in the conveying direction; and measuring a fuel flow rate of the burner. , a third position between said first position and said burner and said burner and said second position based on the measured furnace temperatures at said first position and said second position and the measured fuel flow rate of said burner; the measured furnace temperature at the first position and the second position, and the calculated furnace temperature at the third position and the fourth position between predicting the furnace temperature at each position in the conveying direction in the heating furnace based on, calculating the heat flux at each position based on the predicted furnace temperature, and calculating the calculated heat flux and calculating the temperature of the steel material at each position based on the in-furnace temperature prediction step at each position based on the measured in-furnace temperatures at the first position and the second position. and a step of calculating a corrected in-furnace temperature obtained by correcting the reference in-furnace temperature using the calculated in-furnace temperatures at the third position and the fourth position. temperature prediction method.

当該鋼材の温度予測方法は、上記第1位置及び第2位置での上記測定炉内温度に加え、上記第3位置及び第4位置での上記算出炉内温度に基づいて加熱炉内における搬送方向の各位置での炉内温度を予測することで、バーナーの燃料流量に応じて上記各位置での炉内温度を予測することができる。この炉内温度の予測にて上記第1位置及び上記第2位置での上記測定温度に基づく上記基準炉内温度を、上記第3位置及び上記第4位置での上記算出炉内温度を用いて補正することで、上記各位置での炉内温度を精度良く予測することができる。このようにして得られた補正炉内温度に基づいて上記熱流束を算出し、この熱流束に基づいて上記鋼材の温度を算出することで、加熱炉内の鋼材の温度を精度良く予測することができる。 The temperature prediction method of the steel material is based on the calculated in-furnace temperatures at the third and fourth positions in addition to the measured in-furnace temperatures at the first and second positions. By predicting the furnace temperature at each position of , the furnace temperature at each position can be predicted according to the fuel flow rate of the burner. In the prediction of the furnace temperature, the reference furnace temperature based on the measured temperatures at the first position and the second position is calculated using the calculated furnace temperature at the third position and the fourth position. By correcting, the furnace temperature at each position can be predicted with high accuracy. The heat flux is calculated based on the corrected in-furnace temperature thus obtained, and the temperature of the steel material is calculated based on this heat flux, thereby accurately predicting the temperature of the steel material in the heating furnace. can be done.

本発明の鋼材の温度予測方法によれば、加熱炉内の鋼材の温度を精度良く予測することができる。 According to the steel temperature prediction method of the present invention, it is possible to accurately predict the temperature of the steel in the heating furnace.

本発明の一実施形態の鋼材の温度予測方法の手順を示すフロー図である。It is a flow figure showing the procedure of the temperature prediction method of steel materials of one embodiment of the present invention. バーナー及び温度計の配置を示す加熱炉内の平面図であって、搬送面の上方から視た平面図である。FIG. 4 is a plan view of the interior of the heating furnace showing the arrangement of burners and thermometers, and is a plan view seen from above the conveying surface. バーナー及び温度計の配置を示す加熱炉内の側面図である。It is a side view in a heating furnace which shows arrangement|positioning of a burner and a thermometer. 鋼材の搬送方向における温度取得位置を示す加熱炉内の平面図であって、搬送面の上方から視た平面図である。FIG. 4 is a plan view of the inside of the heating furnace showing temperature acquisition positions in the conveying direction of the steel material, and is a plan view seen from above the conveying surface. 鋼材の搬送方向における加熱炉内の各位置と、この各位置での炉内温度との関係を模式的に示す平面図である。FIG. 3 is a plan view schematically showing the relationship between each position in the heating furnace in the conveying direction of the steel material and the furnace temperature at each position. 試験例1での搬送方向における加熱炉内の位置N1から位置N6までの各位置と、この各位置での鋼材直上の予測炉内温度との関係を示すグラフである。5 is a graph showing the relationship between each position from position N1 to position N6 in the heating furnace in the conveying direction in Test Example 1 and the predicted in-furnace temperature directly above the steel material at each position.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

[鋼材の温度予測方法]
当該鋼材の温度予測方法は、加熱炉内を搬送される鋼材の温度予測方法であって、上記加熱炉が上記鋼材の搬送方向に沿って配置された1又は複数のバーナーを備える鋼材の温度予測方法である。
[Method for predicting temperature of steel]
The method for predicting the temperature of a steel material is a method for predicting the temperature of a steel material conveyed in a heating furnace, wherein the heating furnace is equipped with one or more burners arranged along the conveying direction of the steel material. The method.

当該鋼材の温度予測方法は、図1に示すように、上記搬送方向における上記バーナーより上流側の第1位置及び下流側の第2位置での上記加熱炉の炉内温度を測定する工程(炉内温度測定工程)S1と、上記バーナーの燃料流量を測定する工程(燃料流量測定工程)S2と、上記第1位置及び上記第2位置での測定炉内温度並びに上記バーナーの測定燃料流量に基づいて、上記第1位置と上記のバーナーとの間の第3位置及び上記バーナーと上記第2位置との間の第4位置での炉内温度(補正用炉内温度)を算出する工程(補正用炉内温度算出工程)S3と、上記第1位置及び上記第2位置での測定炉内温度、並びに上記第3位置及び上記第4位置での算出炉内温度(補正用炉内温度)に基づいて上記加熱炉内における上記搬送方向の各位置での炉内温度を予測する工程(炉内温度予測工程)S4と、上記予測炉内温度に基づいて上記各位置での熱流束を算出する工程(熱流束算出工程)S5と、上記算出熱流束に基づいて上記各位置での上記鋼材の温度を算出する工程(鋼材温度算出工程)S6とを備える。なお、「加熱炉内における搬送方向の各位置」とは、加熱炉内の搬送方向の任意の位置をいう。また、図1には、炉内温度予測工程S4を図示する代わりに、以下の工程を図示する。 As shown in FIG. 1, the steel material temperature prediction method includes a step of measuring the temperature inside the heating furnace at a first position on the upstream side and a second position on the downstream side of the burner in the conveying direction (furnace internal temperature measurement step) S1, a step of measuring the fuel flow rate of the burner (fuel flow rate measurement step) S2, and based on the measured furnace temperature at the first position and the second position and the measured fuel flow rate of the burner and calculating the furnace temperature (correction furnace temperature) at a third position between the first position and the burner and a fourth position between the burner and the second position (correction furnace temperature calculation step) S3, the measured furnace temperature at the first position and the second position, and the calculated furnace temperature at the third position and the fourth position (correction furnace temperature) predicting the furnace temperature at each position in the conveying direction in the heating furnace (furnace temperature prediction step) S4, and calculating the heat flux at each position based on the predicted furnace temperature The method includes a step (heat flux calculation step) S5 and a step (steel temperature calculation step) S6 of calculating the temperature of the steel material at each position based on the calculated heat flux. In addition, "each position in the transfer direction in the heating furnace" refers to an arbitrary position in the transfer direction in the heating furnace. Further, in FIG. 1, instead of showing the in-furnace temperature prediction step S4, the following steps are shown.

具体的に本実施形態では、当該鋼材の温度予測方法は、図1に示すように、上記炉内温度予測工程S4として、上記第1位置及び上記第2位置での測定炉内温度に基づいて上記各位置での基準炉内温度を算出する工程(基準炉内温度算出工程)S41と、上記第3位置及び上記第4位置での補正用炉内温度を用いて基準炉内温度を補正した補正炉内温度を算出する工程(補正炉内温度算出工程)S42とを含む。 Specifically, in this embodiment, as shown in FIG. The step of calculating the reference furnace temperature at each position (reference furnace temperature calculation step) S41, and the correction furnace temperature at the third position and the fourth position are used to correct the reference furnace temperature. and a step of calculating the corrected in-furnace temperature (corrected in-furnace temperature calculation step) S42.

