JPS62127422A - Method for determining temperature rising curve of material in heating furnace - Google Patents

Method for determining temperature rising curve of material in heating furnace

Info

Publication number
JPS62127422A
JPS62127422A JP26844385A JP26844385A JPS62127422A JP S62127422 A JPS62127422 A JP S62127422A JP 26844385 A JP26844385 A JP 26844385A JP 26844385 A JP26844385 A JP 26844385A JP S62127422 A JPS62127422 A JP S62127422A
Authority
JP
Japan
Prior art keywords
temperature
furnace
flow rate
calculation means
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26844385A
Other languages
Japanese (ja)
Other versions
JPH0420969B2 (en
Inventor
Makoto Tsuruta
誠 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26844385A priority Critical patent/JPS62127422A/en
Publication of JPS62127422A publication Critical patent/JPS62127422A/en
Publication of JPH0420969B2 publication Critical patent/JPH0420969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0003Monitoring the temperature or a characteristic of the charge and using it as a controlling value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0059Regulation involving the control of the conveyor movement, e.g. speed or sequences

Abstract

PURPOSE:To accurately control extracting temp. of each material and save fuel, by using respective means from the first to the seventh arithmetic means for calculating variation of furnace temp. with the lapse of time to determine temp. rising curve of material in hot rolling line. CONSTITUTION:Average temp., etc., at material extraction in present state fuel flow rate are calculated by the fourth arithmetic means due to results of the respective first, second and third arithmetic means. The first means calculates variation with the lapse of time in furnace temp. due to fuel flow rate, the second means calculates that in temp. of furnace wall inside due to furnace temp., and the third means calculates that in temp. in material due to furnace temp. Fuel flow rate of each control zone is varied from present state flow rate by a fixed value to calculate min. temp., etc., at material extraction, and linearizing coefft. is calculated by the fifth arithmetic means due to this and result of the fourth means. Next, the most suitable fuel flow rate is calculated by the sixth arithmetic means using the coefft., etc. Temp. rising curve to material extraction is calculated by the seventh arithmetic means due to the most suitable flow rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱間圧延ラインにおける加熱炉の温度制御
において、燃料最少となる材料の昇温パターンの決定方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for determining a heating pattern of a material that minimizes fuel consumption in temperature control of a heating furnace in a hot rolling line.

〔従来の技術〕[Conventional technology]

従来、この種の加熱炉の温度制御としてオンラインで昇
温曲線を決定する方法としては、例えば特開昭56−y
sss34公報に示されているように、炉温から材料温
度を計算するモデルおよび炉温と材料温度とから燃料流
量を計算するモデルの両弁線形モデルを使用し、非線形
の燃料最少化を行なうために、炉温をステップ状に変化
させて摂動シミュレーション法(基準状態と摂動状態に
おいてシミュレーションを行ない線形化係数を決定する
方法)を用い線形化を行ない、その結果で材料の昇温曲
線を決定する方法が採られている。
Conventionally, as a method for determining the temperature rise curve online for temperature control of this type of heating furnace, for example, Japanese Patent Application Laid-Open No. 56-Y
As shown in the sss34 publication, in order to perform nonlinear fuel minimization, a dual-valve linear model is used: a model that calculates the material temperature from the furnace temperature, and a model that calculates the fuel flow rate from the furnace temperature and material temperature. Then, linearization is performed by changing the furnace temperature in steps and using the perturbation simulation method (a method in which the linearization coefficient is determined by performing simulations in the standard state and perturbed state), and the temperature rise curve of the material is determined from the results. method is adopted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の加熱炉の材料昇温曲線決定方法では
、一般に炉温計算ゾーンは燃料流量を制御できるゾーン
よりも数が多いため、炉温を基にした摂動法による最適
化後の最適炉温および昇温曲線は、常に実現可能なパタ
ーンとは限らないという問題があった。
In the conventional method for determining material temperature rise curves for heating furnaces as described above, the number of furnace temperature calculation zones is generally greater than the number of zones in which fuel flow rate can be controlled. There was a problem in that the furnace temperature and temperature rise curve were not always in a realizable pattern.

