JPS61199018A - Method for controlling heating of heating furnace - Google Patents

Method for controlling heating of heating furnace

Info

Publication number
JPS61199018A
JPS61199018A JP60040379A JP4037985A JPS61199018A JP S61199018 A JPS61199018 A JP S61199018A JP 60040379 A JP60040379 A JP 60040379A JP 4037985 A JP4037985 A JP 4037985A JP S61199018 A JPS61199018 A JP S61199018A
Authority
JP
Japan
Prior art keywords
furnace
temperature
temp
function
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60040379A
Other languages
Japanese (ja)
Inventor
Satoshi Kohama
小濱 聡
Nobunori Wakamiya
若宮 宣範
Makoto Tsuruta
誠 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Mitsubishi Electric Corp
Original Assignee
Kobe Steel Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Mitsubishi Electric Corp filed Critical Kobe Steel Ltd
Priority to JP60040379A priority Critical patent/JPS61199018A/en
Priority to KR1019860000907A priority patent/KR900005989B1/en
Priority to DE19863605740 priority patent/DE3605740A1/en
Priority to AU54091/86A priority patent/AU573425B2/en
Priority to US06/833,023 priority patent/US4657507A/en
Priority to GB08604732A priority patent/GB2171816B/en
Publication of JPS61199018A publication Critical patent/JPS61199018A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control ejection temp. with good accuracy by setting the set value of the furnace temp. and the mixing ratio in each control zone in accordance with the required furnace temp. at which the fuel flow rate for each material is minimized by taking the future fluctuation of an in-furnace temp., furnace wall temp. and material temp. into consideration on the basis of the fuel flow rate. CONSTITUTION:A function 106 to set the furnace temp. is constituted of a function 20 to calculate the present temp., a function 21 to determine the optimum furnace temp. of each material and a function 22 to calculate fuel mixing ratio and set furnace temp. and is periodically started in a heating furnace 101 divided to plural control zones 101a. The function 20 calculates the present material temp. by a model 5 for calculating the furnace temp., a model 6 for calculating the furnace wall temp. and a model 7 for calculating the material temp. in accordance with the material information. The function 21 determines the optimum furnace temp. of each material under the minimization of each fuel. The function 22 calculates the furnace temp. of each control zone by using the required furnace temp. and position of each material and instructs the same to a fuel flow rate controller 103. As a result the control of the ejection temp. with good accuracy is made possible even in the case in which high-load materials and low-load materials exist mixedly in the furnace.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱間在廷ラインにおける加熱炉の温度制御
において、燃料を最少とする炉温設定値及び複数燃料の
混焼比率の設定方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for setting a furnace temperature set value and a co-firing ratio of multiple fuels to minimize the amount of fuel used in temperature control of a heating furnace in a hot heating line. It is something.

〔従来の技術〕[Conventional technology]

従来、この種の加熱炉の温度制御としては、例えば特開
昭56−75533号公報に示されているように炉温か
ら材料温度を計算するモデル、及び炉温と材料温度とか
ら燃料流量を計算するモデルの両弁線形モデルを用い、
非線形の燃料最少化を行なうために、炉温をステップ状
だ変化させて摂動シミュレーション法(基準状態と摂動
状態においてシミュレーションを行ない線形化係数を決
定する方法)を用いて線形化を行ない、その結果で材料
の昇温曲線を決定し、この昇温曲線と材料の現状温度と
を比較して炉温を決定する方法が採られている0 〔発明が解決しようとする問題点〕 上記のような従来の加熱炉の加熱制御方法では、第5図
に示すように一般に炉温の計算ゾーンは燃料流量を制御
できるゾーンよりも数が多いため、炉温を基にした摂動
法による最適化後の最適炉温および昇温曲線は、常に実
現可能なパターンとは限らないという問題があった。
Conventionally, temperature control for this type of heating furnace has been carried out using a model that calculates the material temperature from the furnace temperature, and a model that calculates the fuel flow rate from the furnace temperature and the material temperature, as shown in Japanese Patent Laid-Open No. 56-75533. Using the bivalve linear model of the model to calculate,
In order to perform nonlinear fuel minimization, linearization is performed by changing the furnace temperature in steps and using the perturbation simulation method (a method in which the linearization coefficient is determined by performing simulations in the standard state and perturbed state). A method is adopted in which the temperature rise curve of the material is determined, and the furnace temperature is determined by comparing this temperature rise curve with the current temperature of the material0 [Problems to be solved by the invention] In conventional heating control methods for heating furnaces, as shown in Figure 5, the number of calculation zones for furnace temperature is generally greater than the number of zones in which fuel flow rate can be controlled. There has been a problem in that the optimum furnace temperature and temperature rise curve are not always achievable patterns.