当該鋼材の温度予測方法が適用される加熱炉は、図2及び図3に示すように、上記1又は複数のバーナー1a、1b、1c、1dを備える。バーナー1a~1dは、鋼材の搬送方向(図中白抜き矢印方向)Dに沿って配置される。バーナー1a~1dは、火炎を噴出するノズルを有する。このノズルには、火炎を噴射するための燃料が供給される。このノズルの向きは特に限定されない。ノズルの向きとしては、例えば鋼材の搬送方向に交差する向きが好まく、図2及び図3に示すように、鋼材の搬送方向に直交する向きがより好ましい。このようなノズルを有するバーナーとして、いわゆるサイドバーナーが挙げられる。また、このバーナーとしては例えば軸流バーナーが使用できる。 As shown in FIGS. 2 and 3, a heating furnace to which the steel material temperature prediction method is applied includes the one or more burners 1a, 1b, 1c, and 1d. The burners 1a to 1d are arranged along the conveying direction D of the steel material (the direction of the white arrow in the figure). The burners 1a-1d have nozzles for ejecting flames. This nozzle is supplied with fuel for injecting the flame. The orientation of this nozzle is not particularly limited. As for the direction of the nozzle, for example, the direction that intersects the conveying direction of the steel material is preferable, and as shown in FIGS. 2 and 3, the direction that intersects the conveying direction of the steel material is more preferable. A so-called side burner is exemplified as a burner having such a nozzle. As this burner, for example, an axial flow burner can be used.

図2及び図3に示す態様では、鋼材Aの搬送面10の上側及び下側に上記サイドバーナーを設けた加熱炉が用いられる。なお、搬送面10は、鋼材Aをウォーキングビームにより搬送する面である。また、図2及び図3では、搬送面10の上方かつ搬送方向上流側に1対のバーナー1a、搬送面10の下方かつ搬送方向上流側に1対のバーナー1b、搬送面10の上方かつ搬送方向下流側に1対のバーナー1c、搬送面10の下方かつ搬送方向下流側に1対のバーナー1dを配設しているが、バーナーの数や位置はこれに限定されない。また、加熱炉は図2及び図3に示す構成を1つの加熱ゾーンとし、複数の加熱ゾーンを有する構成としてもよい。 In the embodiment shown in FIGS. 2 and 3, a heating furnace provided with the side burners above and below the conveying surface 10 of the steel material A is used. In addition, the conveying surface 10 is a surface on which the steel material A is conveyed by a walking beam. 2 and 3, a pair of burners 1a are arranged above the conveying surface 10 and upstream in the conveying direction, a pair of burners 1b are arranged below the conveying surface 10 and upstream in the conveying direction, and burners 1b are arranged above the conveying surface 10 and in the conveying direction. A pair of burners 1c are arranged downstream in the direction, and a pair of burners 1d are arranged below the conveying surface 10 and downstream in the conveying direction, but the number and positions of the burners are not limited to this. Further, the heating furnace may be configured to have a plurality of heating zones, with the configuration shown in FIGS. 2 and 3 as one heating zone.

上流側のバーナー1a及びバーナー1bは、鋼材Aの搬送方向Dにおいて同じ位置(図4の位置N3)に配置される。下流側のバーナー1c及び1dは、鋼材Aの搬送方向において同じ位置(図4の位置N4)に配置される。 The upstream burner 1a and the burner 1b are arranged at the same position (position N3 in FIG. 4) in the conveying direction D of the steel material A. As shown in FIG. The downstream burners 1c and 1d are arranged at the same position (position N4 in FIG. 4) in the direction in which the steel material A is conveyed.

当該鋼材の温度予測方法が対象とする鋼材の形状は特に限定されず、棒鋼、鋼板等に適用が可能である。なお、鋼材の最終加熱温度は例えば1000℃以上1200℃以下である。 The shape of the steel material targeted by the method for predicting the temperature of the steel material is not particularly limited, and the method can be applied to steel bars, steel plates, and the like. In addition, the final heating temperature of the steel material is, for example, 1000° C. or higher and 1200° C. or lower.

加熱炉内における上流側のバーナー1a及びバーナー1bよりも搬送方向上流側の第1位置(図4の位置N1)には、炉内温度を測定する第1温度計7aが配置される。具体的には、この第1温度計7aは、加熱炉内における鋼材Aの装入側の第1開口の位置(図4の位置Ns)と上流側のバーナー1a及びバーナー1bの位置N3との間に配置される。加熱炉内における下流側のバーナー1c及びバーナー1dよりも搬送方向下流側の第2位置(図4の位置N6)には、炉内温度を測定する第2温度計7bが配置される。具体的には、この第2温度計7bは、加熱炉内における鋼材Aの抽出側の第2開口の位置(図4の位置Nf)と下流側のバーナー1c及びバーナー1dの位置N4との間に配置される。第1温度計7a及び第2温度計7bとしては、例えば従来公知の熱電対等が挙げられる。これら第1温度計7a及び第2温度計7bは、加熱炉内に挿入されて使用される。図2及び図3では、第1温度計7a及び第2温度計7bの先端に配された温度測定部のみを示す。 A first thermometer 7a for measuring the temperature in the furnace is arranged at a first position (position N1 in FIG. 4) on the upstream side in the conveying direction of the upstream burners 1a and 1b in the heating furnace. Specifically, the first thermometer 7a measures the position of the first opening on the charging side of the steel material A in the heating furnace (position Ns in FIG. 4) and the position N3 of the upstream burners 1a and 1b. placed in between. A second thermometer 7b for measuring the temperature inside the furnace is arranged at a second position (position N6 in FIG. 4) downstream in the conveying direction from the downstream burners 1c and 1d in the heating furnace. Specifically, the second thermometer 7b is located between the position of the second opening on the extraction side of the steel material A in the heating furnace (position Nf in FIG. 4) and the position N4 of the downstream burners 1c and 1d. placed in Examples of the first thermometer 7a and the second thermometer 7b include conventionally known thermocouples. These first thermometer 7a and second thermometer 7b are used by being inserted into the heating furnace. 2 and 3 show only the temperature measurement units arranged at the tips of the first thermometer 7a and the second thermometer 7b.

<炉内温度測定工程>
炉内温度測定工程S1では、第1温度計7a及び第2温度計7bによって位置N1及び位置N6での測定炉内温度T1、T2を測定する(図4及び図5参照)。図5に示すように、搬送方向Dを横軸、温度Tを縦軸とし、縦軸と横軸とが位置Nsで交差する座標において、位置N1での炉内測定温度T1と位置N6での炉内測定温度T2とを通る直線は、後述する基準温度直線Ls(図5の破線)となる。
<Furnace temperature measurement process>
In the in-furnace temperature measuring step S1, measured in-furnace temperatures T1 and T2 at positions N1 and N6 are measured by the first thermometer 7a and the second thermometer 7b (see FIGS. 4 and 5). As shown in FIG. 5, the horizontal axis is the conveying direction D, the vertical axis is the temperature T, and the measured furnace temperature T1 at the position N1 and the measured temperature T1 at the position N6 are measured at the coordinates where the vertical axis and the horizontal axis intersect at the position Ns. A straight line passing through the in-furnace measured temperature T2 is a reference temperature straight line Ls (broken line in FIG. 5), which will be described later.