また、線形化係数および昇温パターンを決定する際、炉
壁への損失熱量、炉壁温度分布等を無視し、炉の応答遅
れを考慮せずに炉温をステップ状に変化させてシミュレ
ーションを行なっているため、実際の材料の昇温傾向お
よび炉の状態とかけ離れた昇温曲線が決定されるという
問題があった0また、抽出休止(中断)の非定常操業時
の影響が最適化のロジックに組込まれていないため、手
動時に通常なされる炉温設定値を下げるという操作がな
く、燃料原単位を悪化させてしまう問題も生じた。
In addition, when determining the linearization coefficient and temperature increase pattern, the simulation is performed by ignoring heat loss to the furnace wall, furnace wall temperature distribution, etc., and changing the furnace temperature in steps without considering the furnace response delay. As a result, there was a problem that a temperature rise curve was determined which was far from the actual temperature rise trend of the material and the furnace condition.In addition, the influence of extraction pauses (interruptions) during unsteady operation caused optimization problems. Because it was not incorporated into the logic, there was no operation to lower the furnace temperature setting that would normally be done manually, which caused the problem of worsening the fuel consumption rate.

この発明は上記のような問題点を解消するためになされ
たもので、実現可能で、かつ実際の状態に一致し、また
抽出休止の非定常操業時に設定炉温か下がるような昇温
曲線を決定することができる加熱炉の材料昇温曲線決定
方法を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to determine a temperature rise curve that is feasible and corresponds to the actual conditions, and that lowers the set furnace temperature during unsteady operation with extraction pauses. The purpose of this study is to obtain a method for determining the material temperature rise curve of a heating furnace.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る加熱炉の材料昇温曲線決定方法は、燃料
流量に基づき非定常熱バランス式により炉温を計算する
モデル、炉温を基にして炉壁温度分布を求めるモデル、
および炉温を基にして材料温度を求めるモデルの3つの
非線形モデルを使用し、燃料最少化を行なうために、燃
料流量をステップ状に変化させる摂動法シミュレーショ
ン&使用し、かつLP(線形計画法)手法における評両
関数に燃料流量と非定常操業時の影響を組込んで昇温曲
線を決定するようにしたものである。
The method for determining a material temperature rise curve for a heating furnace according to the present invention includes a model that calculates the furnace temperature using an unsteady heat balance formula based on the fuel flow rate, a model that calculates the furnace wall temperature distribution based on the furnace temperature,
and a model that calculates material temperature based on the furnace temperature.In order to minimize the fuel, we use perturbation method simulation and use that changes the fuel flow rate in steps, and LP (linear programming). ) The temperature rise curve is determined by incorporating the influence of fuel flow rate and unsteady operation into the evaluation function of the method.

〔作用〕[Effect]

この発明においては、炉壁温度分布を含む3つの非線形
モデルを使用し、燃料最小化を行なうためにいわゆる摂
動法シミュレーションを使用して昇温曲線を決定するよ
うにしているので、実現可能で、かつ実際の状態に一致
し、また抽出休止の非定状操業時に設定炉温か下がるよ
うな昇温曲線を決定することが可能となる。
In this invention, three nonlinear models including the furnace wall temperature distribution are used, and a so-called perturbation method simulation is used to determine the temperature rise curve in order to perform fuel minimization. It is also possible to determine a temperature increase curve that matches the actual state and that lowers the set furnace temperature during non-regular operation with extraction paused.

〔実施例〕〔Example〕

以下、この発明の原理について説明する0炉温計算モデ
ルは以下のようにして構成されている。
The zero furnace temperature calculation model to explain the principle of the present invention is constructed as follows.