また、線形化係数及び昇温パターンを決定する際、炉壁
への損失熱量、炉壁温度分布等を無視し、炉の応答遅れ
を考慮せずに炉温をステップ状に変化サセてシミュレー
ションを行なっているため、実際の材料の昇温傾向及び
炉の状態とかけ離れた昇温曲線が決定されるという問題
があった。
In addition, when determining the linearization coefficient and temperature increase pattern, the heat loss to the furnace wall, the temperature distribution of the furnace wall, etc. are ignored, and the furnace temperature is changed in steps without considering the response delay of the furnace. As a result, there was a problem in that a temperature increase curve was determined that was far from the actual temperature increase trend of the material and the furnace condition.

また、従来の方法では、@6図に示すようにフィードバ
ック信号を得る炉温検出器(104)は、各制御帯(1
01a)において1ケ所であり、したがってこの1ケ所
の炉温を制御することになる。
In addition, in the conventional method, as shown in Figure @6, the furnace temperature detector (104) that obtains the feedback signal is
01a), there is one location, and therefore the furnace temperature at this one location is controlled.

ところで通常加熱炉においては、抽出端に近けくに従っ
て材料温度が高くなるため、第6図に示すようにバーナ
側温度が高くなるようなバーナ設計となっている。この
ため、第6図に示すように前方に低負荷材料、後方に高
負荷材料が制御帯(101a)内に存在する場合、この
高負荷材料の必要炉内温度に合わせて炉温か制御され、
したがって常に炉温設定値を高めにせざるを得す、燃料
消費の面からは大きな損失となるという問題があつ念〇
この発明はかかる問題点を解決するためになされたもの
で、燃料消費の損失を少なくし、しかも制御帯の温度分
布を適正に制御することができる加熱炉の加熱制御方法
を得ることを目的とする。
By the way, in a normal heating furnace, the temperature of the material increases as it approaches the extraction end, so the burner design is such that the temperature on the burner side increases as shown in FIG. For this reason, as shown in FIG. 6, when a low-load material at the front and a high-load material at the rear exist within the control zone (101a), the furnace temperature is controlled according to the required furnace temperature of the high-load material.
Therefore, there is a problem in that the furnace temperature setting value must always be set high, resulting in a large loss in terms of fuel consumption.This invention was made to solve this problem, and the loss in fuel consumption is It is an object of the present invention to provide a heating control method for a heating furnace that can reduce the temperature distribution in the control zone and appropriately control the temperature distribution in the control zone.

C問題点を解決するための手段〕 この発明に係る加熱炉の加熱制御方法は、燃料流量を基
にし非定常熱バランス式によシ炉温を計算するモデル、
炉温を基にして炉壁温度分布を求めるモデル、及び炉温
を基にして材料温度を求めるモデルの3つの非線形モデ
ルを用い、流量をステップ状に変化させる摂動法シミュ
レーションにより線形化を行ない燃料流量最少の最適化
を行なって材料毎の最適炉温を決定し、各燃料の総発熱
量を全燃料の総発熱量で除して得られる複数燃料の混焼
比率と炉温設定値とを、上記材料毎最適炉温を用いてそ
れぞれ計算し設定するようにしたものである。
Means for Solving Problem C] The heating control method for a heating furnace according to the present invention uses a model that calculates the furnace temperature using an unsteady heat balance formula based on the fuel flow rate;
Using three nonlinear models: a model that calculates the furnace wall temperature distribution based on the furnace temperature, and a model that calculates the material temperature based on the furnace temperature, linearization is performed using a perturbation method simulation that changes the flow rate in steps. Optimize the minimum flow rate to determine the optimal furnace temperature for each material, and divide the total calorific value of each fuel by the total calorific value of all fuels to obtain the mixed combustion ratio of multiple fuels and the furnace temperature setting value. The temperature is calculated and set using the optimum furnace temperature for each material.