<燃料流量測定工程>
燃料流量測定工程S2では、バーナー1a、バーナー1b、バーナー1c及びバーナー1dでの燃料流量(合計燃料流量)Fを測定する。この測定には、従来公知の流量計を用いることができる。加熱炉の操業時、バーナー1a~1bの各燃料流量が変動すると、それに応じてこれらの合計である燃料流量Fが変動する。
<Fuel flow rate measurement process>
In the fuel flow rate measurement step S2, the fuel flow rate (total fuel flow rate) F at the burner 1a, the burner 1b, the burner 1c and the burner 1d is measured. A conventionally known flow meter can be used for this measurement. When the fuel flow rate of each of the burners 1a to 1b fluctuates during operation of the heating furnace, the total fuel flow rate F fluctuates accordingly.

<補正用炉内温度算出工程>
補正用炉内温度算出工程S3では、位置N1及び位置N6での測定炉内温度T1、T2、並びに上記バーナーの燃料流量Fに基づいて、位置N1と位置N3との間の第3位置(図4の位置N2)及び位置N4と位置N6との間の第4位置(図4の位置N5)での補正用炉内温度K1、K2を算出する。
<Correction Furnace Temperature Calculation Process>
In the correction in-furnace temperature calculation step S3, a third position between the position N1 and the position N3 (Fig. 4) and a fourth position (position N5 in FIG. 4) between positions N4 and N6.

位置N2については、バーナー1a~1d(特に上流側のバーナー1a及びバーナー1b)からの熱がこれらよりも搬送方向上流側にて炉内温度に及ぼす影響を予め調べておき、上記バーナー1a~1dの熱が炉内温度に対して影響を及ぼす限界となる、すなわち影響を及ぼさない位置(加熱炉内の搬送方向の位置)を、補正用炉内温度K1を算出するための位置N2として決定する。例えばこの位置N2については、位置N1と位置N3との間で少しずつ位置をずらして後述する炉内温度算出工程S1~鋼材温度算出工程S6を行い、予測温度の精度が高くなる位置を位置N2として決定することができる。 Regarding the position N2, the effect of the heat from the burners 1a to 1d (especially the burners 1a and 1b on the upstream side) on the temperature inside the furnace on the upstream side in the conveying direction is investigated in advance. is determined as the position N2 for calculating the correction in-furnace temperature K1, which is the limit of the influence of the heat on the in-furnace temperature, i.e., the position where no influence is exerted (position in the conveying direction in the heating furnace). . For example, the position N2 is shifted little by little between the position N1 and the position N3, and the furnace temperature calculation step S1 to the steel material temperature calculation step S6, which will be described later, are performed. can be determined as

一方、位置N5については、バーナー1a~1d(特に下流側のバーナー1c及びバーナー1d)からの熱がこれらよりも搬送方向下流側にて炉内温度に及ぼす影響を予め調べておき、上記バーナー1a~1dが炉内温度に対して影響を及ぼす限界となる、すなわち影響を及ぼさない位置(加熱炉内の搬送方向の位置)を、補正用炉内温度度K2を算出するための位置N5として決定する。例えばこの位置N5については、位置N4と位置N6との間で少しずつ位置をずらして後述する炉内温度算出工程S1~鋼材温度算出工程S6を行い、予測温度の精度が高くなる位置を位置N5として決定することができる。 On the other hand, for the position N5, the effect of the heat from the burners 1a to 1d (particularly the downstream burners 1c and 1d) on the temperature inside the furnace downstream of these in the conveying direction was examined in advance. ~ 1d is the limit of affecting the furnace temperature, that is, the position where it does not affect (the position in the conveying direction in the heating furnace) is determined as the position N5 for calculating the correcting furnace temperature K2. do. For example, the position N5 is gradually shifted between the position N4 and the position N6, and the furnace temperature calculation step S1 to the steel material temperature calculation step S6, which will be described later, are performed. can be determined as

具体的には、例えば上記バーナーよりも上流側の位置N2では、上記バーナーから放出される熱の炉内温度に及ぼす影響が比較的大きいと考えられる。このことを考慮し、位置N2での補正用炉内温度K1は、例えば下記式(1)に基づいて算出することができる。なお、下記式(1)に用いられる上記バーナーの燃料流量Fの最小値Fmin及び最大値Fmaxは、例えば鋼材の種類、幅、厚み、長さ、搬送速度等の加熱炉の操業実績に基づいて決定され得る。
K1=T1+(F-Fmin)×(K2-T1)/(Fmax-Fmin)・・・(1)
K2:位置N5での補正用炉内温度[℃]
T1:位置N1での測定炉内温度[℃]
F:燃料流量の測定値[Nm/h]
Fmin:燃料流量の最小値[Nm/h]
Fmax:燃料流量の最大値[Nm/h]
Specifically, for example, at the position N2 on the upstream side of the burner, the heat emitted from the burner has a relatively large effect on the temperature inside the furnace. Taking this into consideration, the correction furnace temperature K1 at the position N2 can be calculated, for example, based on the following equation (1). The minimum value Fmin and the maximum value Fmax of the fuel flow rate F of the burner used in the following formula (1) are based on the operating results of the heating furnace, such as the type, width, thickness, length, and conveying speed of the steel material. can be determined.
K1=T1+(F-Fmin)×(K2-T1)/(Fmax-Fmin) (1)
K2: Furnace temperature for correction at position N5 [°C]
T1: measured furnace temperature at position N1 [°C]
F: measured value of fuel flow rate [Nm 3 /h]
Fmin: Minimum value of fuel flow rate [Nm 3 /h]
Fmax: Maximum value of fuel flow rate [Nm 3 /h]

一方、例えば上記バーナーよりも下流側の位置N5では、上記バーナーから放出される熱の影響が比較的小さいと考えられる。このことを考慮し、位置N5での補正用炉内温度K2は、図5に示すように、後述する基準温度直線Ls上に位置すると仮定し得る。この位置N5での補正用炉内温度K2は、例えば下記式(2)に基づいて算出することができる。
K2={(T2-T1)/(D6-D1)}×(D5-D1)+T1 ・・・(2)
T1:位置N1での測定炉内温度[℃]
T2:位置N6での測定炉内温度[℃]
D1:位置Nsから位置N1までの距離
D5:位置Nsから位置N5までの距離
D6:位置Nsから位置N6までの距離
On the other hand, for example, at position N5 downstream of the burner, the effect of heat emitted from the burner is considered to be relatively small. Taking this into consideration, it can be assumed that the correction in-furnace temperature K2 at the position N5 is positioned on a reference temperature straight line Ls, which will be described later, as shown in FIG. The correction in-furnace temperature K2 at the position N5 can be calculated, for example, based on the following equation (2).
K2={(T2-T1)/(D6-D1)}×(D5-D1)+T1 (2)
T1: measured furnace temperature at position N1 [°C]
T2: measured furnace temperature at position N6 [°C]
D1: Distance from position Ns to position N1 D5: Distance from position Ns to position N5 D6: Distance from position Ns to position N6

このように、上記2つの式(1)、(2)によって位置N2での補正用炉内温度K1と、位置N5での補正用炉内温度K2とを算出することができる。これら温度K1、K2は、後述する補正炉内温度算出工程S42で使用される。 In this manner, the correction in-furnace temperature K1 at the position N2 and the correction in-furnace temperature K2 at the position N5 can be calculated from the above two equations (1) and (2). These temperatures K1 and K2 are used in a corrected in-furnace temperature calculation step S42, which will be described later.