第1図に示す様に加熱炉を炉長方向にn(lに分割し、
各分割されたメツシュについて各々次の様な熱バランス
方程式をたてる0 4“gi       、 、、炉温の温度変イヒC1
@ t =Qエ       ・・・燃料、空気の顕熱6 、 
        ・・・燃料発熱量+01+1”pF”
gl+1 ・・・上流よりの排ガス熱量 i  pg  gi   ・・・下流への排ガス熱量・
・・他メツシュ炉温よりのふく射 ・・・炉壁よりのふく射 ”2(Twi−”gi”C3(Tei−”pi)・・・
炉壁、材料への対流 −QW□      ・・・スキッド冷却水損失・ ・
 ・(1) ここで Hは燃料の単位流量当りの発*A量、Cpgは
排ガス比熱、Giは各メツシュの排ガス流量で分割数、
mはスラブ本数である0 上記式(1)は、燃料流量Wが与えられれば、炉壁温度
、スラブ温度を既知とすれば、次の様に変形される。
As shown in Figure 1, the heating furnace is divided into n (l) parts in the furnace length direction.
Establish the following heat balance equation for each divided mesh.
@ t = Qe ... Sensible heat of fuel and air 6,
...Fuel calorific value +01+1"pF"
gl+1 ... Calorific value of exhaust gas from upstream i pg gi ... Calorific value of exhaust gas to downstream
... Radiation from other mesh furnace temperatures... Radiation from the furnace wall"2 (Twi-"gi"C3(Tei-"pi)...
Convection to furnace walls and materials - QW□ ...Skid cooling water loss...
・(1) Here, H is the amount of emitted *A per unit flow rate of fuel, Cpg is the exhaust gas specific heat, Gi is the number of divisions in the exhaust gas flow rate of each mesh,
m is the number of slabs 0. The above equation (1) can be transformed as follows if the fuel flow rate W is given and the furnace wall temperature and slab temperature are known.

+ Σ B   拳T  +a         (1
=  1es拳H)ik  gk  i φ争Q(2) とれはs n7c連立の非線形微分方程式であるが、1
5tep 前の炉内温度分布を出発値として、時間に関
して離散化し、ニュートン法等を用いて収束させれば、
簡単に新らしい炉内温度分布を計算できる。
+ Σ B fist T +a (1
= 1es fist H) ik gk i φ conflict Q (2) Tore is s n7c simultaneous nonlinear differential equations, but 1
Using the temperature distribution in the furnace 5 steps ago as a starting value, discretize it with respect to time and converge using Newton's method etc., then
You can easily calculate a new temperature distribution inside the furnace.

また、材料温度モデルは、良く知られている2次元の熱
伝導方程式より次の様に表わせる。
Furthermore, the material temperature model can be expressed as follows using the well-known two-dimensional heat conduction equation.

表面における境界条件は ここでXは材料厚み方向、Yは材料の巾方向を表わし、
d工、d2  はそれぞれ材料厚み、材料中を表わす。
The boundary conditions on the surface are where X represents the material thickness direction, Y represents the material width direction,
d and d2 represent the material thickness and the inside of the material, respectively.

また、aB、λ8.r、はそれぞれ材料の比熱。Also, aB, λ8. r is the specific heat of each material.

熱伝導率、比重であり、 q8は材料の表面熱流束であ
り次式で表わせる。
These are thermal conductivity and specific gravity, and q8 is the surface heat flux of the material, which can be expressed by the following formula.

qs= Σに3u ((7g1+273)’−(Ts、
+273)’ 11=1 ” 03(T s6− T ge )        
・―・(6)式(8)は式(4)の境界条件を用いれば
、通常の差分手法で解く事ができる。
qs= Σ to 3u ((7g1+273)'-(Ts,
+273)'11=1''03(Ts6-Tge)
---(6) Equation (8) can be solved by a normal difference method using the boundary condition of Equation (4).

炉壁温度モデルは第1図に示されている様に炉長手方向
分割毎のメツシュ内において、厚み方向のみの1次元熱
伝導方程式によって、次の様に表わせる。
As shown in FIG. 1, the furnace wall temperature model can be expressed as follows using a one-dimensional heat conduction equation only in the thickness direction within the mesh for each division in the longitudinal direction of the furnace.