〔作用〕[Effect]

この発明においては、燃料流量を基にし非定常熱バラン
ス式により炉温を計算するモデル、炉温を基にして炉壁
温度分布を求めるモデル、及び炉温を基にして材料温度
を求めるモデルの3つの非線形モデルを用いて材料毎の
最適炉温を決定し、この材料毎最適炉温を用いて複数燃
料の混焼比率及び炉温設定値を計算し設定するようにし
ているので、炉内に高負荷材と低負荷材とが混在してい
る場合でも、材料毎の必要炉温を満たし、しかも燃料流
量が最少となる炉温設定値が得られ、精度よく抽出温度
を制御することが可能となる。
In this invention, there are three models: a model that calculates the furnace temperature using an unsteady heat balance formula based on the fuel flow rate, a model that calculates the furnace wall temperature distribution based on the furnace temperature, and a model that calculates the material temperature based on the furnace temperature. Three nonlinear models are used to determine the optimal furnace temperature for each material, and this optimal furnace temperature for each material is used to calculate and set the co-firing ratio of multiple fuels and the furnace temperature setpoint, so the temperature inside the furnace is Even when high-load materials and low-load materials are mixed, it is possible to obtain a furnace temperature setting that satisfies the required furnace temperature for each material and minimizes the fuel flow rate, making it possible to control the extraction temperature with precision. becomes.

〔実施例〕〔Example〕

以下、この発明の原理について説明する。 The principle of this invention will be explained below.

第1図は材料毎の最適炉温の決定方法を示す流れ図であ
り、図中(1)は材料毎最適炉温計算の第1step、
 (2) 、 (8)は同様の第2及び第3の各5te
p、 (5)は炉温計算モデル、(6)は炉壁温度計算
モデル、(γ)は材料温度計算モデル、(8)は材料通
過位置炉温の計算、(9)は平均温度、均熱度の計算、
αO1は線形化係数の計算、(6)は線形計画法(LP
)の計算である0 次に、上記流れ図中の各モデル(5) 、 (6)、 
(γ)について説明する。
Figure 1 is a flowchart showing the method for determining the optimum furnace temperature for each material, and (1) in the figure shows the first step of calculating the optimum furnace temperature for each material;
(2) and (8) are the same second and third 5te
p, (5) is the furnace temperature calculation model, (6) is the furnace wall temperature calculation model, (γ) is the material temperature calculation model, (8) is the calculation of the furnace temperature at the material passing position, (9) is the average temperature, Calculation of fever,
αO1 is the calculation of the linearization coefficient, (6) is the linear programming (LP)
) is the calculation of 0 Next, each model (5), (6),
(γ) will be explained.

炉温計算モデルlは、以下の様にして構成されている。The furnace temperature calculation model 1 is configured as follows.

第5図に示す様に加熱炉を炉長方向にn個[分割し、各
分割されたメツシュについて各々次の様な熱バランス方
程式をたてる。
As shown in FIG. 5, the heating furnace is divided into n pieces in the furnace length direction, and the following heat balance equation is established for each divided mesh.

t =Qエ     ・・・燃料、空気の顕熱+H*W  
  ・・・燃料発熱量 ” GllloCpg′Tgi11 ・・・上流よりの排ガス熱量 i  pg  gi   ・・下流への排ガス熱量働・
他メツシュ炉温よシのふく射 ・・・炉壁よシのふく射 ・・e材料へのふく射 + 02(TWl−T、) +03(Ta□−Tg、)
・曇・炉壁、材料への対流 −Q、□    ・・・スキッド冷却水頂失・ 1(1
) ここで、Hは燃料の単位流量轟りの発熱量、Cは排ガス
比熱、G1は各メツシュの排ガス流量g であり、K工usK2□k”’3itはそれぞれふく射
交俣係数、Cニー 02,03は定数である。またnは
炉長分割数、mはスラブ本数である。
t = Qe ... Sensible heat of fuel and air + H*W
...fuel calorific value"GlloCpg'Tgi11 ...exhaust gas calorific value from upstream i pg gi ...exhaust gas calorific value to downstream...
Radiation from other mesh furnace temperature... Radiation from the furnace wall... Radiation to e material + 02 (TWl-T,) +03 (Ta□-Tg,)
・Cloudy・Convection to the furnace wall and materials-Q, □ ...Skid cooling water top loss・1 (1
) Here, H is the calorific value of the unit flow rate of fuel, C is the specific heat of the exhaust gas, G1 is the exhaust gas flow rate g of each mesh, K us K2 □k'''3it is the radiation intersection coefficient, and C knee 02 , 03 are constants, n is the number of furnace length divisions, and m is the number of slabs.