なお、燃料流量Fが最大値(Fmax)となる場合には、上記式(1)にて、K1=K2となる(図5の位置N2と位置N5との間の領域における二点鎖線Lc2)。一方、燃料流量Fが最小値(Fmin)となる場合には、上記式(1)にて、K1=T1となる(図5の位置N1と位置N2との間の領域における二点鎖線Lc1)。 When the fuel flow rate F becomes the maximum value (Fmax), K1=K2 in the above formula (1) (double-dot chain line Lc2 in the region between position N2 and position N5 in FIG. 5). . On the other hand, when the fuel flow rate F is the minimum value (Fmin), in the above formula (1), K1=T1 (two-dot chain line Lc1 in the region between the position N1 and the position N2 in FIG. 5) .

<炉内温度予測工程>
炉内温度予測工程S4では、位置N1及び位置N6での測定炉内温度T1、T2、並びに位置N2及び位置N5での補正用炉内温度K1、K2に基づいて、上記加熱炉内における上記搬送方向Dの各位置での炉内温度を予測する。具体的には、炉内温度予測工程S4として、以下の工程を行う。
<Furnace temperature prediction process>
In the in-furnace temperature prediction step S4, based on the measured in-furnace temperatures T1 and T2 at the positions N1 and N6 and the correction in-furnace temperatures K1 and K2 at the positions N2 and N5, the transfer in the heating furnace The furnace temperature at each position in the direction D is predicted. Specifically, the following steps are performed as the in-furnace temperature prediction step S4.

(基準炉内温度算出工程)
基準炉内温度算出工程S41では、位置N1及び位置N6での測定炉内温度T1、T2に基づいて上記搬送方向Dの各位置での基準炉内温度を算出する。この基準炉内温度は、後述する補正用炉内温度を算出するために使用される温度であって、この補正用炉内温度によって補正される基準となる温度である。具体的には、上述した図5に示す座標(横軸:搬送方向D、縦軸:温度T)において、位置N1(位置Nsからの距離D1)での炉内測定温度T1と、位置N6(位置Nsからの距離D6)での測定炉内温度T2とを通る直線を、各位置での基準炉内温度の集合(図5に破線で示す基準炉内温度直線Ls)として算出する。この基準炉内温度直線Lsは、位置Nsからの任意の位置Nの距離と、この位置Nでの炉内温度とが直線関係にあることを示す。
(Reference Furnace Temperature Calculation Process)
In the reference in-furnace temperature calculation step S41, the reference in-furnace temperature at each position in the transport direction D is calculated based on the measured in-furnace temperatures T1 and T2 at the positions N1 and N6. This reference in-furnace temperature is a temperature used to calculate a correcting in-furnace temperature, which will be described later, and is a reference temperature to be corrected by this in-furnace temperature for correcting. Specifically, in the coordinates (horizontal axis: conveying direction D, vertical axis: temperature T) shown in FIG. A straight line passing through the measured in-furnace temperature T2 at the distance D6 from the position Ns) is calculated as a set of reference in-furnace temperatures at each position (reference in-furnace temperature straight line Ls indicated by a dashed line in FIG. 5). This reference in-furnace temperature straight line Ls indicates that the distance of an arbitrary position N from the position Ns and the in-furnace temperature at this position N are in a linear relationship.

(補正炉内温度算出工程)
補正炉内温度算出工程S42では、位置N2及び位置N5での補正用炉内温度K1、K2を用いて上記基準炉内温度を補正した補正炉内温度を算出する。
(Correction Furnace Temperature Calculation Process)
In the corrected in-furnace temperature calculation step S42, the corrected in-furnace temperature is calculated by correcting the reference in-furnace temperature using the corrected in-furnace temperatures K1 and K2 at the positions N2 and N5.

具体的には、上記図5に示す座標において位置N1と位置N2との間の領域では、位置N1での測定炉内温度T1と位置N2での補正用炉内温度K1とを結ぶ直線を、上記各位置での補正炉内温度の集合(図5に実線で示される補正炉内温度直線Lc1)として算出する。この補正炉内温度直線Lc1は、位置N1と位置N2との間の領域では、位置Nsからの任意の位置Nの距離と、この位置Nでの炉内温度とが直線関係にあることを示す。すなわち、この領域では、任意の位置Nの温度T(D)は、下記式のように算出される。
T(D)={(K1-T1)/(D2-D1)}×(D-D1)+T1
D1:位置Nsから位置N1までの距離
D2:位置Nsから位置N2までの距離
D:位置Nsから任意の位置Nまでの距離
Specifically, in the region between the position N1 and the position N2 in the coordinates shown in FIG. It is calculated as a set of corrected in-furnace temperatures at the respective positions (corrected in-furnace temperature straight line Lc1 indicated by a solid line in FIG. 5). This corrected in-furnace temperature straight line Lc1 indicates that the distance of an arbitrary position N from the position Ns and the in-furnace temperature at this position N are in a linear relationship in the region between the positions N1 and N2. . That is, in this area, the temperature T(D) at an arbitrary position N is calculated by the following formula.
T(D)={(K1-T1)/(D2-D1)}×(D-D1)+T1
D1: Distance from position Ns to position N1 D2: Distance from position Ns to position N2 D: Distance from position Ns to any position N

位置N2と位置N5との間の領域では、位置N2での補正用炉内温度K1と位置N5での補正用炉内温度K2とを結ぶ直線を、各位置での補正炉内温度の集合(図5に実線として示される補正炉内温度直線Lc2)として算出する。この補正炉内温度直線Lc2は、位置N2と位置N5との間の領域では、位置Nsからの任意の位置Nの距離と、この位置Nでの炉内温度とが直線関係にあることを示す。すなわち、この領域では、任意の位置Nの温度T(D)は、下記式のように算出される。
T(D)={(K2-K1)/(D5-D2)}×(D-D2)+K1
D2:位置Nsから位置N2までの距離
D5:位置Nsから位置N5までの距離
D:位置Nsから任意の位置Nまでの距離
In the region between the position N2 and the position N5, the straight line connecting the correction furnace temperature K1 at the position N2 and the correction furnace temperature K2 at the position N5 is the set of correction furnace temperatures at each position ( It is calculated as a corrected in-furnace temperature straight line Lc2) shown as a solid line in FIG. This corrected in-furnace temperature straight line Lc2 indicates that the distance of an arbitrary position N from the position Ns and the in-furnace temperature at this position N are in a linear relationship in the region between the positions N2 and N5. . That is, in this area, the temperature T(D) at an arbitrary position N is calculated by the following formula.
T(D)={(K2-K1)/(D5-D2)}×(D-D2)+K1
D2: Distance from position Ns to position N2 D5: Distance from position Ns to position N5 D: Distance from position Ns to any position N

位置N5と位置N6との間の領域では、位置N5での補正用炉内温度K2と位置N6での測定炉内温度T2とを直線(図5の直線Ls)で結ぶ。この直線は、基準炉内温度直線Lsと一致する。すなわち、この領域では、任意の位置Dの温度T(D)は、下記式のように算出される。
T(D)={(T2-K2)/(D6-D5)}×(D-D5)+K2
D5:位置Nsから位置N5までの距離
D6:位置Nsから位置N6までの距離
D:位置Nsから任意の位置Nまでの距離
In the region between the positions N5 and N6, a straight line (straight line Ls in FIG. 5) connects the correction in-furnace temperature K2 at the position N5 and the measured in-furnace temperature T2 at the position N6. This straight line matches the reference in-furnace temperature straight line Ls. That is, in this region, the temperature T(D) at an arbitrary position D is calculated by the following formula.
T(D)={(T2-K2)/(D6-D5)}×(D-D5)+K2
D5: Distance from position Ns to position N5 D6: Distance from position Ns to position N6 D: Distance from position Ns to any position N