炉内表面における境界条件は 番 +02(Tg土−Tw)           ・ ・
 ・ (η炉外表面における境界条件は ここで、Xは炉壁厚み方向、d、は炉壁の厚み、Cw・
rW、λ7 は炉壁の比熱、熱伝導率、比重を表わして
おり、HOUT  は外部熱伝導率、〒1□1 は外部
温度を示している0式(6)も式(γ)1式(8)の境
界条件を用いる事によシ通常の差分方程式で解く事が可
能となる。
The boundary condition on the inner surface of the furnace is number + 02 (Tg soil - Tw) ・ ・
・(η The boundary condition on the outer surface of the furnace is here, X is the furnace wall thickness direction, d is the furnace wall thickness, Cw・
rW, λ7 represent the specific heat, thermal conductivity, and specific gravity of the furnace wall, HOUT is the external thermal conductivity, and 〒1□1 is the external temperature. By using the boundary condition in 8), it becomes possible to solve the problem using an ordinary difference equation.

なお、上記3つのモデルを組み合わせて使用する事によ
シ、燃料流量を与えれば、炉温、材料温度、炉壁温度の
現在値を初期値として炉温、材料温度、炉壁温度、3者
の将来温度が計算出来る。
By using the above three models in combination, if the fuel flow rate is given, the current values of the furnace temperature, material temperature, and furnace wall temperature are used as initial values, and the furnace temperature, material temperature, furnace wall temperature, and the three The future temperature of can be calculated.

次に、燃料を最少とする材料の昇温曲線の決定方法を第
2図に基づき説明する。なお、(1)は昇温曲線決定の
第15tep s  (2)は同機の第2stop。
Next, a method for determining a temperature increase curve for a material that minimizes fuel consumption will be explained based on FIG. 2. Note that (1) is the 15th step of determining the heating curve, and (2) is the 2nd stop of the aircraft.

(8)は同様の第5stop 、  (4)は同様の第
4stop。
(8) is a similar fifth stop, and (4) is a similar fourth stop.

(6)は炉温計算モデル、(6)は炉壁温度計算モデル
、(γ)は材料温度計算モデル、(8)は材料通過位置
炉温の計算、(9)は最低温度、均熱度の計算、(至)
は線形化係数の計算、α刀は線形計画法(I、P)の計
算で、(2)は材料の抽出されるまでの昇温曲線を決定
する計算である。
(6) is the furnace temperature calculation model, (6) is the furnace wall temperature calculation model, (γ) is the material temperature calculation model, (8) is the calculation of the furnace temperature at the material passage position, and (9) is the minimum temperature and uniform heating degree. calculation, (to)
is the calculation of the linearization coefficient, α is the calculation of linear programming (I, P), and (2) is the calculation that determines the temperature rise curve until the material is extracted.

まず、第1 5top (1)として、現在の流量WK
。でもって全材料が抽出されるまでの時間、5つのモデ
ル(5) 、 (6) 、 (γ)を繰り返して使用す
る事により、各材料抽出時の最低温度T8゜、均熱度(
最高温度−最低温度)ΔT 、Oおよび炉内計算ゾーン
出側位置での材料平均温度T5□。が計算できる。
First, as the first 5top (1), the current flow rate WK
. Therefore, by repeatedly using the five models (5), (6), and (γ), the time until all materials are extracted, the minimum temperature T8° during extraction of each material, and the soaking degree (
(maximum temperature - minimum temperature) ΔT, O and the material average temperature T5□ at the outlet side position of the calculation zone in the furnace. can be calculated.

次に、第25top (2)として、各燃料流量制御帯
毎に上記燃料流量をΔWK″ だけ 5top状に変化
させる事によって、前記第1 5top(1)と同様に
各流量変化時の各材料抽出時最低温度;、K、均熱度Δ
TK  、各ゾーン出側位置での材料平均温度TbKを
計算することができる。
Next, as the 25th top (2), by changing the fuel flow rate by ΔWK'' in 5 tops for each fuel flow rate control zone, each material is extracted at each flow rate change in the same way as the 1st 5top (1). Minimum temperature; K, soaking degree Δ
TK, the material average temperature TbK at each zone exit position can be calculated.

次に第3 5top(8)として、以下の線形化係数の
計算(101を実行する。第2 5top(2)の処置
により、非線形方程式の解である抽出特番材料最低温度
、均熱度、および各材料通過時の各計算ゾーンでの平均
温度は次の様に線形化する事ができる。
Next, as the 3rd 5th top (8), calculate the following linearization coefficient (101). By the procedure of the 2nd 5th top (2), the extraction special material minimum temperature, soaking degree, and each The average temperature in each calculation zone when the material passes can be linearized as follows.