上記式(1)は、燃料流ft1wが与えらnれば、炉壁
温度、スラブ温度を既知とすれば、次の様に変形される
The above equation (1) can be transformed as follows if the fuel flow ft1w is given and the furnace wall temperature and slab temperature are known.

+Σ 81keTgk十〇、   (1=1.5on)
・・・(2) これは、n元連立の非線形微分方程式であるが、i 5
tep前の炉内vjA!分布を出発値として、時間に関
して離散化し、ニュートン法等を用いて収束させれば、
量率に新しい炉内温間分布を計算できる。
+Σ 81keTgk 10, (1=1.5on)
...(2) This is a nonlinear differential equation with n elements, but i 5
VjA in the furnace before tep! If we use the distribution as a starting value, discretize it with respect to time, and converge it using Newton's method etc., we get
A new furnace warm distribution can be calculated for the quantity rate.

また、材料温度モデル(7)は、良く知られている2次
元の熱伝導方程式よシ次の様に表わせる。
Further, the material temperature model (7) can be expressed as follows using the well-known two-dimensional heat conduction equation.

・・・(8) 表面における境界条件は ここで、Xは材料厚み方向、Yは材料の巾方向を表わし
、d工、d2はそれぞれ材料厚み、材料中を表わす。ま
た、Ca、λ8.γ8はそれぞれ材料の比熱、熱伝導率
、比重であり、qは材料の表面熱流束であり次式で表わ
せる。
(8) The boundary conditions on the surface are as follows: X represents the material thickness direction, Y represents the material width direction, and d and d2 represent the material thickness and the inside of the material, respectively. Also, Ca, λ8. γ8 is the specific heat, thermal conductivity, and specific gravity of the material, respectively, and q is the surface heat flux of the material, which can be expressed by the following equation.

G8 :□蛋、に31t((1g1+273)′−(T
st+276)′)式(8)は、式(4)の境界条件を
用いれば11通常の差分手法で解く事ができる。
G8: □ Protein, 31t ((1g1+273)'-(T
st+276)') Equation (8) can be solved by the ordinary difference method using the boundary condition of Equation (4).

さらに、炉壁温度モデル(6)は、第5図に示されてい
る様に炉長方向分割毎のメツシュ内において、厚み方向
のみの1次元熱伝導刀根式によって、次の様に表わせる
Further, the furnace wall temperature model (6) can be expressed as follows using a one-dimensional heat conduction knife equation only in the thickness direction within the mesh for each division in the furnace length direction, as shown in FIG.

炉内表面における境界条件は −(T、+273)’J+C2(’rg1−’rw)・
・(7)炉外表面における境界条件は ここで、Xは炉壁厚み方向、d3は炉壁の厚み、Cw、
λyl 1”Ji炉壁の比熱、熱伝導率、比重を表わし
ており、Hは外部熱伝達率、Ta1rは外部温度をUT 示している。式(6)も、式(7)、式(8)の境界条
件を用いる事により通常の差分方程式で解く事が可能と
なる。
The boundary condition on the inner surface of the furnace is -(T, +273)'J+C2('rg1-'rw)・
・(7) The boundary conditions on the outer surface of the furnace are as follows: X is the thickness direction of the furnace wall, d3 is the thickness of the furnace wall, Cw,
λyl represents the specific heat, thermal conductivity, and specific gravity of the 1"Ji furnace wall, H is the external heat transfer coefficient, and Ta1r is the external temperature. Equation (6) is also expressed by Equation (7) and Equation (8). ) can be solved using a normal difference equation.

上記3つのモデル(5) 、 (6)、 (ア)を組み
合わせて使用する蓼により、燃料流址を与えれば、炉温
、材料温度、炉壁温度の現在値を初期値として炉温、材
料温度、炉壁温度、3者の将来温度が計算出来るO 次に、第1図を参照して材料毎最適炉温の決定方法につ
いて説明する。
Using a combination of the above three models (5), (6), and (a), if the fuel flow is given, the furnace temperature, material temperature, and Temperature, furnace wall temperature, and future temperatures of the three components can be calculated.Next, a method for determining the optimum furnace temperature for each material will be explained with reference to FIG.