それ以外の領域では、任意の位置Dの温度T(D)は、基準炉内温度直線Ls上に存在する。すなわち、位置Nsと位置N1との間では、任意の位置Nの温度T(D)は、下記式のように算出される。
T(D)=T1+{(T2-T1)/(D6-D1)}×(D-D1)
D1:位置Nsから位置N1までの距離
D6:位置Nsから位置N6までの距離
D:位置Nsから任意の位置Nまでの距離
In other regions, the temperature T(D) at an arbitrary position D exists on the reference in-furnace temperature straight line Ls. That is, between the position Ns and the position N1, the temperature T(D) at an arbitrary position N is calculated by the following formula.
T(D)=T1+{(T2-T1)/(D6-D1)}×(D-D1)
D1: Distance from position Ns to position N1 D6: Distance from position Ns to position N6 D: Distance from position Ns to any position N

一方、位置N6と位置Nf(図5では不図示)との間では、任意の位置Dの温度T(D)は、下記式のように算出される。
T(D)={(T2-T1)/(D6-D1)}×(D-D6)+T2
D1:位置Nsから位置N1までの距離
D6:位置Nsから位置N6までの距離
D:位置Nsから任意の位置Nまでの距離
On the other hand, between the position N6 and the position Nf (not shown in FIG. 5), the temperature T(D) at an arbitrary position D is calculated by the following formula.
T(D)={(T2-T1)/(D6-D1)}×(D-D6)+T2
D1: Distance from position Ns to position N1 D6: Distance from position Ns to position N6 D: Distance from position Ns to any position N

そして、搬送方向Dにおける任意の位置Nでの補正炉内温度T(D)は、各位置での補正炉内温度の集合(補正炉内温度曲線)として算出される。すなわち、位置Nsから位置Nfまでの全領域において任意の位置Nでの補正炉内温度T(D)は、上記複数の直線(Ls、Lc1、Lc2)が繋がった線で表される。 Then, the corrected in-furnace temperature T(D) at an arbitrary position N in the transport direction D is calculated as a set of corrected in-furnace temperatures (corrected in-furnace temperature curve) at each position. That is, the corrected in-furnace temperature T(D) at an arbitrary position N in the entire region from the position Ns to the position Nf is represented by a line connecting the plurality of straight lines (Ls, Lc1, Lc2).

なお、上述したように、上記バーナーの燃料流量Fが最大値Fmaxである場合には、補正用炉内温度K1が補正用炉内温度K2と等しくなる。よって、位置N1から位置N5までの間の領域での補正炉内温度曲線は、図5に実線で示される補正炉内温度直線Lc1及び補正炉内温度直線Lc2よりも上方に示された2つの二点鎖線(図5に二点鎖線で表されるLc1及びLc2)を繋げた線となる。一方、上記バーナーの燃料流量Fが最小値Fminとなる場合には、補正用炉内温度K1が測定炉内温度T1と等しくなる。よって、位置N1から位置N5までの間の領域での補正炉内温度曲線は、上記補正炉内温度直線Lc1及び補正炉内温度直線Lc2よりも下方に示された2つの二点鎖線(図5の二点鎖線で表されるLc1及びLc2)を繋げた線となる。 As described above, when the fuel flow rate F of the burner is the maximum value Fmax, the correction in-furnace temperature K1 is equal to the correction in-furnace temperature K2. Therefore, the corrected in-furnace temperature curve in the region between the position N1 and the position N5 is two lines shown above the corrected in-furnace temperature straight line Lc1 and the corrected in-furnace temperature straight line Lc2 shown by solid lines in FIG. It is a line connecting two-dot chain lines (Lc1 and Lc2 represented by two-dot chain lines in FIG. 5). On the other hand, when the fuel flow rate F of the burner is the minimum value Fmin, the correction in-furnace temperature K1 becomes equal to the measured in-furnace temperature T1. Therefore, the corrected in-furnace temperature curve in the region between the position N1 and the position N5 is two dashed double-dot lines shown below the corrected in-furnace temperature straight lines Lc1 and Lc2 (Fig. 5 is a line connecting Lc1 and Lc2) represented by two-dot chain lines.

(熱流束算出工程)
熱流束算出工程S5では、上記補正炉内温度に基づいて上記搬送方向Dの各位置での上記加熱炉内の熱流束を算出する。具体的には、下記式(3)に基づいて、上記各位置での上記加熱炉内の熱流束を算出する。すなわち、下記式(3)に、上記で算出した補正炉内温度曲線で示される各位置での補正炉内温度を代入することで、上記各位置での上記加熱炉内の熱流束を算出する。この算出により、上記各位置での上記熱流束と鋼材温度(すなわち、鋼材の表面における炉内温度)との関係が得られる。この関係は、後述する鋼材温度算出工程S6にて境界条件として用いられる。
(Heat flux calculation process)
In the heat flux calculating step S5, the heat flux in the heating furnace at each position in the conveying direction D is calculated based on the corrected in-furnace temperature. Specifically, the heat flux in the heating furnace at each position is calculated based on the following equation (3). That is, by substituting the corrected in-furnace temperature at each position indicated by the corrected in-furnace temperature curve calculated above into the following equation (3), the heat flux in the heating furnace at each position is calculated. . By this calculation, the relationship between the heat flux at each position and the temperature of the steel material (that is, the temperature in the furnace on the surface of the steel material) is obtained. This relationship is used as a boundary condition in the steel material temperature calculation step S6, which will be described later.

Figure 0007225066000001
Figure 0007225066000001

上記式(3)中、q[W/m]は鋼材への熱流束、δ[W/m/K]はステファンボルツマン定数、T[K]は炉内温度、T[K]は鋼材表面温度である。 In the above formula (3), q [W/m 2 ] is the heat flux to the steel material, δ [W/m 2 /K 4 ] is the Stefan Boltzmann constant, T f [K] is the furnace temperature, T s [K ] is the steel material surface temperature.

(鋼材温度算出工程)
鋼材温度算出工程S6では、上記算出熱流束に基づいて上記加熱炉内における上記搬送方向の各位置での上記鋼材の温度を算出する。具体的には、上記式(3)を境界条件とし、下記式(4)に示す従来公知の二次元熱伝導方程式を用いて、上記搬送方向における各位置での鋼材の表面から内部までの温度分布を算出する。
(Steel material temperature calculation process)
In the steel material temperature calculation step S6, the temperature of the steel material at each position in the conveying direction in the heating furnace is calculated based on the calculated heat flux. Specifically, using the above equation (3) as a boundary condition, the temperature from the surface to the inside of the steel material at each position in the conveying direction is Calculate the distribution.

Figure 0007225066000002
上記式(4)中、ρ[g/m3]は鋼材の密度、c[J/g/K]は鋼材の比熱、T[K]は鋼材の温度、δt[s]は微小時間、δx[m]及びδy[m]はそれぞれ微小区間、λx[W/m/K]及びλy[W/m/K]はそれぞれx方向及びy方向の熱伝導率である。x方向は搬送面10に垂直な方向である。y方向は、搬送方向Dである。
Figure 0007225066000002
In the above formula (4), ρ [g / m3] is the density of the steel, c [J / g / K] is the specific heat of the steel, T [K] is the temperature of the steel, δt [s] is the minute time, δx [ m] and δy[m] are the microsections respectively, and λx[W/m/K] and λy[W/m/K] are the thermal conductivities in the x and y directions respectively. The x direction is the direction perpendicular to the transport plane 10 . The y-direction is the transport direction D.