ここで、KMAX  は燃料流量制御帯の数であり、p
p、p   は各々流量を変化させた場合のIKl  
  2K     31に 線形化係数であり、次で与えられる。
Here, KMAX is the number of fuel flow control bands, and p
p and p are IKl when the flow rate is changed respectively.
2K 31 is the linearization coefficient, given by:

(y、に−、;、0) Plに:□        ・Φ・叫 ΔwK0 また、各燃料流量はΔWxを各制御帯の変化量とすると w  =w  +ΔWK K と表わす事ができる。(y,ni-,;,0) To Pl: □     ・Φ・Scream ΔwK0 Also, each fuel flow rate is calculated by assuming that ΔWx is the amount of change in each control band. w = w +ΔWK K It can be expressed as

昇温曲線を求めるうえでの制約条件は材料の冶金学的制
約、および炉操業上の制約から次の様なものである。
The constraints in determining the temperature rise curve are as follows due to metallurgical constraints of the material and constraints on furnace operation.

”biMIN≦Tbi≦Tl)l MAX”KMIN 
 ≦WK  ≦”KMAXここで、添字MIN、 MA
X  はそれぞれの下限値および上限値を示している。
"biMIN≦Tbi≦Tl)l MAX"KMIN
≦WK ≦”KMAX where subscripts MIN, MA
X indicates each lower limit value and upper limit value.

また、最適化の評価関数は燃料最小化であり、また非定
常操業時の影響すなわち各帯在炉時間の延長を組込んで
次のようになる。
The optimization evaluation function is fuel minimization, and the effect of unsteady operation, that is, the extension of each reactor zone time, is incorporated into the following equation.

K=1 式儂)の制約条件下での弐〇〇)の最小化は通常の線形
計画法(LP)の計算αη式で求めることが可能である
The minimization of 2〇〇) under the constraint condition of K=1 can be obtained using the ordinary linear programming (LP) calculation αη formula.

上記解の流量が各材料の最適流量”koptであり、第
4 5topとしてこの流量を基に線形計画法(LP)
の計算叩に代入する事で抽出までの材料の昇温曲線を計
算する事ができる。
The flow rate of the above solution is the optimal flow rate "kopt" for each material, and linear programming (LP) is performed based on this flow rate as the 4th and 5th top.
By substituting into the calculation value, it is possible to calculate the temperature rise curve of the material until extraction.

次にこの発明の一実施例に基づく加熱炉制御について第
3図を参照して説明する。
Next, heating furnace control based on an embodiment of the present invention will be explained with reference to FIG.

第3図において、複数の制御帯に分割された加熱炉(1
01)には燃焼用バーナ(105) 、炉温検出器(1
04)が配置されており、炉温設定手段(106)によ
って設定された各制御帯毎の設定温度になるよう燃料流
量制御器(103)によって流量が制御されている。(
1o2)は材料情報手段であり、炉内の材料の寸法、重
量、抽出温度、炉内搬送情報等の材料情報を炉温設定手
段(106)に指示する。
In Figure 3, a heating furnace (1
01) includes a combustion burner (105) and a furnace temperature detector (1).
04) is arranged, and the flow rate is controlled by the fuel flow rate controller (103) so as to reach the set temperature for each control zone set by the furnace temperature setting means (106). (
1o2) is a material information means, which instructs the furnace temperature setting means (106) with material information such as the dimensions, weight, extraction temperature, and conveyance information of the material in the furnace.

炉温設定手段(106)は、現状温度計算手段(イ)と
昇温曲線決定手段(21)と設定炉温計算手段國とから
なっており、周期的に起動される。現状温度計算手段−
は材料情報を基にして炉温計算モデル(6)、炉壁温度
計算モデル(6)、材料温度計算モデル(7)により、
現在の材料温度を計算する。昇温曲線決定手段(3))
はこの発明の説明で述べた様に各材料毎の昇温曲線を各
々燃料最小化の下に決定する。
The furnace temperature setting means (106) consists of a current temperature calculation means (a), a heating curve determination means (21), and a set furnace temperature calculation means, and is activated periodically. Current temperature calculation method
is calculated using the furnace temperature calculation model (6), furnace wall temperature calculation model (6), and material temperature calculation model (7) based on the material information.
Calculate the current material temperature. Temperature rise curve determining means (3))
As described in the description of this invention, the temperature rise curve for each material is determined under fuel minimization.