まず、第1step(1)として、現在の流量WKOで
もつで全材料が抽出されるまでの時間、3つのモデル+
5) 、 (6’l 、 (7)を繰り返して使用する
事により、各材料抽出時の平均温度T 、均熱度(最高
温度−最低温度)ΔT 、及び材料通過時の各位置での
炉上記燃料流量を#1だけ5tep状に変化させる事に
よって、前記第i 5tep(1)と同様に、各流量変
化時の各材料抽出時平均温度T 、均熱度ΔT 、及び
材料通過時の炉内基vT、を計算する事が可能になる。
First, as the first step (1), at the current flow rate WKO, the time until all the materials are extracted with the three models +
5) By repeatedly using , (6'l, (7)), the average temperature T at the time of extraction of each material, the soaking degree (maximum temperature - minimum temperature) ΔT, and the temperature above the furnace at each position when the material passes through. By changing the fuel flow rate by #1 in 5 steps, the average temperature T at the time of each material extraction at each flow rate change, the soaking degree ΔT, and the furnace temperature at the time of material passage can be changed as in the i-th step (1). It becomes possible to calculate vT.

次に第3stop(81として、以下の線形化係数の計
算αO)を実行する。第2Stθp(2)の処置により
、非線形方程式の解である抽出時各材料平均温度、均熱
度、及び各材料通過時の各計算ゾーンでの炉内温度は次
の様に線形化する事ができる。
Next, the third stop (as 81, the following linearization coefficient calculation αO) is executed. By processing the second Stθp (2), the average temperature of each material at the time of extraction, the degree of soaking, and the temperature inside the furnace in each calculation zone when each material passes, which are the solutions of the nonlinear equation, can be linearized as follows. .

ここで、KMAXは燃料流音制御帯の数であり、PIK
” 2K” 3□には各々流量を変化させfc場合の線
形化係数であり、次で与えられる。
Here, KMAX is the number of fuel flow noise control bands, and PIK
"2K" 3□ is a linearization coefficient when the flow rate is changed and fc is given as follows.

また、各燃料流tは#Kft各制御帯の変化量とすると WK=WK  +ΔWえ と表わす事ができる。Also, if each fuel flow t is #Kft the amount of change in each control band, WK=WK +ΔW It can be expressed as

燃料最適化を行なううえでの制約条件は、材料の冶金学
的制約、及び炉操業上の制約から次の様なものである。
Constraints in fuel optimization are as follows due to metallurgical constraints of materials and constraints on furnace operation.

ここで、添字MIN、 MAX Fi、それぞれの下限
値及び上限値を示している。
Here, subscripts MIN and MAX Fi indicate the respective lower and upper limits.

また、最適化の評価関係は、燃料最少化であるから次の
様になる。
Furthermore, the evaluation relationship for optimization is as follows since it is fuel minimization.

式(15)の制約条件下での式α6)の最少化は通常の
線形計画法(LP)の計算C11)で求める事が可能で
ある。
Minimization of equation α6) under the constraint condition of equation (15) can be obtained by ordinary linear programming (LP) calculation C11).

上記解の流量が各材料の最適流量W  であり、Opt 同時に式(9)によって各材料の最適炉温1g1本が計
算される事になる。
The flow rate of the above solution is the optimum flow rate W for each material, and at the same time, the optimum furnace temperature of each material per gram is calculated using equation (9).

次に、各材料毎の最適炉温を用いて、各制御帯の設定炉
温及び混焼比率の計算方法について説明する。
Next, a method of calculating the set furnace temperature and co-firing ratio for each control zone will be explained using the optimum furnace temperature for each material.

各材料の全炉内位置での最適炉温が計算されているから
、現時刻より任意時間後の各材料の位置に対応する計算
ゾーンの最適炉温を各材料の必要炉温とする。但し、抽
出側に存在して、任意時刻後に抽出されてし°まう材料
は、破細出側計算ゾーンでの温度とする。この時の各材
料の位置をxj必要炉温をTgj*とする。また、Jは
材料NOを示すものとする。
Since the optimum furnace temperature of each material at all positions in the furnace has been calculated, the optimum furnace temperature of the calculation zone corresponding to the position of each material after an arbitrary time from the current time is set as the required furnace temperature of each material. However, for materials that exist on the extraction side and are extracted after an arbitrary time, the temperature is taken as the temperature in the calculation zone on the fracture exit side. The position of each material at this time is xj, and the required furnace temperature is Tgj*. Furthermore, J indicates the material number.

今、各制御帯に燃料として通常のバーナ側が高くなる炉
内温度分布を実現できる燃料A(例えば重油)とバーナ
側での燃焼を極力おさえる緩慢燃焼型の燃料B(例えば
転炉ガス)との相互に燃焼温度特性を異にする2種類の
燃料が存在している場合を考える。
Now, in each control zone, we use fuel A (e.g., heavy oil) that can achieve a normal temperature distribution in the furnace where the burner side becomes higher, and fuel B (e.g., converter gas), which is a slow combustion type that suppresses combustion on the burner side as much as possible. Consider the case where there are two types of fuel that have different combustion temperature characteristics.