このような温度予測を加熱炉内の複数点においてその搬送方向Dの位置毎に行うことで、加熱炉内での鋼材の温度を予測することができる。また、加熱炉内の各位置での鋼材の温度を予測することで、例えば加熱炉の第2開口(位置Nf)での鋼材の予測温度を得ることができる。この予測温度は、加熱炉から抽出直後の鋼材の温度とみなすことができるため、この予測温度を加熱炉の操業管理に使用することができる。 By performing such temperature prediction for each position in the conveying direction D at a plurality of points in the heating furnace, it is possible to predict the temperature of the steel material in the heating furnace. Further, by predicting the temperature of the steel material at each position in the heating furnace, for example, the predicted temperature of the steel material at the second opening (position Nf) of the heating furnace can be obtained. Since this predicted temperature can be regarded as the temperature of the steel immediately after extraction from the heating furnace, this predicted temperature can be used for operational control of the heating furnace.

[利点]
当該鋼材の温度予測方法は、上記第1位置及び第2位置での上記測定炉内温度に加え、上記第3位置及び第4位置での上記算出炉内温度(補正用炉内温度)に基づいて加熱炉内における搬送方向の各位置での炉内温度を予測することで、バーナーの燃料流量に応じて上記各位置での炉内温度を予測することができる。この炉内温度の予測にて上記第1位置及び上記第2位置での上記測定温度に基づく上記基準炉内温度を、上記第3位置及び上記第4位置での上記算出炉内温度を用いて補正することで、上記各位置での炉内温度を精度良く予測することができる。このようにして得られた補正炉内温度に基づいて上記熱流束を算出し、この熱流束に基づいて上記鋼材の温度を算出することで、加熱炉内の鋼材の温度を精度良く予測することができる。
[advantage]
The steel material temperature prediction method is based on the calculated furnace temperatures (correction furnace temperatures) at the third and fourth positions in addition to the measured furnace temperatures at the first and second positions. By predicting the furnace temperature at each position in the conveying direction in the heating furnace by using the above, it is possible to predict the furnace temperature at each position according to the fuel flow rate of the burner. In the prediction of the furnace temperature, the reference furnace temperature based on the measured temperatures at the first position and the second position is calculated using the calculated furnace temperature at the third position and the fourth position. By correcting, the furnace temperature at each position can be predicted with high accuracy. The heat flux is calculated based on the corrected in-furnace temperature thus obtained, and the temperature of the steel material is calculated based on this heat flux, thereby accurately predicting the temperature of the steel material in the heating furnace. can be done.

[その他の実施形態]
本発明の鋼材の温度予測方法は、上記実施形態に限定されるものではない。例えば、当該鋼材の温度予測方法は必要に応じて上述以外の工程を備えてもよい。
[Other embodiments]
The steel material temperature prediction method of the present invention is not limited to the above embodiment. For example, the steel temperature prediction method may include steps other than those described above, if necessary.

例えば上記実施形態では、位置N5での補正用炉内温度K2が基準炉内温度直線Ls上に存在する場合を示すが、その他、位置N5においても位置N2のように基準炉内温度Ls上に存在しない補正用炉内温度K2を算出してもよい。 For example, in the above embodiment, the correcting furnace temperature K2 at the position N5 is on the reference furnace temperature straight line Ls. A correction furnace temperature K2 that does not exist may be calculated.

例えば上記実施形態では、バーナー1a~1dの上流側及び下流側にそれぞれ第1温度計7a及び第2温度計7bを配置する場合を示すが、温度計の配置及び数量は上記実施形態に特に限定されない。例えば、図2及び図3において、上流側のバーナー1a、1bと下流側のバーナー1c、1dとの距離によっては、上流側のバーナー1a、1bと下流側のバーナー1c、1dとの間にさらに第3温度計を配置してもよい。この場合、第1温度計7aと上記第3温度計との間、及び上記第3温度計と第2温度計7bとの間でそれぞれ、上記炉内温度測定工程S1~鋼材温度算出工程S6を行ってもよい。 For example, in the above embodiment, the first thermometer 7a and the second thermometer 7b are arranged upstream and downstream of the burners 1a to 1d, respectively, but the arrangement and number of thermometers are particularly limited to the above embodiment. not. For example, in FIGS. 2 and 3, depending on the distance between the upstream burners 1a, 1b and the downstream burners 1c, 1d, there may be additional distances between the upstream burners 1a, 1b and the downstream burners 1c, 1d. A third thermometer may be arranged. In this case, between the first thermometer 7a and the third thermometer, and between the third thermometer and the second thermometer 7b, the furnace temperature measurement step S1 to the steel material temperature calculation step S6 are performed. you can go

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。 EXAMPLES The present invention will be described in detail below based on examples, but the present invention is not limitedly interpreted based on the description of these examples.

厚さ(搬送面に垂直な方向の寸法)、幅(搬送方向の寸法)及び長さ(搬送方向及び搬送面に垂直な方向の寸法)が互いに等しいが、成分が互いに異なる2種類の鋼材X及び鋼材Yを用い、下記のように、図2及び図3に示すような加熱炉に対して試験例1及び試験例2を行った。 Two types of steel material X whose thickness (dimension in the direction perpendicular to the conveying plane), width (dimension in the conveying direction), and length (dimension in the conveying direction and in the direction perpendicular to the conveying plane) are equal to each other, but whose components are different from each other and steel material Y, Test Examples 1 and 2 were performed on the heating furnace as shown in FIGS. 2 and 3 as follows.

(試験例1)
・実施例1
472本の鋼材Xについて、上述した図5に示すように、位置N1及び位置N6での炉内温度を測定し、バーナーの合計燃料流量Fを測定し、位置N1での測定炉内温度T1及び位置N6での測定炉内温度T2を結んだ直線で表される基準炉内温度直線Lsを、位置N2での補正用炉内温度K1及び位置N5での補正用炉内温度K2で補正して補正炉内温度曲線(図5に示す直線Ls、直線Lc1及び直線Lc2)を作成した。この補正炉内温度曲線を用い、搬送方向の各位置(位置Nsから位置Nfまでの間の各位置)での炉内温度を算出した。算出した各温度を用いて上述した数式(3)及び数式(4)によって上記各位置での鋼材Xの表面から内部までの温度分布をそれぞれ予測した。
(Test example 1)
・Example 1
For 472 steel materials X, as shown in FIG. The reference furnace temperature straight line Ls represented by the straight line connecting the measured furnace temperature T2 at the position N6 is corrected by the correction furnace temperature K1 at the position N2 and the correction furnace temperature K2 at the position N5. A corrected in-furnace temperature curve (straight line Ls, straight line Lc1 and straight line Lc2 shown in FIG. 5) was created. Using this corrected in-furnace temperature curve, the in-furnace temperature at each position in the transport direction (each position between the position Ns and the position Nf) was calculated. Using each calculated temperature, the temperature distribution from the surface to the inside of the steel material X at each position was predicted by the above-described formulas (3) and (4).

一方、鋼材Xが加熱炉の第2開口から抽出された直後(位置Nfに相当)の鋼材Xの表面温度を、放射温度計で実測した。そして、上記で得られた位置Nfにおける鋼材表面の予測温度と比較した。具体的には、実測温度に対する予測温度の偏差(実測温度-予測温度)のバラツキを標準偏差(1σ)として算出した。 On the other hand, the surface temperature of the steel material X immediately after the steel material X was extracted from the second opening of the heating furnace (corresponding to the position Nf) was actually measured with a radiation thermometer. Then, it was compared with the predicted temperature of the surface of the steel material at the position Nf obtained above. Specifically, the deviation of the predicted temperature from the measured temperature (measured temperature−predicted temperature) was calculated as the standard deviation (1σ).