設定炉温計算手段に)は、各材料毎の目標昇温曲線と現
状温度とを比較して、各制御帯の炉温を計算し、燃料流
量制御器(103)に設定炉温を指示する。
The set furnace temperature calculation means) compares the target temperature rise curve for each material with the current temperature, calculates the furnace temperature for each control zone, and instructs the fuel flow rate controller (103) to set the furnace temperature. .

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、炉温計算手段、
炉壁計算手段、材料温度計算手段の3つの非線形モデル
を使用し、かつ非定常操業を考慮した評価関数を設けて
燃料最小化を行なうために摂動法シミュレーションを使
用して昇温曲線を決定するようにしているので、実現可
能でかつ実際の状態に即した材料の昇温曲線を決定する
ばかりでなく、非定常操業時にも設定炉温か下がるよう
な昇温曲線を決定することが可能となる。このため、各
材料の抽出温度を精度よく制御できかつ燃料原単位を低
減することができる等の効果がある。
As explained above, according to the present invention, the furnace temperature calculation means,
Using three nonlinear models: a furnace wall calculation method and a material temperature calculation method, and providing an evaluation function that takes unsteady operation into consideration, a perturbation method simulation is used to determine the temperature rise curve in order to perform fuel minimization. This makes it possible not only to determine a temperature rise curve for the material that is feasible and in line with the actual conditions, but also to determine a temperature rise curve that will reduce the set furnace temperature even during unsteady operation. . Therefore, the extraction temperature of each material can be precisely controlled and the fuel consumption rate can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は加熱炉の炉温計算ゾーン分割を示す概略図、第
2図は燃料を最少とする材料の昇温曲線の決定方法を説
明するための説明図、第5図はこの発明の一実施例を示
す全体の構成図である。 (5ン:炉温計算モデル (6):炉壁温度計算モデル
(7):材料温度計算モデル (社):現状温度計算手段 tzll :昇温曲線計算手段 C@二段設定炉温計算手 段101) :加熱炉 (103) :燃料流量制御器 (104) :炉温検出器 (105) :燃焼用バーナ (106) :炉温設定手段
Fig. 1 is a schematic diagram showing the zone division of the furnace temperature calculation, Fig. 2 is an explanatory diagram to explain the method for determining the temperature rise curve of the material that minimizes the amount of fuel, and Fig. 5 is an example of the present invention. FIG. 1 is an overall configuration diagram showing an example. (5): Furnace temperature calculation model (6): Furnace wall temperature calculation model (7): Material temperature calculation model (company): Current temperature calculation means tzll: Temperature rise curve calculation means C @ Two-stage setting furnace temperature calculation means 101 ): Heating furnace (103): Fuel flow rate controller (104): Furnace temperature detector (105): Combustion burner (106): Furnace temperature setting means

Claims (1)