混焼比率を以下の様に定義する。The co-firing ratio is defined as follows.

・・・07) 上記混焼比率を変化させれば、各制御帯において、同一
の総発熱量時に第2図に示す様に炉内の温度分布を変更
する事が可能となる。
...07) By changing the above-mentioned co-firing ratio, it is possible to change the temperature distribution in the furnace as shown in FIG. 2 at the same total calorific value in each control zone.

混焼比率及び設定炉温は前記各材料の位置X、と必要炉
温とによって下記の式で決定する。
The co-firing ratio and the set furnace temperature are determined by the following formula based on the position X of each material and the required furnace temperature.

・・・(ト) Nは制御帯内材料本数 XTは炉温検出器位雪 しかして、第3図に示すように炉内に高負荷材と低負荷
材とが混在している場合にも、精度よく抽出温度を制御
できるばかりでなく、各燃料A。
...(g) N is the number of materials in the control zone XT is the temperature of the furnace temperature sensor. However, as shown in Figure 3, it also applies when high-load materials and low-load materials coexist in the furnace. , not only can the extraction temperature be controlled with precision, but also each fuel A.

Bの損失を最少限に抑えることが可能となる0次にこの
発明の一実施例に基づく加熱炉制御について第4図を参
照して説明する。
A heating furnace control based on an embodiment of the present invention of zero-order heating, which makes it possible to minimize the loss of B, will be described with reference to FIG.

!4図において、複数の制御帯(101a)に分割され
た加熱炉(101)には燃焼用バーナ(105) 、炉
温検出器(1o4)が配置されておシ、炉温設定機能(
106)によって設定された各制御帯毎の設定温度にな
るよう燃料流量制御器(103)によって流量が制御さ
れている。(1o2)は材料情報機能であり、炉内の材
料の寸法、重量、抽出温度、炉内搬送情報等の材料情報
を炉温設定機能(106)に指示する。
! In Figure 4, a heating furnace (101) divided into a plurality of control zones (101a) is equipped with a combustion burner (105), a furnace temperature detector (1o4), and a furnace temperature setting function (1o4).
The fuel flow rate is controlled by a fuel flow rate controller (103) so as to reach the set temperature for each control zone set by the fuel flow rate controller (106). (1o2) is a material information function, which instructs the furnace temperature setting function (106) to provide material information such as the dimensions, weight, extraction temperature, and conveyance information of the material in the furnace.