・比較例1
472本の鋼材Xについて、上記した図5に示すように、位置N1及び位置N6での炉内温度を測定し、位置N1での測定炉内温度T1及び位置N6での測定炉内測定T2を結んだ直線で表される基準炉内温度直線Ls(図5に示す直線Ls)を作成した。この基準炉内温度直線Lsに基づいて算出した搬送方向の各位置(位置Nsから位置Nfまでの間の各位置)での炉内温度を用い、上記式(3)及び(4)によって上記各位置での鋼材Xの表面から内部までの温度分布をそれぞれ予測した。それ以外は実施例1と同様にして、上記実測温度と、位置Nfでの上記鋼材表面の予測温度とを比較し、実測温度に対する予測温度の偏差(実測温度-予測温度)のバラツキを、標準偏差(1σ)として算出した。
・Comparative example 1
For the 472 steel materials X, as shown in FIG. A reference furnace temperature straight line Ls (straight line Ls shown in FIG. 5) represented by a connecting straight line was created. Using the furnace temperature at each position in the conveying direction (each position between the position Ns and the position Nf) calculated based on the reference furnace temperature straight line Ls, each of the above equations (3) and (4) is used. The temperature distribution from the surface to the inside of the steel material X at each position was predicted. Otherwise, in the same manner as in Example 1, the measured temperature is compared with the predicted temperature of the steel material surface at the position Nf, and the deviation of the predicted temperature from the measured temperature (measured temperature - predicted temperature) is calculated as a standard. Calculated as deviation (1σ).

・実施例1と比較例1との比較
比較例1で得られた標準偏差を100%とし、この比較例1の標準偏差に対する実施例1で得られた標準偏差の比率(百分率)を算出したところ、99%であった。よって、鋼材Xについては、基準炉内温度(基準炉内温度直線Ls)を上記のように補正することで、バラツキが1%改善されることがわかった。
- Comparison between Example 1 and Comparative Example 1 The standard deviation obtained in Comparative Example 1 was set to 100%, and the ratio (percentage) of the standard deviation obtained in Example 1 to the standard deviation in Comparative Example 1 was calculated. By the way, it was 99%. Therefore, it was found that the variation in the steel material X was improved by 1% by correcting the reference furnace temperature (reference furnace temperature straight line Ls) as described above.

なお、実施例1と同様の工程を行って算出した予測炉内温度を、位置N1から位置N6までの間の領域について、比較例1と同様の工程を行って算出した予測炉内温度と比較した結果の一例を、図6に示す。図6において、予測炉内温度を「炉温」と示す。図6では、横軸を搬送方向Dとし、位置N1から位置N6までの距離を数値1.0とし、これら位置N1と位置N6との間における任意の位置Nの位置N1からの距離を、位置N1から位置N6までの距離に対する比率として示す。一方、図6では、縦軸を上記炉温とし、位置Nfでの上記炉温を数値1.0とし、上記任意の位置Nでの上記炉温を、位置Nfでの上記炉温に対する比率として示す。 The predicted in-furnace temperature calculated by performing the same steps as in Example 1 is compared with the predicted in-furnace temperature calculated by performing the same steps as in Comparative Example 1 for the region from position N1 to position N6. An example of the result is shown in FIG. In FIG. 6, the predicted in-furnace temperature is indicated as "furnace temperature". 6, the horizontal axis is the transport direction D, the distance from the position N1 to the position N6 is 1.0, and the distance from the position N1 to any position N between these positions N1 and N6 is the position It is shown as a ratio to the distance from N1 to position N6. On the other hand, in FIG. 6, the vertical axis is the furnace temperature, the furnace temperature at the position Nf is 1.0, and the furnace temperature at the arbitrary position N is expressed as a ratio to the furnace temperature at the position Nf. show.

(試験例2)
・実施例2
鋼材Xに代えて438本の鋼材Yを用いること以外は実施例1と同様にして、位置Nfでの予測温度を、実測温度と比較した。
(Test example 2)
・Example 2
The predicted temperature at the position Nf was compared with the measured temperature in the same manner as in Example 1, except that 438 steel materials Y were used instead of the steel materials X.

・比較例2
鋼材Xに代えて438本の鋼材Yを用いること以外は比較例1と同様にして、位置Nfでの予測温度を、実測温度と比較した。
・Comparative example 2
The predicted temperature at the position Nf was compared with the measured temperature in the same manner as in Comparative Example 1, except that 438 steel materials Y were used instead of the steel materials X.

・実施例2と比較例2との比較
比較例2で得られた標準偏差を100%とし、この比較例2の標準偏差に対する実施例2で得られた標準偏差の比率(百分率)を算出したところ、88%であった。よって、鋼材Yについては、基準炉内温度(基準炉内温度直線Ls)を上記のように補正することで、バラツキが12%改善されることがわかった。
- Comparison between Example 2 and Comparative Example 2 The standard deviation obtained in Comparative Example 2 was set to 100%, and the ratio (percentage) of the standard deviation obtained in Example 2 to the standard deviation in Comparative Example 2 was calculated. By the way, it was 88%. Therefore, with regard to the steel material Y, it was found that the variation was improved by 12% by correcting the reference furnace temperature (reference furnace temperature straight line Ls) as described above.

当該鋼材の温度予測方法は、加熱炉内の鋼材の温度を精度良く予測することができるので、加熱工程を伴う種々の鋼材の製造に好適に適用できる。 The steel temperature prediction method can accurately predict the temperature of the steel in the heating furnace, and thus can be suitably applied to the manufacture of various steels involving heating processes.

1a、1b 上流側のバーナー
1c、1d 下流側のバーナー
7a 上流側の温度計
7b 下流側の温度計
10 搬送面
A 鋼材
D 搬送方向
Ls 基準炉内温度直線
Lc1 位置N1及び位置N2の間での補正炉内温度直線
Lc2 位置N2及び位置N5の間での補正炉内温度直線
T1 位置N1での測定炉内温度
T2 位置N6での測定炉内温度
K1 位置N2での補正用炉内温度
K2 位置N5での補正用炉内温度
S1 炉内温度測定工程
S2 燃料流量測定工程
S3 補正用炉内温度算出工程
S41 基準炉内温度算出工程(S4 炉内温度予測工程)
S42 補正炉内温度算出工程(S4 炉内温度予測工程)
S5 熱流束算出工程
S6 鋼材温度算出工程
1a, 1b upstream burners 1c, 1d downstream burner 7a upstream thermometer 7b downstream thermometer 10 conveying surface A steel material D conveying direction Ls reference furnace temperature straight line Lc1 between position N1 and position N2 Corrected furnace temperature straight line Lc2 Corrected furnace temperature straight line T1 between position N2 and position N5 Measured furnace temperature T2 at position N1 Measured furnace temperature K1 at position N6 Corrected furnace temperature K2 at position N2 Position Correction in-furnace temperature S1 in N5 Furnace temperature measurement step S2 Fuel flow rate measurement step S3 Correction in-furnace temperature calculation step S41 Reference furnace temperature calculation step (S4 furnace temperature prediction step)
S42 Corrected Furnace Temperature Calculation Step (S4 Furnace Temperature Prediction Step)
S5 heat flux calculation step S6 steel material temperature calculation step

Claims (1)