【特許請求の範囲】[Claims] 複数の制御帯を有する連続式加熱炉の加熱制御において
、燃料流量に基づき非定常熱バランス式により炉温の時
間変化を計算する第1演算手段、炉温から炉壁内部温度
の時間変化を計算する第2演算手段、炉温から材料内部
温度の時間変化を計算する第3演算手段、上記第1、第
2、第3の各演算手段を用い各制御帯の現状燃料流量で
の材料抽出時平均温度、均熱度、および材料通過時の各
炉温をそれぞれ計算する第4演算手段、上記第1、第2
、第3の各演算手段を用い各制御帯の燃料流量を現状流
量からある一定値を変化させ、材料の抽出時最低温度、
均温度および各計算ゾーンを通過する時の平均温度を計
算し、これと第4演算手段の結果に基づき現状流量まわ
りでの線形化係数を計算する第5演算手段、上記係数を
用いて炉操業上の制約条件下で材料が焼上がるのに必要
な燃料を最小とし、かつ抽出休止(中断)の予定がある
非定常操作時を考慮して最適化の評価関数に休止の影響
を組込み、最適燃料流量を計算する第6演算手段、この
流量を基に材料の抽出されるまでの昇温曲線を決定する
第7演算手段を有することを特徴とする加熱炉の材料昇
温曲線決定方法。
In heating control of a continuous heating furnace having a plurality of control zones, a first calculating means for calculating the time change in the furnace temperature using an unsteady heat balance formula based on the fuel flow rate, and calculating the time change in the furnace wall internal temperature from the furnace temperature. A second calculation means for calculating the temporal change in the material internal temperature from the furnace temperature, a third calculation means for calculating the temporal change in the material internal temperature from the furnace temperature, and the first, second, and third calculation means are used to extract the material at the current fuel flow rate in each control zone. a fourth calculation means for calculating the average temperature, the degree of soaking, and each furnace temperature when the material passes;
, the fuel flow rate in each control zone is changed by a certain constant value from the current flow rate using the third calculation means, and the lowest temperature at the time of extraction of the material,
A fifth calculation means calculates the uniform temperature and the average temperature when passing through each calculation zone, and calculates a linearization coefficient around the current flow rate based on this and the result of the fourth calculation means, and the furnace operation is performed using the coefficients. Under the above constraint conditions, the fuel required to bake the material is minimized, and the influence of the stoppage is incorporated into the optimization evaluation function in consideration of unsteady operation when there is a scheduled stoppage (interruption) of extraction. A method for determining a material temperature rise curve for a heating furnace, comprising a sixth calculation means for calculating a fuel flow rate, and a seventh calculation means for determining a temperature rise curve until the material is extracted based on the fuel flow rate.
JP26844385A 1985-11-27 1985-11-27 Method for determining temperature rising curve of material in heating furnace Granted JPS62127422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26844385A JPS62127422A (en) 1985-11-27 1985-11-27 Method for determining temperature rising curve of material in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26844385A JPS62127422A (en) 1985-11-27 1985-11-27 Method for determining temperature rising curve of material in heating furnace

Publications (2)

Publication Number Publication Date
JPS62127422A true JPS62127422A (en) 1987-06-09
JPH0420969B2 JPH0420969B2 (en) 1992-04-07

Family

ID=17458572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26844385A Granted JPS62127422A (en) 1985-11-27 1985-11-27 Method for determining temperature rising curve of material in heating furnace

Country Status (1)

Country Link
JP (1) JPS62127422A (en)

Also Published As

Publication number Publication date
JPH0420969B2 (en) 1992-04-07

Similar Documents

Publication Publication Date Title
US6772610B1 (en) Flat glass annealing lehrs
Jang et al. Optimization of a slab heating pattern for minimum energy consumption in a walking-beam type reheating furnace
US5770838A (en) Induction heaters to improve transitions in continuous heating system, and method
JPS5947324A (en) Controlling method of heating in heating furnace
JPS5848011B2 (en) Furnace combustion control method
CN105579415A (en) Method for operating cement production facility
KR20180098337A (en) Temperature control device and temperature control method of steel plate
JP2008024966A (en) Method for controlling furnace temperature in continuous type heating furnace, and method for producing steel material
JPS62127422A (en) Method for determining temperature rising curve of material in heating furnace
CN109307431B (en) Mixed heating industrial kiln
JP5849612B2 (en) Combustion control method and combustion control apparatus for hot stove
JP6665475B2 (en) Furnace temperature setting method and furnace temperature setting device
JPH0532450B2 (en)
JPS61199022A (en) Method for controlling continuous heating furnace
JPS61261433A (en) Method for controlling temperature of heating furnace
JPH0532445B2 (en)
JPH0532446B2 (en)
KR100689153B1 (en) Method for estimating temperature of slab in heating furnace
US5609785A (en) Method and apparatus for improving the performance of a heating furnace for metal slabs
JP6809348B2 (en) Hot air furnace control calculation device, hot air furnace control calculation method, and program
JPH0532449B2 (en)
JPS6140053B2 (en)
JPH06281364A (en) Temperature control method for heating furnace
JPS6036452B2 (en) Control method for continuous heating furnace
JPS61199020A (en) Method for controlling continuous heating furnace