炉温設定機能(106)は、現状温度計算機能(財)と
材料毎最適炉温計算機能@l)と、混焼比率、設定炉温
計算機能(2)とからなっており、周期的に起動される
。現状温度計算機能−は、材料情報を基にして炉温計算
モデル(6)、炉壁温度計算モデル(6)、材料温度計
算モデル(γ)により、現在の材料温度を計算する。材
料毎最適炉温計算機能(21)は、この発明の説明で述
べた様にWJ1図の流れ図に従って各材料毎の最適炉温
を各々、燃料最少化の下に決定する0 混焼比率、設定炉温計算機能□□□)は、各材料毎の必
要炉温及び位看を用いて、式(ト)、式o呻に従って各
制御帯の炉温を計算し、燃料流量制御器(103)に指
示をする。
The furnace temperature setting function (106) consists of the current temperature calculation function (goods), the optimum furnace temperature calculation function for each material (@l), and the co-firing ratio and set furnace temperature calculation function (2), which are activated periodically. be done. The current temperature calculation function calculates the current material temperature using the furnace temperature calculation model (6), furnace wall temperature calculation model (6), and material temperature calculation model (γ) based on the material information. The optimal furnace temperature calculation function for each material (21) determines the optimal furnace temperature for each material while minimizing fuel according to the flowchart in Figure WJ1 as described in the explanation of this invention. The temperature calculation function (□□□) calculates the furnace temperature of each control zone according to formulas (g) and (o) using the required furnace temperature and temperature for each material, and sends it to the fuel flow rate controller (103). Give instructions.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、燃料流量を基にして炉
内温度、炉壁温度、材料温度の将来変動をも考慮し、各
材料について燃料流量が最少となシかつ実現可能な必要
炉温を決定し、これに基づいて各制御帯の炉温設定値と
混焼比率とを設定するようにしているので、炉内に高負
荷材と低負荷材とが混在しているような場合でも、精度
よく抽出温度が制御できるばかりでなく、燃料流量の低
減効果が非常に大きくなる等の効果がある。
As explained above, this invention considers future fluctuations in the furnace temperature, furnace wall temperature, and material temperature based on the fuel flow rate, and calculates the necessary furnace temperature that is possible while minimizing the fuel flow rate for each material. Since the furnace temperature setting value and co-firing ratio for each control zone are set based on this, accuracy can be maintained even when high-load materials and low-load materials are mixed in the furnace. Not only can the extraction temperature be well controlled, but the fuel flow rate can be greatly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は材料毎の最適炉温の決定方法を示す流れ図、第
2図は混焼比率と炉内温度との関係図、第3図はこの発
明の効果を示す説明図、第4図はこの発明の一実施態様
を示す全体構成図、第5図は加熱炉の炉温計算ゾーン分
割を示す概略図、第6図は従来の加熱炉の加熱制御方法
を示す説明図である。 (6)の・炉温計算モデル (6)・Φ炉壁温度計算モデル (γ)・・材料温度計算モデル −・・現状温度計算機能 (21+・・材料毎最適炉温計算機能 暖・・混焼比率、設定炉温計算機能 (101)・Φ加熱炉 (103)・・燃料流量制御器 (104)・・炉温検出器 (105)・・燃焼用バーナ (106) ”・炉温設定機能 なお、各図中、同一符号は同−又は相当部分を示すもの
とする。
Figure 1 is a flowchart showing the method for determining the optimum furnace temperature for each material, Figure 2 is a diagram showing the relationship between co-firing ratio and furnace temperature, Figure 3 is an explanatory diagram showing the effects of this invention, and Figure 4 is a diagram showing the effect of this invention. FIG. 5 is a schematic diagram showing a furnace temperature calculation zone division of a heating furnace, and FIG. 6 is an explanatory diagram showing a conventional heating control method for a heating furnace. (6) - Furnace temperature calculation model (6) - Φ Furnace wall temperature calculation model (γ) - Material temperature calculation model - - Current temperature calculation function (21 + - Optimal furnace temperature calculation function for each material) - Mixed firing Ratio, setting furnace temperature calculation function (101), Φ heating furnace (103), fuel flow controller (104), furnace temperature detector (105), combustion burner (106), furnace temperature setting function. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 複数の加熱制御帯を有し、燃焼温度特性の異なる複数の
燃料を同一の加熱制御帯で燃焼させることができる加熱
炉において、燃料流量に基づき非定常熱バランス式によ
り炉温の時間変化を計算する第1機能、炉温から炉壁内
部温度の時間変化を計算する第2機能、炉温から材料内
部温度の時間変化を計算する第3機能、上記第1、第2
、第3の各機能を用い各制御帯の現状燃料流量での材料
抽出時平均温度、均熱度、および材料通過時の各炉温を
それぞれ計算する第4機能、上記第1、第2、第3の各
機能を用い各制御帯の燃料流量を現状流量からある一定
値変化させた時の材料抽出時平均温度、均熱度、および
材料通過時の各炉温をそれぞれ計算する第5機能、およ
び上記第4、第5の各機能の結果に基づき現状燃料流量
まわりでの線形化係数を計算しこれを用いて制約条件下
で燃料最少化となる材料毎の最適炉温を決定する第6機
能を備え、各燃料の総発熱量を全燃料の総発熱量で除し
て得られる複数燃料の混焼比率と炉温設定値とを、上記
第6機能で得られる材料毎最適炉温を用いてそれぞれ計
算し設定することを特徴とする加熱炉の加熱制御方法。
In a heating furnace that has multiple heating control zones and can burn multiple fuels with different combustion temperature characteristics in the same heating control zone, time changes in furnace temperature are calculated using an unsteady heat balance formula based on the fuel flow rate. A first function that calculates the time change in the internal temperature of the furnace wall from the furnace temperature, a third function that calculates the time change in the material internal temperature from the furnace temperature, and the first and second functions described above.
, a fourth function that uses the third functions to calculate the average temperature at the time of material extraction, the degree of soaking, and each furnace temperature at the time of material passage at the current fuel flow rate in each control zone; a fifth function that calculates the average temperature at the time of material extraction, the degree of uniformity, and each furnace temperature at the time of material passage when the fuel flow rate in each control zone is changed by a certain value from the current flow rate using each function of 3; A sixth function calculates the linearization coefficient around the current fuel flow rate based on the results of the fourth and fifth functions above, and uses this to determine the optimal furnace temperature for each material that minimizes fuel under constraint conditions. The mixed combustion ratio of multiple fuels and the furnace temperature set value obtained by dividing the total calorific value of each fuel by the total calorific value of all fuels are calculated using the optimal furnace temperature for each material obtained in the sixth function above. A heating control method for a heating furnace characterized by calculating and setting each.
JP60040379A 1985-02-27 1985-02-27 Method for controlling heating of heating furnace Pending JPS61199018A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60040379A JPS61199018A (en) 1985-02-27 1985-02-27 Method for controlling heating of heating furnace
KR1019860000907A KR900005989B1 (en) 1985-02-27 1986-02-10 Heating control method for heat frunace
DE19863605740 DE3605740A1 (en) 1985-02-27 1986-02-22 METHOD FOR CONTROLLING THE HEATING IN A HEATER
AU54091/86A AU573425B2 (en) 1985-02-27 1986-02-26 Heating control method of heat furnace
US06/833,023 US4657507A (en) 1985-02-27 1986-02-26 Heating control method of heat furnace
GB08604732A GB2171816B (en) 1985-02-27 1986-02-26 Heating control method of heat furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60040379A JPS61199018A (en) 1985-02-27 1985-02-27 Method for controlling heating of heating furnace