加熱炉内を搬送される鋼材の温度予測方法であって、上記加熱炉が上記鋼材の搬送方向の上流に配置されている第1バーナーと、上記鋼材の搬送方向の下流に配置されている第2バーナーとを備えており、
上記搬送方向における上記第1バーナーより上流側の第1位置N1における上記加熱炉内の温度T1、及び上記搬送方向における上記第2バーナーより下流側の第2位置N6での上記加熱炉の炉内温度T2を測定する工程と、
上記第1バーナー及び上記第2バーナーの燃料流量を測定する工程と、
上記第1位置N1及び上記第2位置N6での測定炉内温度T1、T2並びに上記第1バーナー及び上記第2バーナーの測定燃料流量に基づいて、上記第1位置N1と上記第1バーナーとの間の第3位置N2及び上記第2バーナーと上記第2位置N6との間の第4位置N5での補正用炉内温度K1、K2を算出する工程と、
上記第1位置N1及び上記第2位置N6での上記測定炉内温度T1、T2、並びに上記第3位置N2及び上記第4位置N5での上記補正用炉内温度に基づいて上記加熱炉内における上記搬送方向の各位置での炉内温度を予測する工程と、
上記予測炉内温度に基づいて上記各位置での熱流束を算出する工程と、
上記算出熱流束に基づいて上記各位置での上記鋼材の温度を算出する工程と
を備え、
上記補正用炉内温度算出工程が、
上記第3位置N2での補正用炉内温度K1を下記式(1)に基づいて算出し、かつ上記第4位置N5での補正用炉内温度K2を下記式(2)に基づいて算出し、
上記炉内温度予測工程が、
上記第1位置N1での上記測定炉内温度T1及び上記第2位置N6での上記測定炉内温度T2を通る直線を、上記各位置での基準炉内温度の集合として上記各位置での基準炉内温度を算出する工程と、
上記第3位置N2及び上記第4位置N5での上記補正用炉内温度K1、K2を用いて上記基準炉内温度を補正した補正炉内温度を算出する工程と
を含む鋼材の温度予測方法。
K1=T1+(F-Fmin)×(K2-T1)/(Fmax-Fmin)・・・(1)
K2={(T2-T1)/(D6-D1)}×(D5-D1)+T1 ・・・(2)
ただし、上記式(1)において、「Fmin」は、上記燃料流量Fの最小値[Nm /h]、「Fmax」は、上記燃料流量Fの最大値[Nm /h]を意味し、上記式(2)において、「D1」は、上記加熱炉内における上記鋼材の装入側の第1開口の位置Nsから上記第1位置N1までの距離、「D5」は、上記位置Nsから上記第4位置N5までの距離、「D6」は、上記位置Nsから上記第2位置N6までの距離を意味する。
A method for estimating the temperature of steel material conveyed in a heating furnace, wherein the heating furnace comprises a first burner arranged upstream in the conveying direction of the steel material , and a first burner arranged downstream in the conveying direction of the steel material. Equipped with 2 burners ,
A temperature T1 in the heating furnace at a first position N1 on the upstream side of the first burner in the conveying direction, and a temperature T1 in the heating furnace at a second position N6 on the downstream side of the second burner in the conveying direction. measuring the temperature T2 ;
measuring the fuel flow rate F of the first burner and the second burner ;
Based on the measured furnace temperatures T1 and T2 at the first position N1 and the second position N6 and the measured fuel flow rate F of the first burner and the second burner , the first position N1 and the first burner a step of calculating correction furnace temperatures K1 and K2 at a third position N2 between and at a fourth position N5 between the second burner and the second position N6 ;
Based on the measured furnace temperatures T1 and T2 at the first position N1 and the second position N6 , and the correction furnace temperatures at the third position N2 and the fourth position N5 , a step of predicting the temperature inside the furnace at each position in the conveying direction;
calculating a heat flux at each position based on the predicted furnace temperature;
calculating the temperature of the steel material at each of the positions based on the calculated heat flux;
The correction furnace temperature calculation step includes:
A correction furnace temperature K1 at the third position N2 is calculated based on the following formula (1), and a correction furnace temperature K2 at the fourth position N5 is calculated based on the following formula (2). ,
The furnace temperature prediction process is
A straight line passing through the measured in-furnace temperature T1 at the first position N1 and the measured in-furnace temperature T2 at the second position N6 is defined as a set of the reference in-furnace temperatures at the respective positions. a step of calculating the temperature in the furnace;
calculating a corrected in-furnace temperature obtained by correcting the reference in-furnace temperature using the corrected in-furnace temperatures K1 and K2 at the third position N2 and the fourth position N5 .
K1=T1+(F-Fmin)×(K2-T1)/(Fmax-Fmin) (1)
K2={(T2-T1)/(D6-D1)}×(D5-D1)+T1 (2)
However, in the above formula (1), "Fmin" means the minimum value of the fuel flow rate F [Nm 3 /h], and "Fmax" means the maximum value of the fuel flow rate F [Nm 3 /h], In the above formula (2), "D1" is the distance from the position Ns of the first opening on the charging side of the steel material in the heating furnace to the first position N1, and "D5" is the distance from the position Ns to the above The distance 'D6' to the fourth position N5 means the distance from the position Ns to the second position N6.
JP2019168356A 2019-09-17 2019-09-17 Steel temperature prediction method Active JP7225066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019168356A JP7225066B2 (en) 2019-09-17 2019-09-17 Steel temperature prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019168356A JP7225066B2 (en) 2019-09-17 2019-09-17 Steel temperature prediction method

Publications (2)

Publication Number Publication Date
JP2021046570A JP2021046570A (en) 2021-03-25
JP7225066B2 true JP7225066B2 (en) 2023-02-20

Family

ID=74877862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019168356A Active JP7225066B2 (en) 2019-09-17 2019-09-17 Steel temperature prediction method

Country Status (1)

Country Link
JP (1) JP7225066B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036452B2 (en) * 1980-11-08 1985-08-20 三菱電機株式会社 Control method for continuous heating furnace
JPS61199018A (en) * 1985-02-27 1986-09-03 Kobe Steel Ltd Method for controlling heating of heating furnace
JPH0192322A (en) * 1987-09-30 1989-04-11 Nkk Corp Method for controlling sheet temperature in continuous annealing furnace
JP2833461B2 (en) * 1993-12-28 1998-12-09 日本鋼管株式会社 Metal strip temperature control method

Also Published As

Publication number Publication date
JP2021046570A (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JPWO2014006681A1 (en) Temperature control device
JP7225066B2 (en) Steel temperature prediction method
CN104815853A (en) Temperature distribution prediction device
JP6558060B2 (en) Thick steel plate cooling control method, cooling control device, manufacturing method, and manufacturing device
JP5493993B2 (en) Thick steel plate cooling control device, cooling control method, and manufacturing method
JP2010275631A (en) Heat treatment method for thick steel plate in direct fired roller-hearth type continuous heat treatment furnace and radiant-tube roller-hearth type continuous heat treatment furnace
JP2006281300A (en) Cooling control method, device, and computer program
JP6797759B2 (en) Steel material temperature prediction method
JP5310144B2 (en) Thick steel plate surface temperature measuring device and material judgment method
KR20200099591A (en) Heating method and continuous annealing facility of steel sheet in continuous annealing
CN113423517B (en) Cooling control method and cooling control device for thick steel plate, and manufacturing method for thick steel plate
JP2009056504A (en) Manufacturing method and manufacturing device of hot-rolled steel sheet
JP2018003084A (en) Method for predicting the temperature of steel material
JP6627609B2 (en) Cooling control method and cooling device
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JP6784182B2 (en) Steel plate temperature control method and steel sheet temperature control device
JP2017001085A (en) Cooling control method for thick steel plate, cooling controller, manufacturing method, and manufacturing apparatus
JP6645037B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
JPS62112732A (en) Cooling method for hot rolled steel sheet
JP7148024B1 (en) Steel plate material prediction model generation method, material prediction method, manufacturing method, and manufacturing equipment
JPH0857523A (en) Controlled cooling method
JP2010150614A (en) Heating furnace and heating method
JP2023125249A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate
JP2023125248A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate
JP2007222922A (en) Linear heating method and linear heating control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230208

R150 Certificate of patent or registration of utility model

Ref document number: 7225066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150