Publications (1)

Publication Number Publication Date
JPS61199018A true JPS61199018A (en) 1986-09-03

Family

ID=12579016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60040379A Pending JPS61199018A (en) 1985-02-27 1985-02-27 Method for controlling heating of heating furnace

Country Status (1)

Country Link
JP (1) JPS61199018A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1517107A1 (en) * 2003-09-17 2005-03-23 Voest-Alpine Industrieanlagenbau GmbH & Co. Process for the optimized operation of a reheating furnace
JP2012140662A (en) * 2010-12-28 2012-07-26 Sumitomo Metal Ind Ltd Furnace temperature setting method for continuous heating furnace, furnace temperature control system, continuous heating furnace, and method for producing metal material
JP2021046570A (en) * 2019-09-17 2021-03-25 株式会社神戸製鋼所 Steel material temperature prediction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1517107A1 (en) * 2003-09-17 2005-03-23 Voest-Alpine Industrieanlagenbau GmbH & Co. Process for the optimized operation of a reheating furnace
JP2012140662A (en) * 2010-12-28 2012-07-26 Sumitomo Metal Ind Ltd Furnace temperature setting method for continuous heating furnace, furnace temperature control system, continuous heating furnace, and method for producing metal material
JP2021046570A (en) * 2019-09-17 2021-03-25 株式会社神戸製鋼所 Steel material temperature prediction method

Similar Documents

Publication Publication Date Title
JPS5947324A (en) Controlling method of heating in heating furnace
JPS5848011B2 (en) Furnace combustion control method
KR900005989B1 (en) Heating control method for heat frunace
US4394121A (en) Method of controlling continuous reheating furnace
JPS61199018A (en) Method for controlling heating of heating furnace
CN1777785B (en) Method and heating furnace for controlling product temperature evenness in metallurgical heating furnace
JPH0532449B2 (en)
Yoshitani et al. Optimal slab heating control with temperature trajectory optimization
JPS61199023A (en) Method for determining heating-up curve of material in heating furnace
JPH0532445B2 (en)
JPS61261433A (en) Method for controlling temperature of heating furnace
JPS61199022A (en) Method for controlling continuous heating furnace
JPH0532446B2 (en)
JPS62127422A (en) Method for determining temperature rising curve of material in heating furnace
JPS61199013A (en) Method for controlling continuous heating furnace
JPS6140053B2 (en)
JPH06281364A (en) Temperature control method for heating furnace
JPS629650B2 (en)
JPS6036452B2 (en) Control method for continuous heating furnace
Ward et al. The use of permeable refractory linings for enhancement of the thermal performance of a high-temperature furnace
JPS61199020A (en) Method for controlling continuous heating furnace
JPS6051534B2 (en) Method for controlling the conveyance speed of objects to be heated in a continuous heating furnace
JPS61153232A (en) Method for setting furnace temperature of continuous heating furnace
JPS6115928B2 (en)
JPS6163550A (en) Stabilizing control for cement burning facilities